Contents

1	Nor	med Spaces. Banach Spaces.
	1.1	Vector Space
	1.2	Normed Space. Banach Space
	1.3	Further Properties of Normed Spaces
	1.4	Finite Dimensional Normed Spaces and Subspaces
	1.5	Linear Operators
	1.6	Bounded and Continuous Linear Operators
	1.7	Linear Functionals
	1.8	Linear Operators and Functionals on Finite Dimensional Spaces

1 Normed Spaces. Banach Spaces.

1.1 Vector Space.

Definition 1.1.

- 1. An arbitrary subset M of a vector space X is said to be **linearly independent** if every non-empty finite subset of M is linearly independent.
- 2. A vector space X is said to be **finite dimensional** if there is a positive integer n such that X contains a linearly independent set of n vectors whereas any set of n+1 or more vectors of X is linearly dependent. n is called the **dimension** of X, written $n = \dim X$.
- 3. If X is any vector space, not necessarily finite dimensional, and B is a linearly independent subset of X which spans X, then B is called a **basis** (or **Hamel basis**) of X.
 - Hence if B is a basis for X, then every nonzero $x \in X$ has a unique representation as a linear combination of (finitely many!) elements of B with nonzero scalars as coefficients.

Theorem 1.2. Let X be an n-dimensional vector space. Then any proper subspace Y of X has dimension less than n.

1. Show that the set of all real numbers, with the usual addition and multiplication, constitutes a one-dimensional real vector space, and the set of all complex numbers constitutes a one-dimensional complex vector space.

Solution: The usual addition on \mathbb{R} and \mathbb{C} are commutative and associative, while scalar multiplication on \mathbb{R} and \mathbb{C} are also associative and distributive. For \mathbb{R} , the zero vector is $\mathbf{0}_R = 0 \in \mathbb{R}$, the identity scalar is $1_{\mathbb{R}} = 1 \in \mathbb{R}$, and the additive inverse is -x for any $x \in \mathbb{R}$. For \mathbb{C} , the zero vector is $\mathbf{0}_{\mathbb{C}} = 0 + 0i \in \mathbb{C}$, the identity scalar is $1_{\mathbb{C}} = 1 + 0i \in \mathbb{C}$ and the additive inverse is -z for all $z \in \mathbb{C}$.

2. Prove that 0x = 0, $\alpha 0 = 0$ and (-1)x = -x.

$$0x = (0+0)x = 0x + 0x \implies \mathbf{0} = 0x + (-(0x))$$

$$= 0x + 0x + (-(0x))$$

$$= 0x + \mathbf{0} = 0x.$$

$$\alpha \mathbf{0} = \alpha (\mathbf{0} + \mathbf{0}) = \alpha \mathbf{0} + \alpha \mathbf{0} \implies \mathbf{0} = \alpha \mathbf{0} + (-(\alpha \mathbf{0}))$$

$$= \alpha \mathbf{0} + \alpha \mathbf{0} + (-(\alpha \mathbf{0}))$$

$$= \alpha \mathbf{0} + \alpha \mathbf{0} + (-(\alpha \mathbf{0}))$$

$$= \alpha \mathbf{0} + \mathbf{0} = \alpha \mathbf{0}.$$

$$(-1)x = (-1(1))x = -1(1x) = -x.$$

3. Describe the span of $M = \{(1, 1, 1), (0, 0, 2)\}$ in \mathbb{R}^3 .

Solution: The span of M is

$$\operatorname{span} M = \left\{ \alpha \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + \beta \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} : \alpha, \beta \in \mathbb{R} \right\}$$
$$= \left\{ \begin{bmatrix} \alpha \\ \alpha \\ \alpha + 2\beta \end{bmatrix} : \alpha, \beta \in \mathbb{R} \right\}.$$

We see that span M corresponds to the plane x = y on \mathbb{R}^3 .

- 4. Which of the following subsets of \mathbb{R}^3 constitute a subspace of \mathbb{R}^3 ? Here, $x = (\xi_1, \xi_2, \xi_3)$.
 - (a) All x with $\xi_1 = \xi_2$ and $\xi_3 = 0$.

