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I am an applied mathematician who is interested in using methods from the calculus of variations,
applied analysis, and asymptotic analysis to answer questions about ordinary and partial differen-
tial equations (ODEs and PDEs) that arises in physical and life sciences. The primary focus of
my dissertation investigates how the presence of surface tension on the fluid free surface influences
the (natural) sloshing frequencies of an incompressible, inviscid fluid with irrotational flow in rigid
containers.

Overview

Sloshing dynamics refers to the study of liquid free surface (fluid-air interface) motion inside partially filled
containers or tanks. Liquid sloshing has attracted considerable attention from engineers and mathemati-
cians as it is an inevitable phenomenon in many practical engineering applications, causing detrimental
impacts on the dynamics and stability of marine, rail, road, and space transportation systems [11, 7]. For
example, violent fuel sloshing in liquid propellant spacecraft produces highly localized pressure on tank
walls possibly leading to deviation from the planned flight path or compromise structural integrity.

In a variety of engineering applications, it is important to know the natural sloshing frequencies of the
liquid in partially filled containers of arbitrary shape since large amplitude sloshing tends to occur in the
vicinity of resonance, i.e., when the external excitation frequency of the container is close to one of these
natural frequencies. It is therefore desirable to avoid external excitation at these natural frequencies in
the analysis and design of liquid tanks. However, except for a few simple geometries (such as cylindrical
and rectangular containers) with a flat free surface the best we can hope to do is to obtain bounds for
the sloshing frequencies. The simplest model for liquid sloshing considers only the gravitational force,
but in a microgravity environment or in small-scale engineering processes surface tension effects should
be considered as well. I have been working on the following four projects, the common theme being the
consideration of surface tension effects in the sloshing model:

1. I derived a new variational characterization of these sloshing frequencies which are eigenvalues
of a coupled generalized mixed-Steklov problem, where the spectral parameter appears in the
boundary conditions on the free surface. In particular, we established a domain monotonicity
result for the fundamental sloshing frequency and gave the first-order perturbation formula for
a simple fundamental sloshing frequency [22].

2. I investigated the isoperimetric sloshing problem in shallow containers. Among all shallow
canals or radially symmetric containers with fixed free surface width and cross-sectional area, we
are able to determine explicit container shapes that furnish the largest fundamental
sloshing frequency. This problem is equivalent to maximizing the principal eigenvalue of a
coupled system of singular Sturm-Liouville problems [21].

3. Together with fellow graduate student Nathan Willis (Utah), we derived an equivalent integro-
differential formulation for the ice-fishing problem (fluid sloshing in a half-space) and numeri-
cally determined the corresponding sloshing frequencies. These frequencies are universal upper
bounds for sloshing frequencies in an arbitrary container having the same free surface.

4. T am collaborating with Eva Kanso’s group (University of Southern California) on a combined
experimental-theoretical study to measure the fluid surface tension from the dispersion
relation measurement of Faraday waves generated in a narrow-width rectangular con-
tainer, called a Hele-Shaw cell.

To analyze these problems, I employ a variety of techniques from calculus of variations, applied analysis,
classical ODEs and PDEs, potential flow theory, asymptotic methods, and spectral theory.
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Project 1: A Variational Characterization of Fluid Sloshing with Surface Tension [22]

Surface tension is the intermolecular force required to contract the liquid surface to its minimal surface
area. This is why small fluid bodies tend to evolve to spheres, because a sphere has the smallest surface
area to volume ratio. A consequence of surface tension is that it causes the fluid free surface to climb
the container walls, resulting in a meniscus. This implies that the behavior of the contact line, i.e., the
intersection between the free surface and the container walls, plays an important role in determining
the sloshing frequencies and modes of capillary-gravity waves. Experimental evidence suggests that
the contact line behavior depends on the contact angle (i.e., the angle where the free surface meets
the container walls) and the contact line velocity [4, 3]. Examples of contact line boundary condition
(CLBC) include: (i) Free-edge: the contact line can freely slip on the vertical walls while intersecting it
orthogonally; (ii) Pinned-edge: the contact line remains at rest but the contact angle changes [1, 8]; (iii)
Wetting: the contact angle is assumed to be a linear function of the contact line velocity [10, 19].
In joint work with Christel Hohenegger and Braxton Osting, we

considered the linear sloshing problem with free-edge CLBC for
arbitrary three-dimensional containers with vertical walls near ~
the free surface and looked for time-harmonic solutions. The crucial w
dimensionless parameter measuring the relative magnitudes of gravita-
tional and capillary forces is the Bond number Bo. The sloshing problem u
without surface tension corresponds to Bo = co and it has been inves-

tigated extensively, see [17] for a recent survey. Let D and F be the
equilibrium fluid domain and flat free surface, respectively and define
the Dirichlet (kinetic) energy of ® € H!(D) and free surface (potential)
energy of £ € H'(F) by:

