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1 Normed Spaces. Banach Spaces.

1.1 Vector Space.
Definition 1.1.

1. An arbitrary subset M of a vector space X 1is said to be linearly independent if
every non-empty finite subset of M is linearly independent.

2. A wvector space X is said to be finite dimensional if there is a positive integer
n such that X contains a linearly independent set of n vectors whereas any set of
n—+1 or more vectors of X is linearly dependent. n is called the dimension of X,
written n = dim X.

3. If X is any vector space, not necessarily finite dimensional, and B is a linearly
independent subset of X which spans X, then B is called a basis (or Hamel
basis) of X.

e Hence if B is a basis for X, then every nonzero x € X has a unique repre-
sentation as a linear combination of (finitely many!) elements of B with
nonzero scalars as coefficients.

Theorem 1.2. Let X be an n-dimensional vector space. Then any proper subspace Y of
X has dimension less than n.

1. Show that the set of all real numbers, with the usual addition and multiplication,
constitutes a one-dimensional real vector space, and the set of all complex numbers
constitutes a one-dimensional complex vector space.

Solution: The usual addition on R and C are commutative and associative, while
scalar multiplication on R and C are also associative and distributive. For R, the
zero vector is 0 = 0 € R, the identity scalar is 1g = 1 € R, and the additive
inverse is —z for any x € R. For C, the zero vector is Oc = 0 + 0i € C, the
identity scalar is 1c = 1+ 07 € C and the additive inverse is —z for all z € C.

2. Prove that 0x =0, a0 =0 and (—1)z = —=.

Solution:

0z = (04 0)z =0z + 0z = 0=0z+ (—(0z))
= 0z + 0z + (—(0z))
= 0z + 0 = O.
a0=a(0+0)=a0+a0 = 0= a0+ (—(a0))
= a0 + a0 + (—(a0))
= a0+ 0 = a0.

(=Dz=(-1(1))z = —-1(1z) = —=.
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3. Describe the span of M = {(1,1,1),(0,0,2)} in R>.

Solution: The span of M is

1 0
span M =< a |1| +8|0| :a,0€R
1 2
!
= o ra,feR
a+20

We see that span M corresponds to the plane x = y on R3.

4. Which of the following subsets of R? constitute a subspace of R3?

(517 527 §3)
(a) All z with 51 = 52 and 53 = 0.

Here, z

Solution: For any z,y € W and any «, f € R,

&1 m aéy + Bm
ar + By =a |&| +6 || = |ae +Bn| € W.
0 0 0

(b) All z with & = & + 1.

2 3
Solution: Choose 1 = (1| e W, 29 = |2| € W, then
0 0

2 3 by
0 0 0

since 5 # 3 + 1.

(c¢) All x with positive &, &, &s.

Solution: Choose o = —1, then for any z € W, axz ¢ W.

Solution: For any z,y € W,

§&1+m
r+y= S+
&3+ 13
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Since

S+m—(S+m)+(E+n)= (& —&+E)+ (m—n2+n3) =2k,

we see that W is a subspace of R? if and only if k& = 0.

5. Show that {z1,...,x,}, where z;(t) = #/, is a linearly independent set in the space

Cla, b].

Solution: This is a simple consequence of Fundamental Theorem of Alge-
bra. Fix a finite n > 1. Suppose that for all ¢ € [a, b], we have

zn: )\jl'j(t) = zn: )\jtj = 0.
j=1 Jj=1

Suppose A, # 0. Fundamental Theorem of Algebra states that any polynomials
with degree n can have at most n real roots. Since the equation above is true for

all t € [a,b], and the set of points in the interval [a, b] is uncountable, Z A\jt? has
j=1

to be the zero polynomial. Since n > 1 was arbitrary (but finite), this shows that

any non-empty finite subset of {z;};ea, A a countable/uncountable indexing set,

is linearly independent.

6. Show that in an n-dimensional vector space X, the representation of any x as a linear
combination of a given basis vectors ey, ..., e, is unique.

Solution: Let X is an n-dimensional vector space, with a basis {e1,...,e,}.
Suppose any x € X has a representation as a linear combination of the basis
vectors, we claim that the representation is unique. Indeed, if x € X has two
representations

rT=o1e1+ ... +ane, = frer + ...+ Buen.

subtracting them gives

n

(al - ﬁl)el +...+ (an - 5n)€n = Z(aj - ﬁj)ej =0.

j=1

Since {ej,...,e,} is a basis of X, by definition it is linearly independent, which
implies that o; — 3; = 0 for all j = 1,...,n, i.e. the representation is unique.

7. Let {ey,...,e,} be abasis for a complex vector space X. Find a basis for X regarded
as a real vector space. What is the dimension of X in either case?
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Solution: A basis for X regarded as a real vector space is {eq, ..., e, i€, ... i€, }.
The dimension of X is n as a complex vector space and 2n as a real vector space.

8. If M is a linearly dependent set in a complex vector space X, is M linearly dependent
in X, regarded as a real vector space?

-1
{z,y} is a linearly dependent set in X since iz = y. Now suppose K = R, and

o[ %] -0- 172

Solution: No. Let X = C2, with K = C, and consider z = [1] and y = { ! }

Since «, § can only be real numbers, we see that («, ) = (0, 0) is the only solution
to the equation. Hence {z,y} is a linearly independent set in X = C? over R.

9. On a fixed interval [a,b] C R, consider the set X consisting of all polynomials with
real coefficients and of degree not exceeding a given n, and the polynomial z = 0 (for
which a degree is not defined in the usual discussion of degree).

(a) Show that X, with the usual addition and the usual multiplication by real num-
bers, is a real vector space of dimension n + 1. Find a basis for X.

Solution: Let X be the set given in the problem. It is clear that X is
a real vector space. Indeed, for any P,Q € X, with deg(P),deg(Q) < n,
deg(P + Q) < n and deg(aP) < n for any o € R. A similar argument from
Problem 5 shows that {1,¢,¢,...,t"} is a linearly independent set in X, and
since {1,¢,¢,...,¢"} spans X, it is a basis of X and X has dimension n + 1.

(b) Show that we can obtain a complex vector space X’jn a similar fashion if we let
those coefficients be complex. Is X a subspace of X?

Solution: No. Consider P(t) =t € X, choose a = i, then aP(t) =it ¢ X.

10. If Y and Z are subspaces of a vector space X, show that Y N Z is a subspace of X,
but Y U Z need not be one. Give examples.

Solution: Let Y and Z be subspaces of a vector space X. Take any x,y € YNZ,
note that x,y are both elements of Y and Z. For any o, € K, ar+ By € Y
(since Y is a subspace of X') and ax+ fy € Z (since Z is a subspace of X ). Hence
ar+pByeYNZ.
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For the second part, consider ¥ = { [Eﬂ o€ R} and Z = { [(O)J o€ ]R}. It
can be (easily) deduced that Y and Z are subspaces of R? but Y U Z is not a
subspace of R2. To see this, choose z = [(1)] and y = [ﬂ, then x +y = [ﬂ ¢
YUZ.

11. If M # @ is any subset of a vector space X, show that span M is a subspace of X.

Solution: This is immediate since a (scalar) field K is closed under addition and
sums of two finite sums remain finite.

12. (a) Show that the set of all real two-rowed square matrices forms a vector space X.
What is the zero vector in X7

Solution: This follows from Problem 1 and the definition of matrix addition
and matrix scalar multiplication: we prove that R is a vector space over R

or C. The zero vector in X is 0 = [8 8] )

(b) Determine dim X. Find a basis for X.

Solution: We claim that dim X = 4. To prove this, consider the following
four vectors in X

1o o1 oo o o
0o 0ol 2T (ool BT|1 o 7o 1|

Suppose aje; +...+agey =0 = [Zl ZQ] , we have a1 = ag = a3 = ay = 0,
3 Qy
i.e. {e1,e,e3, €4} is a linearly independent set in X. However, any set of 5
- . b
or more vectors of X is linearly dependent, since any x = d} € X can be

written as a linear combination of {ey, s, €3, €4}, i.e. © = ae;+bey+ces+dey.
Hence, a basis for X is {e1, ez, €3,€4}.

(c¢) Give examples of subspaces of X.

Solution: An example is W = { {(g 8] o€ R}.

(d) Do the symmetric matrices € X form a subspace of X7
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Solution: Yes. Consider any symmetric matrices x = {al bl} Y = [a2 62} .

bi d
For any o, 8 € R (or C),

_|aan + 5&2 Oébl + ﬁbg
ar + By o |:Oéb1 + 6()2 Oédl + ﬁd2:|

which is a symmetric matrix.

(e) Do the singular matrices € X form a subspace of X7

Solution: No. To see this, consider x = E ﬂ and y = {2 ﬂ both

x and y are singular matrices since they have zero determinant. However,

Tty = {171 2} is not a singular matrix since det(x +y) = 20—21 = —1 # 0.

13. (Product) Show that the Cartesian product X = X; x X5 of two vector spaces over
the same field becomes a vector space if we define the two algebraic operations by

(1, 22) + (Y1, 92) = (21 + Y1, T2 + y2),
a(zy, x2) = (axy, axs).

Solution: This is a simple exercise. We first verify vector addition:

(x1 +y1, 22 + y2)
= (y1 + 21, Y2 + 22)
(ylayQ) ($17$2)'

(21, 2) + (Y1, 52) =

(w1, 22) + [(v1,92) + (21, 22)] z1+ (1 +21), 22+ (y2 + Z2)>

((951 + 1) + 21, (w2 +y2) + Zz)
= (21 4+ y1, 22 + ¥2) + (21, 22)

[(371,952 ?/hyz)} + (21, 22).
(1 4+ 0,29+ 0)

— (1,22) + (0,0).

(1 4+ (=21), 91 + (=91))

= (

ajlayl) ( xlv_yl)‘

(21, 22) =

(0,0)

Next, we verify scalar vector multiplication:

(1, 22) = (11, L)

= 1x (21, 29).
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a|Blar, )]

(5351,51’2)
a(Br1), a(Bry)

(Oéﬁ)xh (045)902
B) (w1, 2).
(1 + 1,22+ y2)

)
)

I
A/‘\/‘\ o)

e

I Il
— /—\ — Q

Q

e} [(!101, x2) + (1, 92)}

a(wy + ), alzs +1p))
ary + ayp, axs + ays)
x1, ayp) + (awg, ays)
(x1,91) + a(22, y2).
(a+ B)xy, (a+ B) 2)
azy + fry, axg + fag)
axl,axQ) (Bxy, Prg)
= a(x1,z2) + Blz1, 2).

—— Q

(a+ B)(x1,22) =

/\/\

14. (Quotient space, codimension) Let Y be a subspace of a vector space X. The
coset of an element x € X with respect to Y is denoted by z 4+ Y and is defined to
be the set

x+Y ={rx:v=x+yyeY}

(a) Show that the distinct cosets form a partition of X.

Solution:

(b) Show that under algebraic operations defined by

(W+Y)+(z+Y)=(w+2a)+Y
alr+Y)=azr+Y

these cosets constitute the elements of a vector space. This space is called the
quotient space (or sometimes factor space) of X by Y (or modulo Y) and is
denoted by X/Y. Its dimension is called the codimension of Y and is denoted
by codim Y, that is,

codim Y = dim (X/Y).