Solution: For any $x, y \in W$ and any $\alpha, \beta \in \mathbb{R}$,

$$\alpha x + \beta y = \alpha \begin{bmatrix} \xi_1 \\ \xi_2 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} \eta_1 \\ \eta_2 \\ 0 \end{bmatrix} = \begin{bmatrix} \alpha \xi_1 + \beta \eta_1 \\ \alpha \xi_2 + \beta \eta_2 \\ 0 \end{bmatrix} \in W.$$

(b) All x with $\xi_1 = \xi_2 + 1$.

Solution: Choose $x_1 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} \in W$, $x_2 = \begin{bmatrix} 3 \\ 2 \\ 0 \end{bmatrix} \in W$, then

$$x_1 + x_2 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 5 \\ 3 \\ 0 \end{bmatrix} \notin W$$

since $5 \neq 3 + 1$.

(c) All x with positive ξ_1, ξ_2, ξ_3 .

Solution: Choose $\alpha = -1$, then for any $x \in W$, $\alpha x \notin W$.

(d) All x with $\xi_1 - \xi_2 + \xi_3 = k$.

Solution: For any $x, y \in W$,

$$x + y = \begin{bmatrix} \xi_1 + \eta_1 \\ \xi_2 + \eta_2 \\ \xi_3 + \eta_3 \end{bmatrix}.$$

Since

$$\xi_1 + \eta_1 - (\xi_2 + \eta_2) + (\xi_3 + \eta_3) = (\xi_1 - \xi_2 + \xi_3) + (\eta_1 - \eta_2 + \eta_3) = 2k.$$

we see that W is a subspace of \mathbb{R}^3 if and only if k=0.

5. Show that $\{x_1, \ldots, x_n\}$, where $x_j(t) = t^j$, is a linearly independent set in the space C[a, b].

Solution: This is a simple consequence of Fundamental Theorem of Algebra. Fix a finite n > 1. Suppose that for all $t \in [a, b]$, we have

$$\sum_{j=1}^{n} \lambda_j x_j(t) = \sum_{j=1}^{n} \lambda_j t^j = 0.$$

Suppose $\lambda_n \neq 0$. Fundamental Theorem of Algebra states that any polynomials with degree n can have at most n real roots. Since the equation above is true for

all $t \in [a, b]$, and the set of points in the interval [a, b] is uncountable, $\sum_{i=1}^{n} \lambda_{i} t^{j}$ has

to be the zero polynomial. Since $n \geq 1$ was arbitrary (but finite), this shows that any non-empty finite subset of $\{x_j\}_{j\in\Lambda}$, Λ a countable/uncountable indexing set, is linearly independent.

6. Show that in an *n*-dimensional vector space X, the representation of any x as a linear combination of a given basis vectors e_1, \ldots, e_n is unique.

Solution: Let X is an n-dimensional vector space, with a basis $\{e_1, \ldots, e_n\}$. Suppose any $x \in X$ has a representation as a linear combination of the basis vectors, we claim that the representation is unique. Indeed, if $x \in X$ has two representations

$$x = \alpha_1 e_1 + \ldots + \alpha_n e_n = \beta_1 e_1 + \ldots + \beta_n e_n.$$

subtracting them gives

$$(\alpha_1 - \beta_1)e_1 + \ldots + (\alpha_n - \beta_n)e_n = \sum_{j=1}^n (\alpha_j - \beta_j)e_j = \mathbf{0}.$$

Since $\{e_1, \ldots, e_n\}$ is a basis of X, by definition it is linearly independent, which implies that $\alpha_j - \beta_j = 0$ for all $j = 1, \ldots, n$, i.e. the representation is unique.

7. Let $\{e_1, \ldots, e_n\}$ be a basis for a complex vector space X. Find a basis for X regarded as a real vector space. What is the dimension of X in either case?

Solution: A basis for X regarded as a real vector space is $\{e_1, \ldots, e_n, ie_1, \ldots, ie_n\}$. The dimension of X is n as a complex vector space and 2n as a real vector space.

8. If M is a linearly dependent set in a complex vector space X, is M linearly dependent in X, regarded as a real vector space?