1 ) 1 , 1 ) Figure 1: Example of a three-
D[®] = 2/qu)| dV and S[¢] = 2/}_ (5 + §|V]:§| >dAv dimensional container D with
vertical walls near the free sur-

where H'(D) is the standard Sobolev space and Vx = (9;,0,). Our face F. Taken from [22].
main results are as follows:

1. Let w; be the fundamental sloshing frequency. Kopachevsky and Krein [12] stated that w? can
be found by minimizing the ratio S[¢]/D[®] subject to certain PDE constraints and boundary
conditions; call this (KKVF). We derived a new variational formulation for w;:

— inf D[®] + 8§ biect to | ®EdA=1, [ ddA=0= [ ¢dA, (1
= i L DB+ S[E] subject to /f ¢ /f /f cda, (1)

and proved the existence of a minimizer of (1) using the direct method of calculus of variations.
Our variational formulation differs from (KKVF) in the following way: (i) The energy functional
in (1) is the Lagrangian as it is the sum of kinetic and potential energies; (ii) (1) is a free
boundary condition variational principle in the sense that any minimizer of (1) automatically
satisfies the sloshing equation and all boundary conditions; (iii) we proved that (KKVF) follows
directly from (1) but it is not obvious how to deduce (1) from (KKVF).

2. We proved a Rayleigh-Ritz generalization of (1) for higher sloshing frequencies w;,,, where in addition
to the integral constraint in (1), we also require the admissible functions (®, &) to be biorthogonal
to all the lower sloshing modes (®;,&;) over F, i.e., [®dA=0= [6D;dA,j=1,...,m—1.

3. An immediate consequence of (1) is the property of domain monotonicity, stating that if we
have two containers D, D with identical free surface F and both container walls being vertical near
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F, and such that D envelops D, then we have w; (D) < w; (D). This result is useful in providing
upper bounds for the fundamental sloshing frequency containers of arbitrary shape
since we may choose D to be a larger container with a simple geometry.

4. We investigated the asymptotic behavior of a simple sloshing frequency in the limit of zero surface
tension. We obtained a first-order perturbation formula for any simple sloshing frequen-

cies w(e) for e =Bo ! <« 1:
_Wwo (HV]:(I)O’%Q(]:)>

2 ||(I>0H%2(]:)

dﬁ
de

e=0

where (wg, ®p) is a solution of the sloshing problem without surface tension.

Project 2: An Isoperimetric Sloshing Problem in a Shallow Container with Pinned
Contact Line [21]

An isoperimetric problem is the problem of optimizing a certain geometrical quantity (such as perimeter
or area) given another geometrical constraint. The canonical example is the problem of determining the
shape with a given perimeter that encloses the largest area. In 1965, Troesch [23] studied the isoperimetric
sloshing problem (ISP) of maximizing the fundamental sloshing frequency A; = w? for the following two
families of shallow symmetric containers: (i) Canals (CT) (uniform horizontal cylinders of arbitrary cross-
section) with given free surface width xo and cross-sectional area A; (ii) Radially symmetric containers
(RS) with given rim radius r¢ and volume V.

In joint work with Christel Hohenegger and Braxton Osting, we generalize Troesch’s result by includ-
ing surface tension effects coupled with the pinned-edge CLBC. One application for the result of this
investigation is in the field of aerospace engineering, where it is desirable to design tanks that have a
large spectral gap to avoid the lowest natural frequencies; an example of a shallow container would be a
nearly-empty fuel tank. Our main results are as follows:

1. Exploiting the symmetry along the canal length and axial symmetry for CT and RS containers,
respectively, we reduced the sloshing problem to a two-dimensional problem on the container cross-
section and derived a similar variational formulation for w; as in (1) for pinned-edge CLBC.
An application of shallow water theory gave us the “shallow” version of a variational formulation
(call this SVF) where the container shape function now appears explicitly in the integrand of the
kinetic energy functional. We obtained the linear shallow sloshing equations with pinned-edge
CLBC by computing the Euler-Lagrange equation of (SVF).