Solution:

15. Let X =R%and Y = {(£,,0,0): & € R}. Find X/Y, X/X, X/{0}.
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Solution: First, X/X = {z + X: 2 € X}; since v + X € X for any z € X,
we see that X/X = {0}. Next, X/{0} ={z+0:2€ X} ={z:2¢€ X} =X.
For X/Y, we are able to deduce (geometrically) that elements of X/Y are lines
parallel to the &;-axis. More precisely, by definition,X/Y = {x +Y: x € X}; for

a fixed To = (5%5&53?%

mo+Y = {(€7,6,63) +(0,0,&): & € R}
= {(g(l)af(2)7§3) 53 S R}

which corresponds to a line parallel to & -axis.
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1.2 Normed Space. Banach Space.

Definition 1.3. A norm on a (real or complex) vector space X is a real-valued function
on X whose value at an x € X is denoted by ||z|| and which has the properties

(N1) [|z]| = 0.
(N2) ||z|| =0 <z =0.
(N3) ||| = [ |||
(N4) Nl +yll < =l + [lyll- (Triangle inequality)
Here, x and y are arbitrary vectors in X and « is any scalar.

e A norm on X defines a metric d on X which is given by

d(ﬂf,y): ||$_y|| 71'7?/,6)(
and is called the metric induced by the norm.

e The norm is continuous, that is, z +— ||z is a continuous mapping of (X, ||-]|) into R.

Theorem 1.4. A metric d induced by a norm on a normed space X satisfies
(a) d(z +a,y +a) = d(z,y).

(b) d(azx,ay) = |ald(z,y).
for all x,y,a € X and every scalar c.

e This theorem illustrates an important fact: Every metric on a vector space might
not necessarily be obtained from a norm.

e A counterexample is the space s consisting of all (bounded or unbounded) sequences
of complex numbers with a metric d defined by

o0

1 [& —njl
day) =S 415 = ml
;231+|§j—77j|
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1. Show that the norm ||z|| of x is the distance from = to 0.

Solution: ||z| = ||z —y|| = d(z,0), which is precisely the distance from x to
y=0
0.

2. Verify that the usual length of a vector in the plane or in three dimensional space
has the properties (N1) to (N4) of a norm.

Solution: For all z € R3, define ||z|| = /2% + 22 + 2. (N1) to (N3) are obvious.
(N4) is an easy consequence of the Cauchy-Schwarz inequality for sums.
More precisely, for x = (1,22, x3) and y = (y1, Y2, y3) we have:

2+ yl|* = (21 4+ y1)* + (32 + 12)° + (23 + y3)°
= (2] + 25+ 23) + (V7 + 45 +v3) + 2(z1y1 + Zoy2 + T3ys3)
< Nzl*+ llyll* + 2ll=llyll = (=l + lyll)*.

Taking square root on both sides yields (N4).

3. Prove (N4) implies ‘HyH - qu‘ <y —z|.

Solution: From triangle inequality of norm we have the following two inequali-
ties:

[zl = llz =y +yll < llz =yl + [l]
= [lzll =yl < llz =yl

Iyl = lly = =+ f| < lly = =l + [[=]]
=yl = ll=ll < ll= = yll

Combining these two yields the desired inequality.

4. Show that we may replace (N2) by ||z|]| =0 = z = 0 without altering the concept
of a norm. Show that nonnegativity of a norm also follows from (N3) and (N4).

Solution: For any = € X,

lell = ll + @ — 2] < [l +2l| + || - 2| = 2lla]] + |} = 3]l
— 0< 202l = 0< Jall.

. 1/2
5. Show that ||z|| = (Z |§j|2> = /&2 + ... + & ? defines a norm.

J=1
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Solution: (N1) to (N3) are obvious. (N4) follows from the Cauchy-Schwarz
inequality for sums, the proof is similar to that in Problem 3.

6. Let X be the vector space of all ordered pairs x = (£1,&), y = (m1,72), - -+ of real
numbers. Show that norms on X are defined by

]l = |&] + |&]
)2 = (& + &)Y
2]l00 = max{|&1], &}

Solution: (N1) to (N3) are obvious for each of them. To verify (N4), for x =
(gla 52) and Y= (Tha 7]2)7

|z 4+ ylli = [& +m| + [&2 + 02
<&l + Il + &] + In2l = Nzl + |yl

lz+yll3 = (& +m)* + (& +n2)?
= (&8 +&) + (i + 1) + 2(&m + Eamp)
<zl + llyllz + 2l zll2llyll2 = (22 + lyll2)?
= |z +yl2 < llzfl2 + [yl

|z + ylloo = max{[&1 + ml, [§2 + m2|}
< max{|&1] 4 |ml, [&2| + |n2}
< max{|&1], [&2|} + max{|m], [72]} = [|2]|oc + [|¥]|oo-

where we use the inequality |a| < max{|al,|b|} for any a,b € R.

o0 1/p
7. Verify that ||z|| = (Z ]§j|p> satisfies (N1) to (N4).

Jj=1

Solution: (N1) to (N3) are obvious. (N4) follows from Minkowski inequality
for sums. More precisely, for = = (§;) and y = (1,),

1

|z +yl = <Z|§j+77j|p> < <Z|§k|p> + (Z |77m|p> :
7=1 k=1 m=1

8. There are several norms of practical importance on the vector space of ordered n-
tuples of numbers, notably those defined by

[zl = 6] + 1€ + - .. + &l
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1/p
loll, = (6P + 161+ +1&l") " (1 <p<+o0)
H‘CEHOO = maX{El’a SRR |€n’}
In each case, verify that (N1) to (N4) are satisfied.

Solution: This is a generalisation of Problem 6, with the proof being almost
identicall. The only thing that differs is we use Minkowski inequality for
sums to prove (N4) for || - ||,

9. Verify that [|z|| = m[a>b<] |z(t)| defines a norm on the space Cla, b].
tela,

Solution: (N1) and (N2) are clear, as we readily see. For (N3), for any scalars
a we have:
loz|| = max |ax(t)| = |af max |z(t)] = |af|z]]
t€la,b] €lad]

t€la,
Finally, for (N4),

[+ yl = max [x(t) + y(¢)] < max [z(t)| + max [y(¢)] = [lz]| + [ly].
t€la,b] t€la,b] t€la,b]

10. (Unit Sphere) The sphere
S1(0) ={z € X: ||z| = 1}.

in a normed space X is called the unit sphere. Show that for the norms in Problem
6 and for the norm defined by ||z|s = (& + &5)Y4, the unit spheres look as shown in
figure.

Solution: Refer to Kreyszig, page 65.

11. (Convex set, segment) A subset A of a vector space X is said to be convez if
x,y € A implies

M={zeX:z=ar+(1-a)y, 0<a<l1}CA

M is called a closed segment with boundary points x and y; any other z € M is called
an intertor point of M. Show that the closed unit ball in a normed space X is convex.

Solution: Choose any x,y € B;(0), then for any 0 < o < 1,
oz + (1 —a)yl| <z + (A -y <a+1-a=1

This shows that the closed unit ball in X is convex.
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12. Using Problem 11, show that

)= (VIaT+ Vigl)

does not define a norm on the vector space of all ordered pairs x = (£1,&;) of real
numbers. Sketch the curve ¢ (x) = 1.

Solution: Problem 11 shows that if ¢ is a norm, then the closed unit ball in a
normed space X = (X,) is convex. Choose x = (1,0) and y = (0,1), x,y are
elements of the closed unit ball in (X, ) since ¢(x) = ¥(y) = 1. However, if we
choose o = 0.5,

$(0.52 + 0.5y) = (yo5+ \05) — (2052 =2> 1.

This shows that for 0.5z 4 0.5y is not an element of the closed unit ball in (X, %),
and contrapositive of result from Problem 11 shows that ¢(z) does not define a
norm on X.

13. Show that the discrete metric on a vector space X # {0} cannot be obtained from a
norm.

Solution: Consider a discrete metric space X # {0}. Choose distinct x,y € X,
for « = 2, d(2x,2y) = 1 but |2|d(z,y) = 2. The statement then follows from
theorem.

14. If d is a metric on a vector space X # {0} which is obtained from a norm, and d is

defined by . B
dz,z) =0, dlz,y)=dxy)+1 (z#y),

show that d cannot be obtained from a norm.

Solution: Consider a metric space X # {0}. Choose any » € X, for a = 2,
d(2x,2x) = d(2x,2z) + 1 = 1 but [2|d(z,z) = 2(d(z,z) + 1) = 2. The statement
then follows from theorem.

15. (Bounded set) Show that a subset M in a normed space X is bounded if and only
if there is a positive number ¢ such that ||z|| < ¢ for every z € M.

Solution: Suppose a subset M in a normed space X is bounded. By definition,
the diameter §(M) of M is finite, i.e.

6(M) = sup d(z,y) = sup ||z —y| < oo.
T,yeM T, yeM
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Fix an y € M, then for any x € M,
2]l = fle =y +yll < llz =yl +[lyll < o(M) + |lyll < oo.

Choosing ¢ = 6(M) + ||y|| yields the desired result. Conversely, suppose there
exists an ¢ > 0 such that ||z|| < ¢ for all z € M. Then for any z,y € M,

d(z,y) = [lz =yl <[zl + [yl < 2.

Taking supremum over x,y € M on both sides, we obtain (M) < 2¢ < co. This
shows that M (in a normed space X) is bounded.
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1.3 Further Properties of Normed Spaces.

Definition 1.5. A subspace Y of a normed space X is a subspace of X considered as a
vector space, with the norm obtained by restricting the norm on X to the subset Y. This
norm on Y s said to be induced by the norm on X.

Theorem 1.6. A subspace Y of a Banach space X is complete if and only if the set Y
15 closed 1 X.

Definition 1.7.

1. If (zy) is a sequence in a normed space X, we can associate with (xy) the sequence
(sn) of partial sums
Sp,=T1+x9+ ...+ 2,
where n = 1,2,.... If (s,) is convergent, say, S, — s as n —» oo, then the
oo
infinite series Zxk 1s said to converge or to be convergent, s is called the

k=1
sum of the infinite series and we write

S:ZIk:ZE1+I2+....

k=1
2. If [|x1||+||z2||+. . . converges, the series Z xy, 18 said to be absolutely convergent.
k=1

3. If a normed space X contains a sequence (e,) with the property that for every x € X,
there is a unique sequence of scalars (o) such that

|z — (arer + ...+ aye,)|| — 0 as m —>» 00.

then (e,) is called a Schauder basis for X. The series Zajej which has the
j=1
sum x is called the expansion of x with respect to (ey), and we write

9
r = E ajej.
Jj=1

o [f X has a Schauder basis, then it is separable. The converse is however not
generally true.

Theorem 1.8. Let X = (X, || - ||) be a normed space. There exists a Banach space ):(
and an isometry A from X onto a subspace W of X which is dense in X. The space X
s unique, except for isometries.
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1. Show that ¢ C [* is a vector subspace of [* and so is ¢y, the space of all sequences
of scalars converging to zero.

Solution: The space ¢ consists of all convergent sequences = = (§;) of complex
numbers. Choose any =z = (§;),y = (1;) € ¢ C [*°, with limit £, n € C respectively.
For fixed scalars «, 3, the result is trivial if they are zero, so suppose not. Given
any € > 0, there exists Ny, Ny € N such that

€ .
|5j—f| <m for all j > Ny.
€
N —n < = for all 7 > Ns.
=1 < o :

Choose N = max{Ny, Ny}, then for all j > N we have that

|a&; + Bny — o — Bl = |a(&; — &) + B(n; — )
< lall& =&+ 18lln; — 7l

<MM+WM: E.