Solution: No. Let $X = \mathbb{C}^2$, with $K = \mathbb{C}$, and consider $x = \begin{bmatrix} 1 \\ i \end{bmatrix}$ and $y = \begin{bmatrix} i \\ -1 \end{bmatrix}$. $\{x, y\}$ is a linearly dependent set in X since ix = y. Now suppose $K = \mathbb{R}$, and

$$\alpha x + \beta y = \begin{bmatrix} \alpha + \beta i \\ \alpha i - \beta \end{bmatrix} = \mathbf{0} = \begin{bmatrix} 0 + 0i \\ 0 + 0i \end{bmatrix}.$$

Since α, β can only be real numbers, we see that $(\alpha, \beta) = (0, 0)$ is the only solution to the equation. Hence $\{x, y\}$ is a linearly independent set in $X = \mathbb{C}^2$ over \mathbb{R} .

- 9. On a fixed interval $[a, b] \subset \mathbb{R}$, consider the set X consisting of all polynomials with real coefficients and of degree not exceeding a given n, and the polynomial x = 0 (for which a degree is not defined in the usual discussion of degree).
 - (a) Show that X, with the usual addition and the usual multiplication by real numbers, is a real vector space of dimension n + 1. Find a basis for X.

Solution: Let X be the set given in the problem. It is clear that X is a real vector space. Indeed, for any $P,Q\in X$, with $\deg(P),\deg(Q)\leq n$, $\deg(P+Q)\leq n$ and $\deg(\alpha P)\leq n$ for any $\alpha\in\mathbb{R}$. A similar argument from Problem 5 shows that $\{1,t,t^2,\ldots,t^n\}$ is a linearly independent set in X, and since $\{1,t,t^2,\ldots,t^n\}$ spans X, it is a basis of X and X has dimension n+1.

(b) Show that we can obtain a complex vector space \tilde{X} in a similar fashion if we let those coefficients be complex. Is X a subspace of \tilde{X} ?

Solution: No. Consider $P(t) = t \in X$, choose $\alpha = i$, then $\alpha P(t) = it \notin X$.

10. If Y and Z are subspaces of a vector space X, show that $Y \cap Z$ is a subspace of X, but $Y \cup Z$ need not be one. Give examples.

Solution: Let Y and Z be subspaces of a vector space X. Take any $x, y \in Y \cap Z$, note that x, y are both elements of Y and Z. For any $\alpha, \beta \in K$, $\alpha x + \beta y \in Y$ (since Y is a subspace of X) and $\alpha x + \beta y \in Z$ (since Z is a subspace of X). Hence $\alpha x + \beta y \in Y \cap Z$.

For the second part, consider $Y = \left\{ \begin{bmatrix} \alpha \\ 0 \end{bmatrix} : \alpha \in \mathbb{R} \right\}$ and $Z = \left\{ \begin{bmatrix} 0 \\ \alpha \end{bmatrix} : \alpha \in \mathbb{R} \right\}$. It can be (easily) deduced that Y and Z are subspaces of \mathbb{R}^2 , but $Y \cup Z$ is not a subspace of \mathbb{R}^2 . To see this, choose $x = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $y = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, then $x + y = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \notin Y \cup Z$.

11. If $M \neq \emptyset$ is any subset of a vector space X, show that span M is a subspace of X.

Solution: This is immediate since a (scalar) field K is closed under addition and sums of two finite sums remain finite.

12. (a) Show that the set of all real two-rowed square matrices forms a vector space X. What is the zero vector in X?

Solution: This follows from Problem 1 and the definition of matrix addition and matrix scalar multiplication: we prove that \mathbb{R} is a vector space over \mathbb{R} or \mathbb{C} . The zero vector in X is $\mathbf{0} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$.

(b) Determine dim X. Find a basis for X.

Solution: We claim that dim X=4. To prove this, consider the following four vectors in X

$$e_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \quad e_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \quad e_3 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \quad e_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$$

Suppose $\alpha_1e_1+\ldots+\alpha_4e_4=\mathbf{0}=\begin{bmatrix}\alpha_1&\alpha_2\\\alpha_3&\alpha_4\end{bmatrix}$, we have $\alpha_1=\alpha_2=\alpha_3=\alpha_4=0$, i.e. $\{e_1,e_2,e_3,e_4\}$ is a linearly independent set in X. However, any set of 5 or more vectors of X is linearly dependent, since any $x=\begin{bmatrix}a&b\\c&d\end{bmatrix}\in X$ can be written as a linear combination of $\{e_1,e_2,e_3,e_4\}$, i.e. $x=ae_1+be_2+ce_3+de_4$. Hence, a basis for X is $\{e_1,e_2,e_3,e_4\}$.