2. Using (SVF), we formulated ISP as a one-dimensional spectral optimization problem with an
area/volume constraint, in the sense that the free surface is fixed and only the shape function
h is allowed to vary while preserving the given cross-sectional area. We derived the first-order
optimality condition for the optimal solution, h*, solved for the critical points of the isoperi-
metric problem, and proved that the critical point is indeed the unique maximizer using the
extremal property of the fundamental sloshing frequency. The largest A\; was found by imposing
the area/volume constraint.

3. For RS containers, we looked for solutions of the form ®(r, 0, z) = ¢(r) cos(mb),&(r, 8) = ((r) cos(mb),
where m > 0 represents the number of azimuthal nodal lines and characterizes the symmetry class.
With zero surface tension, Troesch proved that A\ < 4V/7 for m =1 and A\; < 18V/7 for m = 0.
Including surface tension, we showed that the upper bounds for both m = 1 and m = 0 are Troesch’s
upper bounds multiplied by some constant C,,, = C,,(Bo) such that C,, — 1 as Bo — 4o0.
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4. For CT containers, we looked for traveling sinusoidal solutions along the canal ®(x,y,z) =
P(x) cos(ay), &(z,y) = ((x) cos(ay), where a > 0 is the wavenumber. Troesch only considered the
limiting case a = 0. With zero surface tension, Troesch proved that A\; < 12A. Including surface
tension, we showed that A\; < C'(12A4) for some constant C' = C(Bo) such that C' — 1 as Bo — +o0.
For a > 0, the result for the zero surface tension case is new. We proved that optimal
cross-sections exist only for certain values of a: For a € (0,7), we obtained A\; < 2a3A/(a — sina)
and for « = nm,n = 1,2,..., we obtained A\; < 2a2A4. Including surface tension, we proved that
optimal cross-sections exist for a« € (0,7) and « = 7. For a > 7w, a # nw,n = 1,2,..., we proved
that optimal cross-sections exist if and only if « is not a solution to certain transcendental equations.
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Figure 2: Optimal cross-section profiles and universal upper bounds for varying Bo. The first two plots
are (CT) containers with @ = 0 and the last two plots are (RS) containers with m = 1. For both
containers, we can see that both the optimal cross-section and universal upper bounds converge to the
result without surface tension as Bo — oo.

Project 3: On the Two-Dimensional Ice-Fishing Problem with Pinned Contact Line

The ice-fishing problem (IFP) is the linear sloshing
problem in a half-space bounded above by an in-
finite rigid plane that contains a circular or strip-
like aperture. For the two-dimensional problem,
the half-space is bounded above by the x-axis and
the free surface is an interval on the z-axis. One r=-=1 r=1
motivation for studying IFP is the property of do-
main mo'notonicity: Sloshing‘freq'uencies increa.se Figure 3: Fluid domain for the ice-fishing problem.
monotonically when the container is enlarged while Here, £ is the sloshing height.
maintaining a fixed free surface. Since every con-
tainer is contained in a half-space, the sloshing fre-
quencies for IFP thus furnish universal upper bounds for sloshing frequencies of arbitrary containers
sharing the same free surface. Henrici et al. [9] presented an extensive treatment of (IFP), where they
obtained both upper and lower bounds of the sloshing frequencies using the Rayleigh-Ritz method. Con-
currently but independently, Davis [5] solved the two-dimensional IFP where he explicitly constructed the
Green’s function for the half-space with aperture and reformulated IFP as an explicit integral equation.
In joint work with Christel Hohenegger, Braxton Osting, and Nathan Willis, we consider the two-
dimensional IFP with the pinned-edge CLBC. The domain monotonicity of sloshing frequencies follows
from our variational formulation derived in Project 2 [21]. Our main results are as follows:
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1. Following Henrici et al., we wrote the sloshing velocity potential as a single layer potential and
use it to reformulate the problem as a constrained Fredholm integro-differential eigenvalue
problem for the sloshing height £(z) on the free surface [—1, 1] and sloshing frequencies w:

1 w2 1
£ - %{mx = /1 In|z —slé(s)ds for |z| <1, (2)