This shows that the sequence ax + Sy = (af; + fn;) is convergent, hence = € c.
Since «, 3 were arbitrary scalar, this proves that ¢ is a subspace of [*°. By
replacing £ = 1 = 0 as limit, the same argument also shows that ¢y is a subspace
of [*°.

2. Show that ¢y in Problem 1 is a closed subspace of [*°, so that ¢y is complete.

Solution: Consider any = = (§;) € ¢o, the closure of c. There exists x,, = (§}) €
¢o such that x, — =z in [*°. Hence, given any ¢ > 0, there exists an N € N such
that for all n > N and all j we have

€

€ = &1 < llon — 2l < S

in particular, for n = N and all j. Since zy € ¢, its terms @N form a convergent
sequence with limit 0. Thus there exists an N; € N such that for all 7 > N; we
have

€

7

The triangle inequality now yields for all 5 > N; the following inequality:

€571 <

€

226.

9
Gl <16 -G+ <5+

This shows that the sequence z = (&) is convergent with limit 0. Hence, x € co.
Since x € ¢y was arbitrary, this proves closedness of ¢q in [*°.
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3. In [*°, let Y be the subset of all sequences with only finitely many nonzero terms.
Show that Y is a subspace of [* but not a closed subspace.

Solution: Consider any = = (§;),y = (n;) € Y C [*, there exists N,, N, € N
such that & = 0 for all j > N, and n; = 0 for all j > N,. Thus for any scalars
a, B, o + Bn; =0 for all j > N = max{N,, N,}, and ax + Sy € Y. This shows
that Y is a subspace of [*°. However, Y is not a closed subspace. Indeed, consider
a sequence r, = (£}') € Y defined by

1
Let z = () = (—_), then x,, — x in [* since
J

1
— e = |=———0 — 0.
|27 — 2||; ?gg €] T as n

but z ¢ Y since x has infinitely many nonzero terms.

4. (Continuity of vector space operations) Show that in a normed space X, vector
addition and multiplication by scalars are continuous operation with respect to the
norm; that is, the mappings defined by (z,y) — x4y and (a, x) — ax are continuous.

Solution: Consider any pair of points (zg,y9) € X X X. Given any € > 0, choose
0 = 6o = % > 0. Then for all x satisfying ||z — x¢|| < 01 and all y satisfying

ly — yol| < 02,
|z +y — (zo+w0)ll < |z — ol + |y — yol| <142 =e.

Since (xg,y0) € X x X was arbitrary, the mapping defined by (z,y) — x + y is
continuous with respect to the norm.

Choose any scalar «g. Consider any nonzero zo € X. Given any € > 0, choose

9y > 0 and d2 > 0 such that (01 + |ag|)d2 = g. Then for all « satisfying

2|0
|l — apl| < 61 and all x satisfying ||x — || < 09,

|z — apzo|| = ||ar — axg + axy — apxol|
< lafla = @0l + lor = ao|llzo]
< (lor = o] + fa] ) llz = zoll + Ja = ol o

< ((51 + |Oéo|)52 + 51”.%0” = E.
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If xo =0 € X, choose 6 =1 >0 and 6, = %H > (0. Then for all « satisfying
Qo
la — ap| < 9y and all z satisfying ||z|| < da,

lazll = lafl2l < (Jo = ol + Jao] )l

< ((51 + \040])(52
£

L]

Since «ag and zy were arbitrary scalars and vectors in K and X, the mapping
defined by («, z) — ax is continuous with respect to the norm.

=1 Oé[)| = E£.

5. Show that z,, — =z and vy, — y implies =, + v, — = + y. Show that a,, — «
and x,, — x implies «,,z,, — ax.

Solution: If z, — =z and y,, — y, then
|20 + Yo — 2 —y|| < [J2n — 2l + [y =yl — 0 asn — oo.
If o, — « and x,, — x, then

oz, — azx|| = ||anz, — e + e — axl|
= |lan(zn — 2) + (0 — @)z
< lanl[lzn =2l + o — afl|z]]
< Clzn — ||+ o — af ||z
—_— ——

—0 —0

where we use the fact that convergent sequences are bounded for the last inequal-
ity.

6. Show that the closure Y of a subspace Y of a normed space X is again a vector
subspace.

Solution: If z,y € Y, there exists sequences x,,, y, € Y such that z, — = and
Yn — y. Then for any scalars «, (3,

leczn + Byn = (e + By)l| < lalllen — 2l + [B]llyn — yll — 0 as n — oo.

This shows that the sequence (ax, + fy,) € Y converges to ax + By, which
implies that ax + Sy € Y.
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7. (Absolute convergence) Show that convergence of ||y;|| + |lya|l + ||ys|| + - .. may
not imply convergence of y; +yo +y3 + .. ..

Solution: Let Y be the set of all sequences in [*° with only finitely many nonzero
terms, which is a normed space. Consider the sequence (y,) = (17) € Y defined

by
if j =n,

n 52

n;, =
0 if 7 #n.

<

1

1
Then |ly,|| = — and Zﬁ < oo. However, y; +y2 +y3 + ... — y, where

1 :
Y = =) since

n=1

:m—>0asn—>oo.

Zyj —Y
j=1

but y ¢ Y.

8. If in a normed space X, absolute convergence of any series always implies convergence
of that series, show that X is complete.

Solution: Choose (z,) be any Cauchy sequence in X. Given any k € N, there
1
exists Ny, € N such that for all m,n > N, ||z, —z,|| < o by construction, ()

is an increasing sequence. Consider the sequence (y;) defined by y, = zn,,, — 2w,

Then
%) 00 0o 1
D Ml =D llaw, —amll <7 55 < oc.
k=1 k=1 k=1

o

This shows that the series Z yx is absolute convergent, which is also convergent
k=1

by assumption. Thus,

doye=lim Yy
k=1

Hence, (zn,,,) is a convergent subsequence of (x,), and since (z,) is a Cauchy
sequence, (z,) is convergent. Since (x,) was an arbitrary Cauchy sequence, X is
complete.
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9. Show that in a Banach space, an absolutely convergent series is convergent.

o0

Solution: Let Z ||zk|| be any absolutely convergent series in a Banach space

k=1
X. Since a Banach space is a complete normed space, it suffices to show that the

sequence (s,) of partial sums s, = x1 + x5+ ...+ z, is Cauchy. Given any € > 0,
there exists an N € N such that

[e.e]

> ekl <k
k=N+1
For any m >n > N,
|sm — snll = [|Tnt1 + Tng2 + - + |

< wnall + lznsall + -+ 2]

m
= >l

k=n+1

o
> Nl

k=n+1
oo

> el < e

k=N+1

IN

IN

This shows that (s,) is Cauchy and the desired result follows from completeness
of X.

10. (Schauder basis) Show that if a normed space has a Schauder basis, it is separable.

Solution: Suppose X has a Schauder basis (e,,). Given any x € X, there exists
a unique sequence of scalars (\,) € K such that

|z — (Aer + ...+ Apen)|| — 0 as n —» 00.
eTL

lenll”
n > 1 and (f,) is a Schauder basis for X; indeed, if we choose p; = Aj|le;|| € K,

then . .
x—z,ujfj a:—Z/\jej
j=1

j=1
In particular, for any = € X, given any € > 0, there exists an N € N such that

T — Zujfj
j=1

Note that || f,|| = 1 for all

Consider the sequence (f,) C X defined by f, =

— 0 as n — 00.

<§ for all n > N.
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Define M to be the set

M = {jz:emﬂif% E.K}n/efﬂ}.

j=1

where K is a countable dense subset of K. Since p; € K, given any € > 0, there

exists an 0; € K such that |u; — 0, < Qi forall j =1,...,n. Then
n

< +

r—> 0;f;
j=1

r =3 p;f; S wifi = 05f;
j=1 j=1 Jj=1

8 n
<3 + > g — 051115
7j=1

g g “ 1
<f§4—£;,:1
—54‘5—8

This shows that there exists an y € M in any e-neighbourhood of . Since z € X
was arbitrary, M is a countable dense subset of X and X is separable.

11. Show that (e,), where e,, = (J,;), is a Schauder basis for [P, where 1 < p < +o0.

Solution: Let z = (§;) be any sequence in [P, we have

(Z |§j|p> —0 as n — 00.

Jj=n+1

Now choose a sequence of scalars (A,) € C defined by A; = ¢;,

|z — (Aer + ...+ Auen)|| = (Z |§j|P> —0 as n —» 00.

j=n+1

This shows that (e,) = (d,,) is a Schauder basis for [’. Uniqueness?

12. (Seminorm) A seminorm on a vector space X is a mapping p: X — R satisfying
(N1), (N3), (N4). (Some authors call this a pseudonorm.) Show that

p(0) =0, ip(y) —p(x)| < ply — ).

(Hence if p(x) =0 = z =0, then p is a norm.)
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Solution: Using (N3),
p(0) = p(0z) = Op(z) = 0.

Using (N4), for any z,y € X,

p(y) < ply — ) + p(x).
p(z) <plr—y) +ply) =ply — )+ py)
= [p(y) — p(z)| < ply — )

13. Show that in Problem 12, the elements x € X such that p(x) = 0 form a subspace
N of X and a norm on X/N is defined by ||Z||o = p(x), where x € & and & € X/N.

Solution: Let N be the set consisting of all elements = € X such that p(x) = 0.
For any =,y € N and scalars «, 3,

0 < plax + By) < plaz) +p(By) = |a|ptx] + |Blpty] = 0.

This shows that N is a subspace of X. Consider ||Z||o = p(x), where z € & and
z € X/N. We start by showing || - ||o is well-defined. Indeed, for any u,v € z,
there exists n,,n, € N such that v = x +n, and v = z + n,. Since N is a
subspace of X,

0 < [p(u) = p(v)| < |p(u = v)| = |p(nu —ny)| = 0.

[Z]lo = p(z) = 0.

e Suppose & = 0 = N, then |Z]lo = p(z) = 0. Now suppose [[Z[lo = 0, then
p(r) =0 = € N = 2 =0. Thus, (N2) is satisfied.

e For any nonzero scalars «, any y € a can be written y = ax + n for some
n € N. Thus,

~ n
laillo = plaz +n) = |alp (= + a)

= [el[#[lo-

If @ =0, then 02 = N and ||0Z]|o = 0 by definition of N.

Lastly, for any &,9 € X/N,

1Z + gllo = p(z + y) < p(x) + ply)
= [|Z[lo + |7]lo-

Thus, (N4) is satisfied.
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14. (Quotient space) Let Y be a closed subspace of a normed space (X, | - |). Show
that a norm || - [ on X/Y is defined by

[/l = inf |[z[].
TET

where & € X/Y, that is, Z is any coset of Y.

Solution: Define ||Z||o as above. Also, recall that X/Y ={t =2 +4+Y: 2 € X}
and its algebraic operations are defined by

a4+0=@w+Y)+@Ww+Y)=(u+v)+Y =u+0.
at=a(u+Y)=au+Y = au.

e (N1) is obvious.
e If # = 0 = Y, then ||2]|op=0 since 0 € Y. Conversely, suppose ||z, =

inf ||z|| = 0. Properties of infimum gives that there exists a minimising
TET

sequence (z,) € Z such that ||x,|¢ — 0, with limit z = 0. Since Y is
closed, any € X/Y is closed, this implies that 0 € &, and & = 0. Thus,
(N2) is satisfied.

e For any nonzero scalars «,
oo = i flaz + y]
= |a] inf Hx + EH
yey Q
= inf
al inf 1z + o]
= lall|lZo.
If a =0, then [|0z]|p = ||6§||0 = |0]|o = 0 = 0||&||o. Thus, (N3) is satisfie.d
e For any 4,0 € X/Y,
[ +0llo = inf ju+yi+ v+ sl

Y1,Y2€

< inf

ity + o+ e

= inf flu+yll + inf [lv+ e

= l[allo + [[9]o-
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15.