(c) Give examples of subspaces of X.

Solution: An example is $W = \left\{ \begin{bmatrix} \alpha & 0 \\ 0 & 0 \end{bmatrix} : \alpha \in \mathbb{R} \right\}$.

(d) Do the symmetric matrices $x \in X$ form a subspace of X?

Solution: Yes. Consider any symmetric matrices $x = \begin{bmatrix} a_1 & b_1 \\ b_1 & d_1 \end{bmatrix}$, $y = \begin{bmatrix} a_2 & b_2 \\ b_2 & d_2 \end{bmatrix}$. For any $\alpha, \beta \in \mathbb{R}$ (or \mathbb{C}),

$$\alpha x + \beta y = \begin{bmatrix} \alpha a_1 + \beta a_2 & \alpha b_1 + \beta b_2 \\ \alpha b_1 + \beta b_2 & \alpha d_1 + \beta d_2 \end{bmatrix}$$

which is a symmetric matrix.

(e) Do the singular matrices $x \in X$ form a subspace of X?

Solution: No. To see this, consider $x = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ and $y = \begin{bmatrix} 3 & 2 \\ 6 & 4 \end{bmatrix}$; both x and y are singular matrices since they have zero determinant. However, $x+y=\begin{bmatrix} 4 & 3 \\ 7 & 5 \end{bmatrix}$ is not a singular matrix since $\det(x+y)=20-21=-1\neq 0$.

13. (**Product**) Show that the Cartesian product $X = X_1 \times X_2$ of two vector spaces over the same field becomes a vector space if we define the two algebraic operations by

$$(x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2),$$

 $\alpha(x_1, x_2) = (\alpha x_1, \alpha x_2).$

Solution: This is a simple exercise. We first verify vector addition:

$$(x_{1}, x_{2}) + (y_{1}, y_{2}) = (x_{1} + y_{1}, x_{2} + y_{2})$$

$$= (y_{1} + x_{1}, y_{2} + x_{2})$$

$$= (y_{1}, y_{2}) + (x_{1}, x_{2}).$$

$$(x_{1}, x_{2}) + [(y_{1}, y_{2}) + (z_{1}, z_{2})] = \left(x_{1} + (y_{1} + z_{1}), x_{2} + (y_{2} + z_{2})\right)$$

$$= \left((x_{1} + y_{1}) + z_{1}, (x_{2} + y_{2}) + z_{2}\right)$$

$$= (x_{1} + y_{1}, x_{2} + y_{2}) + (z_{1}, z_{2})$$

$$= \left[(x_{1}, x_{2}) + (y_{1}, y_{2})\right] + (z_{1}, z_{2}).$$

$$(x_{1}, x_{2}) = (x_{1} + \mathbf{0}, x_{2} + \mathbf{0})$$

$$= (x_{1}, x_{2}) + (\mathbf{0}, \mathbf{0}).$$

$$(\mathbf{0}, \mathbf{0}) = (x_{1} + (-x_{1}), y_{1} + (-y_{1}))$$

$$= (x_{1}, y_{1}) + (-x_{1}, -y_{1}).$$

Next, we verify scalar vector multiplication:

$$(x_1, x_2) = (1_K x_1, 1_K x_2)$$

= $1_K (x_1, x_2)$.

$$\alpha \left[\beta(x_1, x_2) \right] = \alpha(\beta x_1, \beta x_2)$$

$$= \left(\alpha(\beta x_1), \alpha(\beta x_2) \right)$$

$$= \left((\alpha \beta) x_1, (\alpha \beta) x_2 \right)$$

$$= (\alpha \beta) (x_1, x_2).$$

$$\alpha \left[(x_1, x_2) + (y_1, y_2) \right] = \alpha(x_1 + y_1, x_2 + y_2)$$

$$= \left(\alpha(x_1 + y_1), \alpha(x_2 + y_2) \right)$$

$$= (\alpha x_1 + \alpha y_1, \alpha x_2 + \alpha y_2)$$

$$= (\alpha x_1, \alpha y_1) + (\alpha x_2, \alpha y_2)$$

$$= \alpha(x_1, y_1) + \alpha(x_2, y_2).$$

$$(\alpha + \beta)(x_1, x_2) = \left((\alpha + \beta) x_1, (\alpha + \beta) x_2 \right)$$