/1 £dr =0, £(+1)=0. (3)
1

2. Because the aperture is symmetric about the y-axis, it follows that the solutions of (2) are either
odd or even functions of z. Writing (2) in weak form and expanding solutions in suitably chosen
Fourier basis satisfying both the zero mean condition and Dirichlet boundary condition reduces (2)
to a generalized matrix eigenvalue problem of the form B¢ = w?C€. The entries of C are integrals
involving logarithmic kernel and we use two Gauss quadrature rules to evaluate these integrals.
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Figure 4: The square of the first six sloshing frequencies of (2) for varying Bo. The dashed lines on

the right plot indicate the corresponding values without surface tension from Davis [5]. (Provided by N.
Willis)

Project 4: Measuring Surface Tension in a Hele-Shaw cell (Ongoing Work)

When a liquid-filled container is undergoing a vertical sinusoidal excitation of the form A cos(27 ft),
a pattern of standing waves known as Faraday waves is often observed at the liquid free surface for
some combinations of excitation amplitude A and excitation frequency f. This phenomenon is known
as the Faraday instability. Faraday waves can be generated in the laboratory and are often subharmonic
oscillations, with frequency only half the excitation frequency.

A crucial component in the study of Faraday waves is the knowledge of the Faraday dispersion relation,
i.e., an equation relating the wavelength of Faraday waves to their frequency. Since the seminal work of
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Benjamin and Ursell [2], the Faraday dispersion relation has been identified with that of natural sloshing
modes, the latter depends only on the container geometry and particularly the fluid surface tension, o.
Douady exploited this property in his experimental study [6] to measure surface tension, where he plotted
the measured wavelength versus the excitation frequency and fitted the curve against the dispersion
relation, by adjusting the only unknown experimental parameter, . However, Rajchenbach and Clamond
[20] recently refuted the result of Benjamin and Ursell, showing that the excitation amplitude A plays
a major role in the dispersion relation, thereby establishing the first actual linear Faraday dispersion
relation.

In collaboration with Eva Kanso’s group (Uni-
versity of Southern California), we propose to mea-
sure the fluid surface tension from Faraday waves
generated in a narrow-width rectangular container,
called a Hele-Shaw cell. The cell is placed above
a speaker and made to oscillate vertically. The
excitation frequency is slowly varied until two-
dimensional standing Faraday waves are generated
and wavelength measurements are recorded; the
macroscopic contact line behaviors are observed as
well. Li et al. [18] recently proposed a novel hy-
drodynamic model to capture the variation of the Figure 5: Square cell half-filled with ethanol 70%
dynamic contact line across the narrow gap and undergoing vertical oscillation, above the instability
obtained a modified Faraday dispersion relation in threshold, at f = 85 Hz. (Provided by Lionel Vin-
Hele-Shaw cells. However, this dispersion relation cent)

did not make the prediction better but worse. We

are currently modifying known models for the dynamic contact line to match our experimen-
tal observation. We will perform a weakly nonlinear analysis on this modified model to derive
a modified Faraday dispersion relation and use it to measure fluid surface tension as in Douady.
While there are many methods to measure fluid surface tension, they generally depend on the wetting
properties and characteristics of the fluid. Our proposed experimental-theoretical study offers a simple
graphical approach to measure fluid surface tension. The experimental setup is inexpensive relative to
other methods requiring more sophisticated equipment.

Future Directions

Our analysis from Projects 1-3 are all restricted to the case where the static free surface is flat. I plan
to remove this assumption and generalize results from Projects 1-3 to the case of static curved free
surface. For the ice-fishing problem, I would like to investigate the dependence of fundamental
sloshing frequency w? on the shape of the free surface region. To do so, I will start by extending
my two-dimensional result to the three-dimensional case for arbitrary free-surface region and gain some
insights by performing a numerical study using finite-element method.

For the isoperimetric problem, it is more difficult to obtain lower bounds for A\ = w% since A1 can be
made arbitrarily small for a given free surface width and container volume. Troesch [25, 24] considered
the isoperimetric problem of minimizing A\; among shallow convex containers and Kuzanek
[15, 14] considered the similar isoperimetric sloshing problem on a symmetric shallow canal where he
replaced the area constraint by the arc length constraint. I plan to explore these two problems
with the consideration of surface tension effects. Finally, it would be of interest to extend the isoperimetric
sloshing problem by removing the assumption of shallow container. This is a difficult shape optimization
problem and numerical approaches are required to find optimal container shapes.
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