(Product of normed spaces) If (X1, ||-||1) and (X5, || ||2) are normed spaces, show
that the product vector space X = X; x X5 becomes a normed space if we define

Joll = max {las [, llolla b, where & = (21, 25).

Solution: (N1) to (N3) are obvious. To verify (N4), for x = (z1,22),y =
(y1,92) € X1 X Xo,

o+ yll = max {1 + pally, 22 + yall2 }

IN

max { 1|1 + Jnlls, z2ll2 + g2 Iz |

max { 11, 2/l p +max { ol v 12 }
= llz]l + 1yl

IA

where we use the inequality |a| < max{|al, |b|} for any a,b € R.
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1.4 Finite Dimensional Normed Spaces and Subspaces.

Lemma 1.9. Let {xy,...,2,} be a linearly independent set of vectors in a normed space
X (of any dimension). There exists a number ¢ > 0 such that for every choice of scalars
ai, ..., q, we have

lorzy + ...+ ape,|| > c(]al\ +...4+ \ano.
e Roughly speaking, it states that in the case of linear independence of vectors, we

cannot find a linear combination that involves large scalars but represents a small
vector.

Theorem 1.10. Every finite dimensional subspace Y of a normed space X is complete.
In particular, every finite dimensional normed space is complete.

Theorem 1.11. FEvery finite dimensional subspace Y of a normed space X is closed in X.

Definition 1.12. A norm || - || on a vector space X is said to be equivalent to a norm
| - [lo on X if there are positive constants a and b such that for all x € X we have

allzllo < [lz]l < bfz[lo.

e Equivalent norms on X define the same topology for X.

Theorem 1.13. On a finite dimensional vector space X, any norm || - || is equivalent to
any other norm || - ||o-

1. Given examples of subspaces of {° and [? which are not closed.

Solution:

2. What is the largest possible ¢ in (1) if
(a) X =R? and z; = (1,0), 25 = (0, 1),

Solution:

(b) X =R?® and x; = (1,0,0), 25 = (0,1,0), 23 = (0,0, 1).

Solution:

3. Show that in the definition of equivalance of norms, the axioms of an equivalence
relation hold.
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Solution: We say that ||-|| on X is equivalent to || ||o on X, denoted by ||| ~ ||-]lo
if there exists positive constants a,b > 0 such that for all x € X we have

allzllo < [lz] < blllo.
e Reflexivity is immediate.

e Suppose || - || ~ || - [J[o- There exists a,b > 0 such that for all € X we have
1 1
allzllo < llzll < dllzllo = 3 llzll < llllo < [l

This shows that || - o ~ || - ||, and symmetry is shown.

e Suppose |||~ -|lo and || - |[o ~ || - ||1- There exists a,b, c,d > 0 such that
for all x € X we have
allzllo < [lzfl < bljzflo.
cllzfly < lzllo < dffls.
On one hand,
[z]] < blz[lo < bdfjz|:-

On the other hand,
[z]| = allzllo = acl[z]];.

Combining them yields for all z € X
acllzlly < [zflo < bdl|x];.

This shows tht || - || ~ || - ||1, and transitivity is shown.

4. Show that equivalent norms on a vector space X induce the same topology for X.

Solution: Suppose || - || and || - ||o are equivalent norms on a vector space X.
There exists positive constants a,b > 0 such that for all x € X we have

allzllo < {lz] < bljzlo.

To show that they induce the same topology for X, we want to show that the
open sets in (X, || - ||) and (X, | - ||o) are the same. Consider the identity map

LX) — (X o)

Let xg be any point in X. Given any € > 0, choose 6 = ae > 0. For all z satisfying
|lx — zo]] < 0, we have

1 ae
— < -z — <'— ==
Iz = aollo < clla = zoll <= =&
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Since xo € X is arbitrary, this shows that I is continuous. Hence, if M C X
is open in (X, | - ||o), its preimage M again is also open in (X, || -||). Similarly,
consider the identity map

(X o) — (X 1D

€
Let ¢ be any point in X. Given any € > 0, choose § = 5 > (. For all x satisfying

|z — zollo < 0, we have

c
|z — zo|| < bljlz — xollo < = = €.

b

Since xy € X is arbitrary, this shows that I is continuous. Hence, if M C X is
open in (X, || - ||), its preimage M is also open in (X, || - |lo).

Remark: The converse is also true, i.e. if two norms || - || and || - ||o on X give
the same topology, then they are equivalent norms on X.

5. If || - || and || - ||o are equivalent norms on X, show that the Cauchy sequences in
(X7 || : ||) and (X, || . ||o) are the same.

Solution: Suppose || - || on X is equivalent to || - || on X. There exists positive
constants a,b > 0 such that for all z € X we have

allzllo < {lz] < bljlo.

Let (x,) be any Cauchy sequence in (X,|| - ||). Given any € > 0, there exists
N; € N such that

| T — x| < ae for all m,n > Nj.
which implies
1 aE
|m — zpllo < =||Tm — ]| <= =¢. for all m,n > Nj.
a a
This shows that (z,,) is also a Cauchy sequence in (X, || - ||o). Conversely, let (z,,)
be any Cauchy sequence in (X, || - ||o). Given any € > 0, there exists Ny € N such
that .
|Zm — Znllo < b for all m,n > Nj.
which implies
be
|Zm — znl| < b||zm — zpllo < 5= for all m,n > Nj.

This shows that (z,,) is also a Cauchy sequence in (X, || - [|).
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6. Theorem 2.4.5 implies that || - [|2 and | - || are equivalent. Give a direct proof of this
fact.

Solution: Let X =R", and = = (;) be any element of X. On one hand,
2 2 2 2 2
loll% = (max [61) < |+ ... + &l = ll=]
Taking square roots of both sides yields ||z]/s < ||z||2. On the other hand,
Jollg = 60 + .+ ful < max |67) = nlol

Taking square roots of both sides yields ||zl < v/n||%||s. Hence, combining these
inequalities gives for all z € X

]lo0 < [l2ll2 < v/nll2]loc-

7. Let || - [|2 be as in Problem 8, section 2.2, and let || - || be any norm on that vector
space, call it X. Show directly that there is a b > 0 such that ||z|| < b||z]| for all .

Solution: Let X = R", and {ey,...,e,} be the standard basis of X defined by
£ = djn. Any x = (§;) in X has a unique representation x = &je; + ... + §rea.
Thus,

[zl = ll€rer + -+ Guenll < [&llen]] + - 4 [€nlllenl]

n
= 1&llles]
j=1

< (Zg) (Z w)é

= b2

where we use Cauchy-Schwarz inequality for sums in the last inequality.
Since x € X was arbitrary, the result follows.

8. Show that the norms || - ||; and || - [|2 satisfy

< [lzllz < =]l

L e
— ||
Jn'
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Solution: Let X = R", and z = (§;) be any element of X. Note that if z = 0,
the inequality is trivial since ||z||; = ||z||2 = 0 by definition of a norm. So, pick
any nonzero x € R". Using Cauchy-Schwarz inequality for sums,

lzll =D 1¢1] < (Z 12) (Z |§j|2> = v/nzfs.
j=1 j=1 j=1

On the other hand, since ||z||2 # 0, define y = (n;), where n; = J_ Then
2

1 1
n 2 n 2
1
yll2 = (E |77j\2> = <—|| B > \€j|2>
=1 iz 5

n 1 n
lyl = (D il )] === D14l
— ]2 <=
J= J=
_ ll=lh
]2

and

Iyllz =" ns? < Lnllaxnlmq > ngl < llyllh
j=1

..... =
]l

[E41p

= [Jfla < flfly-

— 1<yl =

To justfiy the second inequality on the first line, note that it suffices to prove that
Ini| < 1foralli=1,...,n,or equivalently, || < ||z||2 for all i = 1,...,n. From
the definition of || - [|o,

HSU’@:Z’@F > &) foralli=1,...,n.
j=1
Taking square roots of both sides yields ||x||s > |&]| for alli =1,... n.

Remark: Alternatively,

ol = (Zg) - (Z w) + (gr@u@\)
> (;w) Sy
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9. If two norms || - || and || - [|o on a vector space X are equivalent, show that

|zn — || — 0 <= ||z, — 2|0 — 0.

Solution: Suppose two norms || - || and || - [|o on a vector space X are equivalent,
there exists positive constant a,b > 0 such that for all x € X we have

allzflo < flzfl < blllo.
If ||z, — z|| — 0, then
1
|tn — |0 < =||zp — || — 0 as n — 0.
a

Conversely, if ||z, — x| — 0, then

|xn — || < bz, —x]lo — 0 asn — 0.

10. Show that all complex m x n matrices A = (ajx) with fixed m and n constitute an
mn-dimensional vector space Z. Show that all norms on Z are equivalent. What
would be the analogues of || - ||1,]| - |2 and || - ||« for the present space Z7

Solution:
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1.5 Linear Operators.

Definition 1.14. A linear operator T is an operator such that
(a) the domain D(T) of T is a vector space and the range R(T) lies in a vector space
over the same field,

(b) for all x,y € D(T) and scalars o, 3,

T(ax + Py) = oT'(z) + BT (y).

e Note that the above formula expresses the fact that a linear operator 7" is a ho-
momorphism of a vector space (its domain) into another vector space, that is, T
preserves the two operations of a vector space.

e On the LHS, we first apply a vector space operation (addition or scalar multiplica-
tion) and then map the resulting vector into Y, whereas on the RHS we first map
x and y into Y and then perform the vector space operations in Y, the outcome
being the same.

Theorem 1.15. Let T be a linear operator. Then:
(a) The range R(T) is a vector space.

(b) If dim D(T) = n < oo, then dim R(T) < n.
(¢) The null space N'(T') is a vector space.

e An immediate consequence of part (b) is worth noting: Linear operators preserve
linear dependence.

Theorem 1.16. Let X,Y be a vector spaces, both real or both complex. Let T: D(T) —
Y be a linear operator with domain D(T) C X and range R(T) C Y. Then:
(a) The inverse T~': R(T) — D(T) exists if and only if Tx =0 = z = 0.

(b) If T~ emists, it is a linear operator.

(¢c) If dim D(T) =n < oo and T~ ewists, then dim R(T) = dim D(T).

Theorem 1.17. Let T: X — Y and S: Y — Z be bijective linear operators, where
X,Y,Z are vector spaces. Then the inverse (ST)™': Z — X of the composition ST
exists, and

(ST)y"'=T7"'s7"
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1. Show that the identity operator, the zero operator and the differentiation operator
(on polynomials) are linear.

Solution: For any scalars «, 8 and x,y € X,

Ix(ax + By) = ax + By = alxz + Blxy.
0(ax + By) = 0 = a0z + £0y.
T(ax(t) + By(t)) = (ax(t) + By(t))'
= az'(t) + By'(t) = aTz(t) + BTy(t).

2. Show that the operators T}, ..., T, from R? into R? defined by

T1: (&1,62) = (£1,0)
Ty: (&1,&2) = (0,82)
Ty: (§1,&2) = (&2,61)
Ty: (&,&) = (v&1,7&2)

respectively, are linear, and interpret these operators geometrically.