$$= (\alpha x_1 + \beta x_1, \alpha x_2 + \beta x_2)$$

$$= (\alpha x_1, \alpha x_2) + (\beta x_1, \beta x_2)$$

$$= \alpha(x_1, x_2) + \beta(x_1, x_2).$$

14. (Quotient space, codimension) Let Y be a subspace of a vector space X. The coset of an element $x \in X$ with respect to Y is denoted by x + Y and is defined to be the set

$$x + Y = \{x \colon v = x + y, y \in Y\}.$$

(a) Show that the distinct cosets form a partition of X.

Solution:

(b) Show that under algebraic operations defined by

$$(w+Y) + (x+Y) = (w+x) + Y$$
$$\alpha(x+Y) = \alpha x + Y$$

these cosets constitute the elements of a vector space. This space is called the quotient space (or sometimes factor space) of X by Y (or modulo Y) and is denoted by X/Y. Its dimension is called the codimension of Y and is denoted by codim Y, that is,

$$\mathbf{codim}\ Y = \dim\ (X/Y).$$

Solution:

15. Let $X = \mathbb{R}^3$ and $Y = \{(\xi_1, 0, 0) : \xi_1 \in \mathbb{R}\}$. Find $X/Y, X/X, X/\{0\}$.

Solution: First, $X/X = \{x + X : x \in X\}$; since $x + X \in X$ for any $x \in X$, we see that $X/X = \{\mathbf{0}\}$. Next, $X/\{\mathbf{0}\} = \{x + \mathbf{0} : x \in X\} = \{x : x \in X\} = X$. For X/Y, we are able to deduce (geometrically) that elements of X/Y are lines parallel to the ξ_1 -axis. More precisely, by definition, $X/Y = \{x + Y : x \in X\}$; for a fixed $x_0 = (\xi_1^0, \xi_2^0, \xi_3^0)$,

$$x_0 + Y = \{ (\xi_1^0, \xi_2^0, \xi_3^0) + (0, 0, \xi_3) \colon \xi_3 \in \mathbb{R} \}$$

= \{ (\xi_1^0, \xi_2^0, \tilde{\xi}_3) \: \tilde{\xi}_3 \in \mathbb{R} \}.

which corresponds to a line parallel to ξ_1 -axis.

1.2 Normed Space. Banach Space.

Definition 1.3. A **norm** on a (real or complex) vector space X is a real-valued function on X whose value at an $x \in X$ is denoted by ||x|| and which has the properties

$$(N1) ||x|| \ge 0.$$

$$(N2) ||x|| = 0 \Longleftrightarrow x = 0.$$

(N3)
$$\|\alpha x\| = |\alpha| \|x\|$$
.

$$(N4) \|x + y\| \le \|x\| + \|y\|.$$

(Triangle inequality)

Here, x and y are arbitrary vectors in X and α is any scalar.

• A norm on X defines a metric d on X which is given by

$$d(x,y) = ||x - y|| \qquad , x, y, \in X$$

and is called the metric induced by the norm.

• The norm is continuous, that is, $x \mapsto ||x||$ is a continuous mapping of $(X, ||\cdot||)$ into \mathbb{R} .

Theorem 1.4. A metric d induced by a norm on a normed space X satisfies (a) d(x + a, y + a) = d(x, y).

- (b) $d(\alpha x, \alpha y) = |\alpha| d(x, y)$. for all $x, y, a \in X$ and every scalar α .
 - This theorem illustrates an important fact: Every metric on a vector space might not necessarily be obtained from a norm.
 - A counterexample is the space s consisting of all (bounded or unbounded) sequences of complex numbers with a metric d defined by

$$d(x,y) = \sum_{j=1}^{\infty} \frac{1}{2^j} \frac{|\xi_j - \eta_j|}{1 + |\xi_j - \eta_j|}.$$

1. Show that the norm ||x|| of x is the distance from x to 0.

Solution: $||x|| = ||x - y||_{y=0} = d(x, 0)$, which is precisely the distance from x to 0.

2. Verify that the usual length of a vector in the plane or in three dimensional space has the properties (N1) to (N4) of a norm.