Solution: Denote x = (£, &) and y = (11,72). For any scalars «, 3,

Th(az + By) = (a1 + Bm, 0)
= a(&1,0) + B(n1,0) = aTy(x) + BTi(y).
Ir(az + By) = (0,2 + 1)
a(0,&2) + B(0,m2) = aTy(z) + BTa(y).
(s + B, &y + Bm)
= (a, a&y) + (B, Bn)
(§2,61) + B2, m) = aTs(z) + BT5(y).

Ti(aw + By) = (v(a& + fm), (a& + i)
= (

ayér, av€a) + (Bym, Byn2)
a(v&1,762) + B(ym, ym2) = aTy(z) + BT4(y).

T3(ax + By)

T1 and T, are both projection to x-axis and y-axis respectively, while T is a
scaling transformation. T3 first rotates the vector 90° anti-clockwise about the
origin, then reflects across the y-axis.

3. What are the domain, range and null space of T, T5, T in Problem 27

Solution: The domain of T}, 75, T3 is R?, and the range is the z-axis for 77, the
y-axis for T and R? for T5. The null space is the line & = 0 for T}, the line & = 0
for Ty and the origin (0,0) for T5.
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4. What is the null space of Ty in Problem 27 Of 77 and T3 in 2.6-77 Of T" in 2.6-47

Solution: The null space of T} is R? if v = 0 and the origin (0,0) if v # 0. Fix
a vector a = (ay, as,ag) € R3. Consider the linear operators T} and T3 defined by

&1 ay §oaz — §3a
T'e=xxa= |&| X |a| = |&a —&as
&3 as §raz — &aaq

TQI’ =T -a= flal + ggag + fgag.

i.e. T and Ty are the cross product and the dot product with the fixed vector a
respectively. The null space of T} is any scalar multiple of the vector a, while the
null space of T5 is the plane & a; + &as + E3as = 0 in R3. For the differentiation
operator, the null space is any constant functions x(t) for ¢ € [a, b].

5. Let T: X — Y be a linear operator.

(a) Show that the image of a subspace V of X is a vector space.

Solution: Denote the image of a subspace V' of X under T by Im(V), it
suffices to show that Im(V') is a subspace of X. Choose any yi,y, € Im(V),
there exists x1,29 € V such that Txy = y; and Tz = y,. For any scalars

a’/B7
ayr + By, = aTxy + Ty = T(owy + [rs).

This shows that ay; + Sys € Im(V) since axry + fxy € V due to V being a
subspace of X.

(b) Show that the inverse image of a subspace W of Y is a vector space.

Solution: Denote the inverse image of a subspace W of Y under T by
PIm(W), it suffices to show that PIm(W) is a subspace of Y. Choose any
x1, 9 € PIm(W), there exists yi,y2 € W such that Tx; = y; and T'zy = ys.
For any scalars «a, 3,

T(axy + frs) = aTxy + fTxy = ayy + [yo.

This shows that ax; 4+ Szy € PIm(W) since ay; + By2 € W due to W being
a subspace of Y.

6. If the composition of two linear operators exists, show that it is linear.

Solution: Consider any two linear operators T: X — Y, S: Y — Z. For any
x,y € X and scalars «, 3,

ST (ax + By) = S(aTx + Ty) by linearity of 7.
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= a(ST)x + B(ST)y | by linearity of S.]

7. (Commutativity) Let X be any vector space and S: X — X and T: X — X
any operators. S and T are said to commute if ST = TS, that is, (ST)x = (T'S)x
for all x € X. Do T} and T3 in Problem 2 commute?

Solution: No. Choose = = (1,2), then

(TVT3)(1,2) = T1(2,1) = (2,0).
(7371)(172> ::73(170) ::(071)'

8. Write the operators in Problem 2 using 2 x 2 matrices.

Solution:

10 oo o1 [y o
e L B R B I

9. In 2.6-8, write y = Az in terms of components, show that T is linear and give
examples.

n

Solution: For any j = 1,...,r, we have that n; = Z ik = anéi+. ..+ ajppén.
k=1
To see that T is linear, for any j =1,...,7,

(A(a:c + ﬁy))j = i ajr(ay + Bg)

= Z a;rék + B Z ajpme = a(Ar); + B(Ay);.
k=1 k=1

10. Formulate the condition in 2.6-10(a) in terms of the null space of T

Solution: Let X, Y be vector spaces, both real or both complex. Let T': D(T') —
Y be a linear operator with domain D(T) C X and R(T) C Y. The inverse
T~1: R(T) — D(T) exists if and only if the null space of T, N'(T) = {0}.
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11. Let X be the vector space of all complex 2 x 2 matrices and define T: X — X by
Tx = bx, where b € X is fixed and bx denotes the usual product of matrices. Show
that T is linear. Under what condition does T~ exists?

Solution: For any z,y € X and scalars «, 3,

b1 be| |+ B aby + B
T(aw+By) = |:b3 b4] [0453 + Bz ady+ 5774}

b by SEES) mo e
N |:b3 bJ {a {53 54} +h {773 774}}

= abx + fby = oTx + (Ty.
This shows that T is linear. T~! exists if and only if b is a non-singular 2 x 2
complex matrix.

12. Does the inverse of T in 2.6-4 exist?

Solution: The inverse of the differentiation operator 1" does not exist because
N(T) # {0}, the zero function.

13. Let T: D(T) — Y be a linear operator whose inverse exists. If {xy,...,x,} is
a linearly independent set in D(T'), show that the set {T'xy,...,Tz,} is linearly
independent.

Solution: Let T: D(T) — Y be a linear operator whose inverse exists. Suppose
o Txy+ ...+ o, Tz, = 0y.
By linearity of T', the equation above is equivalent to
T(onzy + ...+ apzy) = Oy
Since T~ ! exists, we must have “ Tz = 0y = x = 0x”. Thus,
a1z, + ...+ a,z, = 0x.

but {x1,...,2,} is a linearly independent set in D(T"), so this gives ay = ... =
oy, = 0.

14. Let T: X — Y be a linear operator and dim X = dim Y = n < oco. Show that
R(T) =Y if and only if T~ exists.
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Solution: Suppose R(T) = Y, by definition, for all y € Y, there exists z € X
such that Tx = y, i.e. T is surjective. We now show that T is injective. Since
dim (X) = dim (Y) = n < oo, the Rank-Nullity Theorem gives us

dim(R(T)) + dim(N(T)) = dim(X).

but by assumption, R(T) =Y, so

dim(Y) + dim(N (7)) = dim(X).
— dim(N(T)) = dim(X) — dim(Y) = 0.

This shows that T' is injective. Indeed, suppose for any x1, xs, we have Txy = Txs.
By linearity of T, Txy—Txy = T(l‘l —.TQ) =0y = 11—22=0x = T, = 2o.
Since T is both injective and surjective, we conclude that the inverse of 7', T~ 1,
exists.

Conversely, suppose T~! exists. From Problem 10, this means that N(T) =
{0x} = dim(N(T)) = 0. Invoking the Rank-Nullity Theorem gives

dim(R(T)) + dim(N(T)) = dim(X).
= dim(R(T")) = dim(X) = n.

This implies that R(T) = Y since any proper subspace W of Y has dimension
less than n.

15. Consider the vector space X of all real-valued functions which are defined on R and
have derivatives of all orders everywhere on R. Define T': X — X by y(t) = Tx(t) =

2'(t). Show that R(T) is all of X but T~! does not exist. Compare with Problem 14
and comment.

Solution: For any y(t) € R(T), define z(t) = ffoo y(s)ds € X; Fundamental
Theorem of Calculus gives that 2/(t) = Txz(t) = y(t). On the other hand, 7!
does not exist since the null space of T consists of every constant functions on
R. However, it doesn’t contradict Problem 14 since X is an infinite-dimensional
vector space.
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1.6 Bounded and Continuous Linear Operators.

Definition 1.18.

1. Let X andY be normed spaces andT: D(T) — Y a linear operator, where D(T') C

X. The operator T is said to be bounded if there is a nonnegative number C such
that for all x € D(T), |Tz|| < C||z]|.

e This also shows that a bounded linear operator maps bounded sets in D(T)
onto bounded sets in'Y .

2. The norm of a bounded linear operator T is defined as

Tx
7= sup 1220,
z€D(T) k4l

#£0

e This is the smallest possible C' for all nonzero x € D(T).
o With C = ||T||, we have the inequality | Tz|| < ||T||||l=]-
o [fD(T) = {0}, we define |T|| = 0.

Lemma 1.19. Let T be a bounded linear operator. Then:
(a) An alternative formula for the norm of T is

1Tl = sup || Tz|.
z€D(T)
[l]|=1

(b) |IT| is a norm.

Theorem 1.20. If a normed space X 1is finite dimensional, then every linear operator
on X is bounded.

Theorem 1.21. Let T: D(T) — Y be a linear operator, where D(T) C X and X,Y
are normed spaces.

(a) T is continuous if and only if T is bounded.

(b) If T is continuous at a single point, it is continuous.

Corollary 1.22. Let T be a bounded linear operator. Then:
(a) x, — x [where x,,x € D(T)] implies Tx,, — Tx.

(b) The null space N(T) is closed.

e [t is worth noting that the range of a bounded linear operator may not be closed.
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Definition 1.23.

1. Two operators Ty and Ty are defined to be equal, written Ty = T, if they have the
same domain D(Ty) = D(T3) and if Tyx = Tox for all x € D(Ty) = D(T3).

2. The restriction of an operator T: D(T) — Y to a subset B C D(T) is denoted
by T|p and is the operator defined by T|p: B — Y, satisfying

T\pr =Tx for all x € B.

3. The extension of an operator T: D(T) — Y to a superset M D D(T) is an
operator T': M — Y such that T|py = T, that is, Tx = Tx for all v € D(T).
[Hence T is the restriction of T to D(T).]

o [fD(T) is a proper subset of M, then a given T has many extensions; of prac-
tical interest are those extensions which preserve linearity or boundedness.

Theorem 1.24 (Bounded linear extension).

Let T: D(T) — Y be a bounded linear operator, where D(T') lies in a normed space
X and Y is a Banach space. Then T has an extension T: D(T) — Y, where T is a
bounded linear operator with norm ||T|| = ||T).

e The theorem concerns an extension of a bounded linear operator T to the closure
D(T) of the domain such that the extended operator is again bounded and linear,
and even has the same norm.

e This includes the case of an extension from a dense set in a normed space X to all
of X.

e [t also includes the case of an extension from a normed space X to its completion.

1. Prove |15 < ||Th]||T%]] and ||T"|| < [|T]|™ (n € N) for bounded linear operators
To: X — Y, T:Y — Zand T: X — X, where X,Y, Z are normed spaces.

Solution: Using boundedness of T} and T5,
(T )zl = |17 (Te2)[| < (ITal[[ 1oz < I TAI Tl ]l-

The first inequality follows by taking supremum over all  of norm 1. A similar
argument also shows the second inequality.

2. Let X and Y be normed spaces. Show that a linear operator 7: X — Y is bounded
if and only if 7" maps bounded sets in X into bounded sets in Y.
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Solution: Suppose T: X — Y is bounded, there exists an C' > 0 such that
|Tz|| < C||z| for all x € X. Take any bounded subset A of X, there exists
M, > 0 such that ||z]| < M4 for all x € A. For any = € A,

|Ta]| < Cllal| < M.

This shows that T" maps bounded sets in X into bounded sets in Y.

Conversely, suppose a linear operator 7: X — Y maps bounded sets in X into
bounded sets in Y. This means that for any fixed R > 0, there exists a constant
Mpg > 0 such that ||z|]| < R = ||Tz|| < M. We now take any nonzero y € X
and set

— |zl = R.

Thus,

R R
iyl = HT (—y) H — | T2]| < Mg
lyll y||

Mp
= ||Ty|| < — .
17yl < =iyl

where we crucially used the linearity of T. Rearranging and taking supremum
over all y of norm 1 shows that T is bounded.

. If T'# 0 is a bounded linear operator, show that for any x € D(T') such that ||z|| < 1
we have the strict inequality [|Tz|| < ||T||.

Solution: We have ||[Tz| < ||T||||z|| < ||T]]-

. Let T: D(T) — Y be a linear operator, where D(7) C X and X,Y are normed
spaces. Show that if 7" is continuous at a single point, it is continuous on D(T').

Solution: Suppose T is continuous at an arbitrary xg € D(T'). This means that
given any € > 0, there exists a 0 > 0 such that | Tx — Tx¢|| < € for all x € D(T)
satisfying || — zo|| < 0. Fix an yo € D(T'), and set

g =6 Y~ %

1y — woll

Since T is linear, for any y € D(T') satisfying ||y — yo|| < 6,

)

Tl Ty — =T | 77—y — = |T(x —
T = wl = |7 (g =w)) | = 17—l <
ly—wl _ =5 _

T
This shows that T is continuous at yo. Since yo € D(T) is arbitrary, the statement
follows.

x = ||z — x| = 0.

= |T(y —wo)l| < ¢
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5. Show that the operator T': [*° — [ defined by y = (n;) =Tz, n; =&;/7, v = (&),
is linear and bounded.

Solution: For any x,z € [* and scalars «, 3,

T(ax + pz) = (ozg—?—kﬁﬁ—?) :a<€—,j>—|—6(/{—,j) =aoTx + BTx.
J J J J

For any = = (§;) € [,

&
j

< |&] <sup§] = =]
JEN

Taking supremum over j € N on both sides yields || Tz| < ||z||. We conclude that
T is a bounded linear operator.

6. (Range) Show that the range R(7’) of a bounded linear operator 7: X — Y need
not be closed in Y.

Solution: Define (z,,) to be a sequence in the space [*°, where z,, = (§}) and

fn:{ﬁ if j <n,

0 ifj>n
Consider the operator 7': [ — [*° in Problem 5. Then Tz, = y, = (1}), where

1 o
e [ it

n; \/j

J 0 ifj>n

We now have our sequence (y,) € R(T") C [*°. We claim that it converges to y in

1
[>°, where y is a sequence in [* defined as y = (1), n; = —=. Indeed,

Vi

1
||y yHl j€£|n] 77]| \/n—‘f'l

However, y ¢ R(T). Indeed, if there exists an x € [* such that Tz = y, then
x must be the sequence (§;), with §; = /j, which is clearly not in the space [*°.
Hence, R(T") is not closed in [*°.

—0 asn— oo.

7. (Inverse operator) Let T be a bounded linear operator from a normed space X
onto a normed space Y. If there is a positive b such that

ITz|| > bl|lz||  forallz € X,

show that then T7': Y — X exists and is bounded.
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Solution: We first show that 7T is injective, and therefore the inverse T~! exists
since T is bijective (T is surjective by assumption). Indeed, choose any x1, 25 € X
and suppose 1 # %o, then ||z; — z5|| > 0. Since T is linear,

HTJZl — TZL'QH = ”T(l’l — l‘g)” < b”[El — JZQH >0 = T 7é Txs.

We are left to show there exists an C' > 0 such that |7 1y|| < C|ly|| for all
y € Y. Since T is surjective, for any y € Y, there exists x € X such that y = Tx;
existence of 77! then implies x = T~ 'y. Thus,

_ . _ 1
17T ) = bITyll = 1Tyl < S llyll-

where C = % > 0.

8. Show that the inverse T-!: R(T) — X of a bounded linear operator 7: X — Y
need not be bounded.

Solution: Consider the operator T': [*° — [*° defined by y = Tx = (n;), n; =

&;/j, x = (§;). We shown in Problem 6 that 7" is a bounded linear operator. We

first show that T is injective. For any xy,xs € [*°, suppose Tx; = T'xy. For any
JeN,

g g

(Ta1); = (Tz); = 2> =-F

1
- = 5]1- = 532- since — # 0.
J J J

This shows that ¥y = x5 and T is injective. Thus, there exists an inverse
T~ 1 R(T) — 1™ defined by x = T 'y = (&), & = jnj, vy = (n;). Let’s
verify that this is indeed the inverse operator.

T (Ta) =Ty = T (5—) _ (jé?) (&) ==

J J
T(T"y) = T = T((jny) = (7’7) — ()=

We claim that 77" is not bounded. Indeed, let y, = (9;,)52,, where d;, is the

Kronecker delta function. Then ||y,| = 1 and
. . 17~y
1Tyl = Gl = = e =
Yl
Since n € N is arbitrary, this shows that there is no fixed number C' > 0 such
T Yy,
that M < C,ie. T7!is not bounded.

1Yl
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9. Let T: C[0,1] — C|0, 1] be defined by

o0 = [ )35

Find R(T) and T~': R(T) — C0,1]. Is T~! linear and bounded?

Solution: First, Fundamental Theorem of Calculus yields
R(T) = {y(t) € C[0,1]: y(t) € C'[0,1],y(0) = 0}  C[0,1].

Next, we show that T is injective and thus the inverse T7': R(T) — C[0,1]
exists. Indeed, suppose for any zy,xs € C[0,1], Tx; = Txe. Then

t ¢
Try=Try = z1(s)ds = / za(s) ds
0 0

:>/ x1(s) — xo(s )}ds:()

= y(s) for all s € [0,1].
where the last implication follows from x — y being a continuous function in
[0,¢] C [0,1]. The inverse operator T~! is defined by T 'y(t) = ¢/(t), i.e. T7!

is the differentiation operator. Since differentiation is a linear operation, so is
T—1. However, T~! is not bounded. Indeed, let y,(t) = ¢, where n € N. Then

ol = 1 and o

- e T yn

1Tyl = It = = s =
1Yl
Since n € N is arbitrary, this shows that there is no fixed number C' > 0 such
T Yy,
that % < C,ie. T7!is not bounded.
Yn

10. On C0, 1] define S and T

Sa(t) = y(t) = t /0 w(s)ds  Tolt) = y(t) = ta(t).

respectively. Do S and T' commute? Find ||S||, ||T||, [|ST|| and || T°S]|.

Solution: They do not commute. Take z(t) =t € C|0, 1]. Then
! t
(ST)x(t) = S(t*) = t/ s*ds = 3
0

(TS)a(t) =T (é) - g
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11.

12.

Let X be the normed space of all bounded real-valued functions on R with norm

defined by
]| = sup [z(£)],
teR

and let T: X — X defined by
y(t) = Ta(t) = o(t - A)

where A > 0 is a constant. (This ia model of a delay line, which is an electric device
whose output y is a delayed version of the input x, the time delay being A.) Is T
linear? Bounded?

Solution: For any x, 2z € X and scalars «, 3,
T(ax + Bz) = az(t — A)+ Bz(t — A) = aTz + fT=.
This shows that T is linear. T is bounded since

[Tz = sup [z(t = A)| = ||
teR

(Matrices) We know that an r x n matrix A = (o) defines a linear operator from
the vector space X of all ordered n-tuples of numbers into the vector space Y of all
ordered r-tuples of numbers. Suppose that any norm || - ||; is given on X and any
norm || - ||z is given on Y. Remember from Problem 10, Section 2.4, that there are
various norms on the space Z of all those matrices (r and n fixed). A norm || - || on
Z is said to be compatible with || - ||; and || - ||2 if

|Azlla < ||AJl||x]-

Show that the norm defined by

Ax
14] = sup 1422

reX ”le
z#£0

is compatible with || -||; and || - [|2. This norm is often called the natural norm defined
by || |l1 and ||cdot||2. IF we choose ||z||; = max; |§;| and ||y||s = max; |n;|, show that
the natural norm is

n
1A = max ) .
7 k=

Solution:

13. Show that in 2.7-7 with » = n, a compatible norm is defined by

[un

4] = (ZZ&)

j=1 k=1
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but for n > 1 this is not the natural norm defined by the Euclidean norm on R".

Solution:

14. If in Problem 12, we choose

Il =1l Nyl =Y [nl,
k=1 j=1

show that a compatible norm is defined by

T
] = max 3" el
j=1

Solution:

15. Show that for » = n, the norm in Problem 14 is the natural norm corresponding to
|- |1 and || - |2 as defined in that problem.

Solution:
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1.7 Linear Functionals.

Definition 1.25.

1. A linear functional f is a linear operator with domain in a vector space X and
range in the scalar field K of X; thus, f: D(f) — K, where K = R if X is real
and K = C if X is complex.

2. A bounded linear functional f is a bounded linear operator with range in the
scalar field of the normed space X in which the domain D(f) lies. Thus there exists
a nonnegative number C' such that for all x € D(f), |f(x)| < Cllz||. Furthermore,
the norm of f s

|f ()]
|fll = sup = sup |f(z)].
ze€D(f) ||| zeD(f)
z#£0 llz(l=1

o As before, we have that |f(x)| < || f||llz]-

Theorem 1.26. A linear functional f with domain D(f) in a normed space X is con-
tinuous if and only if f is bounded.

Definition 1.27.

1. The set of all linear functionals defined on a wvector space X can itself be made
into a vector space. This space is denoted by X* and is called the algebraic dual
space of X. Its algebraic operations of vector space are defined in a natural way
as follows.

(a) The sum fi + fo of two functionals fi and fy is the functional s whose value
at every x € X 1s

s(@) = (fi + 2)(x) = fi(x) + fo(2).

(b) The product af of a scalar o and a functional f is the functional p whose value
at every x € X 18

p(x) = (af)(z) = af(z).

2. We may also consider the algebraic dual (X*)* of X*, whose elements are the lin-
ear functionals defined on X*. We denote (X*)* by X** and call it the second
algebraic dual space of X.

o We can obtain an interesting and important relation between X and X**, as
follows. We can obtain a g € X**, which is a linear functional defined on X*,
by choosing a fired v € X and setting

9(f) =g.(f) = f(x) where x € X fized, f € X™ variable.

e g, is linear. Indeed,

gz(afr + Bf2) = (afi + f2)(x) = afi(x) + Bfa(z) = age(f1) + Bg=(f2).

Hence, g, is an element of X*x, by the definition of X**.
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e To each x € X there corresponds a g, € X**. This defines a mapping
C: X — X, C:x— g,; C is called the canonical mapping of X into
X**. C is linear since its domain is a vector space and we have

(Clax + BY))(f) = Gazrpy(f)
= f(az + By)
=af(z) + Bf(y)
= ag.(f) + Bgy(f)
= a(Cx)(f) + B(Cy)(f).

C s also called the canonical embedding of X into X**.

3. An metric space isomorphism T of a metric space X = (X,d) onto a metric

space X = (X d) is a bijective mapping which preserves distance, that is, for all
z,y € X, d(Tz, Ty) = d(x,y). X is then called isomorphic with X .

4. An vector space isomorphism T of a vector space X onto a vector space X over
the same field is a bijective mapping which preserves the two algebraic operations
of vector space; thus, for all x,y € X and scalars «,

Tx+y) =Tz+Ty and T(ax) = aT'z,

that is, T: X — st a bijective linear operator. X s then called isomorphic
with X, and X and X are called isomorphic vector spaces.

5. If X is isomorphic with a subspace of a vector space Y, we say that X is embed-
dable in Y.

e [t can be shown that the canonical mapping C is injective. Since C' is linear,
it is a vector space isomorphism of X onto the range R(C) C X**.

o Since R(C) is a subspace of X**, X is embeddable in X**, and C' is also called
the canonical embedding of X into X**.

o [f C is surjective (hence bijective), so that R(C) = X™*, then X is said to be
algebraically reflexive.

1. Show that the functionals in 2.8-7 and 2.8-8 are linear.

Solution: Choose a fixed ty € J = [a,b] and set f(z) = x(to), where z € C|a, b].
For any z,y € C|[a, b] and scalars «, (3,

filaz + By) = (ax + By)(to) = ax(ty) + By(te) = afi(z) + Bfi(y).

Choose a fixed a = (a;) € [? and set f(x ijaj, where x = (§;) € [, For

7=1
any x = (§),y = (n;) € [* and scalars «, 3,

o0

flax+ By) =Y (a&; + Bny)a; = aZ o+ 8 Zmag = af(z) + Bf(y).

=1
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Note we can split the infinite sum because the two infinite sums are convergent
by Cauchy-Schwarz inequality.

2. Show that the functionals defined on C|[a, b] by

b
fi(x) = / x(t)yo(t) dt (yo € Cla,b] fixed.)
fo(z) = ax(a) + px(b) (o, B fixed.)

are linear and bounded.

Solution: For any z,y € Cfa,b] and scalars -, ¢,
b
A+ 39 = [ [3a(®) + 69(0) ) at

b b
27/ z(t)yo(?) dt+6/ y(t)yo(t) dt.

=vfi(x) + 0 f1(y).

fa(yz + 6y) = a(yz + dy)(a) + B(yx + dy)(b)
= a(yz(a) + dy(a)) + B(yz(b) + dy(b))
= y(ax(a) + Bx(b)) + d(ay(a) + By(b))
= vfa(z) + 0 f2(y).

To show that f; and fy are bounded, for any x € Cla, b],

0ty ] < s 10 [ 0
[ etomoan [
:(L o(t) d )mw

£o@)] = law(a) + B (B)] < o s (1) + 6 max Ja(1)

= (a+ B)|l=]].

[f1(2)] =

3. Find the norm of the linear functional f defined on C[—1, 1] by

fla) = /jx(t) dt — /le(t) dt.
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Solution:

|_’/ dt— (t)dt‘

< ‘/_1:5(75) dt’ 4 le(t) dt‘
/i dt' + ||z /01 dt‘

Taking the supremum over all  of norm 1, we obtain || f|| < 2. To get ||f|| > 2,
we choose the particular z(t) € C[—1, 1] defined by

< ||z

= 2[|=|

( 1
—2t-2 i —1<t< -7,
1 1
z(t) = { 2t if - - <t< <
2 2
—2t+ 2 iflgtgl
\ 2
Note that ||z|| = 1 and
|f ()]

1P < S5 Tzl = [f(x)] = 2.

4. Show that for J = [a, b],

file) =maxa(t)  fo(r) = minz(t)

define functionals on Cfa,b]. Are they linear? Bounded?

Solution: Both f; and f define functionals on C|a,b] since continuous func-
tions attains its maximum and minimum on closed interval. They are not linear.

Choose z(t) = — ? and y(t) = p. Then
—a —a

filz4y)=0 but fi(z)+ fily) =1+0=1.
folx+y)=0 but fo(z)+ foly) =0-1=—1.

They are, however, bounded, since for any x € Cla, b],

|(@)] = maxca(t) < max Ja(0)] = ]
o)) = mine(t) < max [a(t)] = ]
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5. Show that on any sequence space X we can define a linear functional f by setting

f(z) = & (n fixed), where z = (&;). Ts f bounded if X = [°?

Solution: For any = = (¢;),y = (1;) € X and scalars «, 3,

flax + By) = a&, + B, = af (x) + Bf(y).

f is bounded if X = [*. Indeed, for any x € [*°,

[f(2)] = [&n] < §2§|§j| = [|]I-

Remark: In fact, we can show that ||f|| = 1. Taking supremum over all x of
norm 1 on previous equation yields ||f]] < 1. To get || f|| > 1, we choose the
particular x = (&) = (§;,), note that ||z|| =1 and

T A T

=l

6. (Space C*[a,b]) The space C'[a,b] is the normed space of all continuously differ-
entiable functions on J = [a, b] with norm defined by

— /
il = mase 2 (6)| + mave 2(8)

(a) Show that the axioms of a norm are satisfied.

Solution: (N1) and (N3) are obvious. For (N2), if z(¢) = 0, then ||z|| = 0.
On the other hand, if ||z|| = 0, since both r{lajx\x(tﬂ and I?%X’%l(t)l are
€ €

nonnegative, we must have |z(¢)| = 0 and |2/(t)| = 0 for all ¢ € [a,b] which
implies z(t) = 0. Finally, (N4) follows from

= t t "t "(t
Iz + yll = max |() + y(#)] + max|2(t) + /' (7)]
< / !
< max [z(t)] + max |y(¢)] + max [2'(1)] + max|y'(t)]

= [l + [lyI

(b) Show that f(z) = 2'(c), ¢ = a—21—b’ defines a bounded linear functional on

Clla, b].

Solution: For any z,y € C[a,b] and scalars a, 3,
flax + By) = aa'(c) + By (c) = af (x) + Bf (y)-
To see that f is bounded,

[f(@)] = [o'(e)] < max[a’()] < [|]]-
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(c) Show that f is not bounded, considered as functional on the subspace of Cla, b]
which consists of all continuously differentiable functions.

Solution:

7. If f is a bounded linear functional on a complex normed space, is f bounded? Linear?
(The bar denotes the complex conjugate.)

Solution: f is bounded since |f(x)| = |f(z)], but it is not linear since for any
x € X and complex numbers «, f(azx) = af(z) = af(zr) # af(x).

8. (Null space) The null space N (M*) of a set M* C X* is defined to be the set of all
x € X such that f(x) =0 for all f € M*. Show that N'(M*) is a vector space.

Solution: Since X is a vector space, it suffices to show that N (M*) is a subspace
of X. Note that all element of M* are linear functionals. For any z,y € N (M*),
we have f(x) = f(y) =0 for all f € M*. Then for any f € M* and scalars «, f3,

flax + By) = af(x) + Bf(y) = 0. [ by linearity of f € M*

This shows that ax + Sy € N(M*) and the statement follows.

9. Let f # 0 be any linear functional on a vector space X and z( any fixed element of
X\ N(f), where N(f) is the null space of f. Show that any € X has a unique
representation x = axy + y, where y € N (f).

Solution: Let f # 0 be any linear functional on X and zy any fixed element
of X \ N(f). We claim that for any x € X, there exists a scalar a such that
r = axg + y, where y € N(f). First, applying f on both sides yields

f(x) = flawo +y) = af(xo) + fy) = [(y) = [(2) — af(zo).

f(x)
f(x0)

By choosing o = (which is well-defined since f(zq) # 0), we see that

i) :f<x>—£é—%wzo . yeN ).

To show uniqueness, suppose x has two representations r = a1 x9+y1 = aso+Yyo,
where a1, are scalars and y1,y2 € N(f). Subtracting both representations
yields

(1 — az)ro = Y2 — 1.

Applying f on both sides gives

(a1 —a2)z0) = f(y2 — y1)
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(a1 — az) f(wo) = f(y2) — f(y1) =0

by linearity of f and y1,y2 € N(f). Since f(xg) # 0, we must have a; — ay = 0.
This also implies y; — y2 = 0.

10. Show that in Problem 9, two elements x1, x5 € X belong to the same element of the
quotient space X/N(f) if and only if f(z1) = f(x2). Show that codim N(f) = 1.

Solution: Suppose two elements x1, 2o € X belong to the same element of the
quotient space X/N(f). This means that there exists an x € X and yy,yo € N(f)
such that

1=+ Y and To =T + Yo.

Substracting these equations and applying f yields

Ty =Ty =y — Y2 = [(x1—22) = f(y1 — v2)
— f(z1) = fz2) = f(y1) — fy2) = 0.

where we use the linearity of f and y;,y, € N(f). Conversely, suppose f(x1) —
f(x9) = 0; linearity of f gives

[y —22) =0 = 1 — a9 € N(f).

This means that there exists y € N(f) such that 1 — x5 = 0 + y, which implies
that z1, 22 € X must belong to the same coset of X/N(f).

Codimension of N'( f) is defined to be the dimension of the quotient space X /N (f).
Choose any & € X/N(f), there exists an x € X such that & = = + N(f). Since
f # 0, there exists an xg € X \ N (f) such that f(zy) # 0. Looking at Problem 9,
we deduce that Z has a unique representation & = azg + N (f) = a(ze + N(f)).
This shows that zo + N (f) is a basis for X/N(f) and codim N (f) = 1.

11. Show that two linear functionals f; # 0 and f; # 0 which are defined on the same
vector space and have the same null space are proportional.

Solution: Let z,2’ € X and consider z = xfi(z') — 2/ fi(z). Clearly, fi(z) =
0 = zeN(fi) =N(f2). Thus,

0= fa(2) = fa(x) fi()) = f2(2") u(2).

Since fi # 0, there exists some 2’ € X \ N(f1) such that f;(z’) # 0; we also have
fa(x') # 0 since N(f1) = N(f2). Hence, for such an 2/, we have

folx) = 2=~

Since x € X is arbitrary, the result follows.
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12. (Hyperplane) If Y is a subspace of a vector space X and codimY = 1, then every
element of X/Y is called a hyperplane parallel to Y. Show that for any linear func-
tional f # 0 on X, the set H; = {z € X: f(x) = 1} is a hyperplane parallel to the
null space N(f) of f.

Solution: Since f # 0 on X, H; is not empty. Fix an xqg € H;, and consider
the coset xg+ N (f). Note that this is well-defined irrespective of elements in H;.
Indeed, for any y € Hy,y # @0, y — xo € N(f) since f(y —z0) = f(y) — f(z0) =
1 — 1 = 0; this shows that z + N (f) =y + N (f) for any z,y € H;.

e For any z € zg + N(f), there exists an y € N(f) such that x = z¢ + y.
Since f is linear, f(x) = f(xo +y) = f(xo) + f(y) =1 = =z € H;. This
shows that xo + N (f) C H;.

e Foranyrz € H,z =x4+0=x+x0— 20 = 2o+ (x —x0) € 2o+ N(f) since
f(x —x0) = f(x) — f(zg) =1 —1=0. This shows that H; C x¢ + N(f).

Finally, combining the two set inequality gives H; = x9+/N(f) and the statement
follows.

13. If Y is a subspace of a vector space X and f is a linear functional on X such that
f(Y) is not the whole scalar field of X, show that f(y) =0 for all y € Y.

Solution: The statement is trivial if f is the zero functional, so suppose f # 0.
Suppose, by contradiction, that f(y) # 0 for all y € Y, then there exists an
Yo € Y such that f(yy) = a for some nonzero a € K. Since Y is a subspace of a
vector space X, fyg € Y for all g € K. By linearity of f,

f(Byo) = Bf(yo) = Ba € f(Y).

Since § € K is arbitrary, this implies that f(Y) = K this is a contradiction to
the assumption that f(Y) # K. Hence, by proof of contradiction, f(y) = 0 for
ally e Y.

14. Show that the norm || f|| of a bounded linear functional f # 0 on a normed space X
can be interpreted geometrically as the reciprocal of the distance d = inf{||z||: f(z) =
1|| of the hyperplane Hy = {z € X: f(x) = 1} from the origin.

Solution:

15. (Half space) Let f # 0 be a bounded linear functional on a real normed space
X. Then for any scalar ¢ we have a hyperplane H. = {x € X: f(x) = ¢}, and H.
determines the two half spaces

Xag={reX: f(zx)<c} and Xop={reX: f(x)>c}.
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Show that the closed unit ball lies in X.;, where ¢ = || f||, but for no € > 0, the half
space X with ¢ = || f|| — € contains that ball.

Solution:
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1.8 Linear Operators and Functionals on Finite Dimensional
Spaces.

e A linear operator T: X — Y determines a unique matrix representing 7' with
respect to a given basis for X and a given basis for Y, where the vectors of each of
the bases are assumed to be arranged in a fixed order. Conversely, any matrix with
r rows and n columns determines a linear operator which it represents with respect
to given bases for X and Y.

e Let us now turn to linear functionals on X, where dim X = n and {e,...,e,}
is a basis for X. For every f € X* and every z =) {;e; € X, we have

flx)=f <Z§j€j> = ijf(ej) = ijaj-

where o; = f(e;) for j =1,...,n. We see that f is uniquely determined by its val-
ues «; ath the n basis vectors of X. Conversely, every n-tuple of scalars oy, ..., a,
determines a linear functional on X.

Theorem 1.28. Let X be an n-dimensional vector space and E = {ey,...,e,} a basis
for X. Then F ={f1,..., fn} given by fr(e;) = ;x is a basis for the algebraic dual X*
of X, and dim X* = dim X = n.

e {fi,..., fn} is called the dual basis of the basis {ej,...,e,} for X.

Lemma 1.29. Let X be a finite dimensional vector space. If xo € X has the property
that f(xg) =0 for all f € X*, then xo = 0.

Theorem 1.30. A finite dimensional vector space is algebraically reflexive.

1. Determine the null space of the operator T: R® — R? represented by

1 3 2
2 1 0|

Solution: Performing Gaussian elimination on the matrix yields

1 3 2|0 R 1 3 2|0

-2 1 0/0 0 7 40|
This yields a solution of the form (&3, &s,&3) = t(—2,—4,7) where t € R is a free
variable. Hence, the null space of T is the span of (—2,—4,7).
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2. Let T: R® — R3 be defined by (&1,&,&3) = (&1,&,—& — &). Find R(T), N(T)
and a matrix which represents 7.

Solution: Consider the standard basis for X, given by e; = (1,0,0),e5 = (0,1,0),
es = (0,0,1). The matrix representing 7" with respect to {ej, eq, €3} is

10 0

A=|[0 1 0

-1 -1 0

The range of T', R(T') is the plane & + & + &3 = 0. The null space of T', N(T') is
span of (0,0,1).

3. Find the dual basis of the basis {(1,0,0), (0, 1,0),(0,0,1)} for R3.

Solution: Consider a basis {e1, e, e3} of R? defined by e; = (&) = §;, for

3
j =1,2,3. Given any =z = (n;) in R? let fiy(z) = Za?nj be the dual basis

J=1

of {e1,ez,e3}. From the definition of a dual basis, we require that fi(e;) = dj.
More precisely, for f;, we require that

filer) =y = 1.

f1<€2) = Oé% = 0.

fl(eg) = Ozé = 0

which implies that fi(x) = n;. Repeating the same computation for f, and fs,
we find that fo(z) = no and f3(x) = n3. Hence,

f1:<17070) f2:(07170) f3:(07071)

4. Let {fi, f2, f3} be the dual basis of {ei, e, e3} for R® where e, = (1,1,1),e5 =
(1,1, = 1), ¢5 = (1, —1,~1). Find fu(2), fo(2), fy(x), whete & = (1,0,0).

Solution: Note that we can write z as

1 1 1 1
v= |0l ==|1]+0] 1]+
0 1 ~1 ~1

R
—261 263.

N | —

Thus, using the defintiion of a dual basis fi(e;) = 0,5, we have

1

1 1
fl(l‘) = §f1(€1) + §f1(63) = 5
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fole) = 2 Faler) + = foles) =

2 2 0.
fs(z) = %fs(el) + %fg(eg) = %

where we use linearity of f1, f, fs.

5. If f is a linear functional on an n-dimensional vector space X, what dimension can
the null space N (f) have?

Solution: The Rank-Nullity theorem states that
dim (N(f)) = dim (X) — dim (R(f)) = n — dim (R(f)).
If f is the zero functional, then N (f) = X and N(f) has dimension n; if f is

not the zero functional, then R(f) = K which has dimension 1, so N(f) has
dimension n — 1. Hence, N(f) has dimension n or n — 1.

6. Find a basis for the null space of the functional f defined on R?® by f(z) = & +& — &,
where x = (&1, &9, &3).

Solution: Let x = (&,&,&;) be any point in the null space of f, they must
satisfy the relation & + & — & = 0. Thus,

&1 & 1 0
r= &L =] & | =& (0] +& |1
&3 &1+ & 1 1

Hence, a basis for N'(f) is given by {(1,0,1),(0,1,1)}.

7. Same task as in Problem 6, if f(x) = a1&; + axés + asés, where ay # 0.

Solution: Let z = (&1, &, &3) be any point in N (f), they must satisfy the relation
a a
W+ @b+ sy = 0 = & = ——& — —&.
(03] (03]

Rewriting x using this relation yields

a o
&1 —a—2§2 - a—3§3 ¢ Qs g [~
r=|&| = ! ! =2 |[+2] 0
& a a
&3 &5 0 an

Hence, a basis for N(f) is given by {(—as, a1,0), (—as,0,a1)}.
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8. If Z is an (n — 1)-dimensional subspace of an n-dimensional vector space X, show
that Z is the null space of a suitable linear functional f on X, which is uniquely
determined to within a scalar multiple.

Solution: Let X be an n-dimensional vector space, and Z an (n—1)-dimensional
subspace of X. Choose a basis A = {z1,...,2,-1} of Z, here we can obtain a basis
B = {z,...,2p-1,2,} of X, where B is obtained by extending A using sifting
method. Any z € Z can be written uniquely as z = ay21 + ... + ay_12,-1. If we
want to find f € X* such that N(f) = Z, using linearity of f this translates to

f(z) = flonz + ...+ anc12n-1) = on f(21) + ...+ a1 f(2n-1) = 0.

Since this must be true for all z € Z, it enforces the condition f(z;) = 0 for all
j=1,...,n—1. A similar argument shows that f(z,) # 0, otherwise N(f) =
X # Z. Thus, the functional we are looking for must satisfy the following two
conditions:

(a) f(zj)=0foralj=1,...,n—1
(b) f(zn) # 0.

Consider a linear functional f: X — K defined by f(z;) = §;, for all j =
1,...,n. We claim that N'(f) = Z. Indeed,

e Choose any z € Z, there exists a unique sequence of scalars (f;) such that
z2=p1z1+ ...+ Bh_12,_1. Using linearity of f, we have

n—1 n—1
f(z)=Tf (Zﬁj%‘) = Zﬁjf(zj) = 0.
Jj=1 Jj=1
This shows that Z C N(f).

e Choose any x € X \ Z, there exists a unique sequence of scalars (vy;) such
that © = y121 + ... + Yz, and 7, # 0. (otherwise x € Z.) Using linearity
of f, we have

fl@)=1F (Z ”szj) = i1 (z) =t (z) #0.
p =1
This shows that (X \ Z) ¢ N(f) or equivalently N'(f) C Z.
Hence, Z C N(f) and N(f) C Z implies Z = N (f).

We are left to show that f is uniquely determined up to scalar multiple. Let A
be any nonzero scalars and consider the linear functional A\f. Any x € X can be
written uniquely as x = a121 + ... + a,2,. Using linearity of Af, we have

(Af)(@) = Af(@) = Af (Z ajzj> = (Z ozjf(zj)) = A f(20).

If a, = 0, then z € Z and (A\f)(z) = 0; if a,, # 0, then x € X \ Z and
(Af)(x) = Ay, # 0.
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9. Let X be the vector space of all real polynomials of a real variable and of degree less
than a given n, together with the polynomial x = 0 (whose degree is left undefined
in the usual discussion of degree). Let f(x) = 2*)(a), the value of the kth derivative
(k fixed) of x € X at a fixed a € R. Show that f is a linear functional on X.

Solution: This follows from the algebra rules of differentiation. More precisely,
for any x,y € X and scalars «, 3,

flax + By) = (ax + By) ) (a) = ax®(a) + By (a) = af(x) + Bf(y).

10. Let Z be a proper subspace of an n-dimensional vector space X, and let xq € X \ Z.
Show that there is a linear functional f on X such that f(z¢) =1 and f(z) = 0 for
all v € Z.

Solution: Fix an nonzero xy € X \ Z, note that zo = 0 then such a functional
doesn’t exist since f(xg) = 0. Let X be an n-dimensional vector space, and Z be
an m-dimensional subspace of X, with m < n. Choose a basis A = {21, ..., 2z, } of
Z, here we can obtain a basis B = {21, ..., Zm, Zm+1, - - -, 2n} of X with 2,11 = w0,
where B is obtained by extending A using sifting method. Any x € X can be
written uniquely as

T =121+ ...+ Qp2m + Q1T + QpaoZmao + oL+ @2y

Consider the linear functional f: X — K defined by f(z) = apmi1 + ... + ay,
where «; is the j-th scalar of  with respect to the basis B for all j = m+1,...,n.
We claim that f(zp) =1 and f(Z) = 0. Indeed,

o If x = xp, then o,11 = 1 and o; = 0 for all j #m + 1.
e lfrecZ thena;=0foral j=m+1,...,n.

o If z € X\ Z, at least one of {a+1,...,a,} is non-zero.

Remark: The functional f we constructed here is more tight, in the sense that

N(f) = Z. If we only require that Z C N(f), then f(x) = i1 will do the job.

11. If = and y are different vectors in a finite dimensional vector space X, show that
there is a linear functional f on X such that f(x) # f(y).

Solution: Let X be an n-dimensional vector space and {ej,...,e,} a basis of
X. Any z,y € X can be written uniquely as

n n
xr = E aje; and Yy = E Bje;.
=1 j=1
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12.

13.

14.

15.

Since x # y, there exists at least one jy € {1,...,n} such that o, # B;,. Consider
the linear functional f: X — K defined by f(e;) = d,j,. Using linearity of f,

flx)=f (Z O<j€j> = Z%‘f(ej) = Q.
fly)=f (Z 5;‘61) = Zﬁjf(ej) = Bjo-

Clearly, f(z) # f(y).

If fi,..., fp are linear functionals on an n-dimensional vector space X, where p < n,
show that there is a vector x # 0 in X such that fi(x) =0,..., f,(x) = 0. What
consequences does this result have with respect to linear equations?

Solution:

(Linear extension) Let Z be a proper subspace of an n-dimensional vector space
X, and let f be a linear functional on Z. Show that f can be extended linearly to
X, that is, there is a a linear functional f on X such that f|; = f.

Solution:

Let the functional f on R? be defined by f(z) = 4& — 3&;, where = (&,&;). Regard
R? as the subspace of R? given by &3 = 0. Determine all linear extensions f of f from
R? to R3.

Solution:

Let Z C R? be the subspace represented by & = 0 and let f on Z be defined by

flz) = % Find a linear extension f of f to R? such that f(zy) = k (a given

constant), where o = (1,1,1). Is f unique?

Solution:
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