Solution: For all $x \in \mathbb{R}^3$, define $||x|| = \sqrt{x_1^2 + x_2^2 + x_3^2}$. (N1) to (N3) are obvious. (N4) is an easy consequence of the **Cauchy-Schwarz inequality for sums**. More precisely, for $x = (x_1, x_2, x_3)$ and $y = (y_1, y_2, y_3)$ we have:

$$||x + y||^2 = (x_1 + y_1)^2 + (x_2 + y_2)^2 + (x_3 + y_3)^2$$

= $(x_1^2 + x_2^2 + x_3^2) + (y_1^2 + y_2^2 + y_3^2) + 2(x_1y_1 + x_2y_2 + x_3y_3)$
 $\leq ||x||^2 + ||y||^2 + 2||x|| ||y|| = (||x|| + ||y||)^2.$

Taking square root on both sides yields (N4).

3. Prove (N4) implies $||y|| - ||x||| \le ||y - x||$.

Solution: From triangle inequality of norm we have the following two inequalities:

$$||x|| = ||x - y + y|| \le ||x - y|| + ||x||$$

$$\implies ||x|| - ||y|| \le ||x - y||.$$

$$||y|| = ||y - x + x|| \le ||y - x|| + ||x||$$

$$\implies ||y|| - ||x|| \le ||x - y||.$$

Combining these two yields the desired inequality.

4. Show that we may replace (N2) by $||x|| = 0 \implies x = 0$ without altering the concept of a norm. Show that nonnegativity of a norm also follows from (N3) and (N4).

Solution: For any $x \in X$,

$$||x|| = ||x + x - x|| \le ||x + x|| + ||-x|| = 2||x|| + ||x|| = 3||x||$$

 $\implies 0 \le 2||x|| \implies 0 \le ||x||.$

5. Show that $||x|| = \left(\sum_{j=1}^{n} |\xi_j|^2\right)^{1/2} = \sqrt{|\xi_1|^2 + \ldots + |\xi_n|^2}$ defines a norm.

Solution: (N1) to (N3) are obvious. (N4) follows from the Cauchy-Schwarz inequality for sums, the proof is similar to that in Problem 3.

6. Let X be the vector space of all ordered pairs $x = (\xi_1, \xi_2), y = (\eta_1, \eta_2), \cdots$ of real numbers. Show that norms on X are defined by

$$||x||_1 = |\xi_1| + |\xi_2|$$

$$||x||_2 = (\xi_1^2 + \xi_2^2)^{1/2}$$

$$||x||_{\infty} = \max\{|\xi_1|, |\xi_2|\}.$$

Solution: (N1) to (N3) are obvious for each of them. To verify (N4), for $x = (\xi_1, \xi_2)$ and $y = (\eta_1, \eta_2)$,

$$||x + y||_1 = |\xi_1 + \eta_1| + |\xi_2 + \eta_2|$$

$$\leq |\xi_1| + |\eta_1| + |\xi_2| + |\eta_2| = ||x||_1 + ||y||_1.$$

$$||x + y||_{2}^{2} = (\xi_{1} + \eta_{1})^{2} + (\xi_{2} + \eta_{2})^{2}$$

$$= (\xi_{1}^{2} + \xi_{2}^{2}) + (\eta_{1}^{2} + \eta_{2}^{2}) + 2(\xi_{1}\eta_{1} + \xi_{2}\eta_{2})$$

$$\leq ||x||_{2} + ||y||_{2} + 2||x||_{2}||y||_{2} = (||x||_{2} + ||y||_{2})^{2}$$

$$\implies ||x + y||_{2} \leq ||x||_{2} + ||y||_{2}.$$

$$||x + y||_{\infty} = \max\{|\xi_1 + \eta_1|, |\xi_2 + \eta_2|\}$$

$$\leq \max\{|\xi_1| + |\eta_1|, |\xi_2| + |\eta_2|\}$$

$$\leq \max\{|\xi_1|, |\xi_2|\} + \max\{|\eta_1|, |\eta_2|\} = ||x||_{\infty} + ||y||_{\infty}.$$

where we use the inequality $|a| \leq \max\{|a|, |b|\}$ for any $a, b \in \mathbb{R}$.

7. Verify that $||x|| = \left(\sum_{j=1}^{\infty} |\xi_j|^p\right)^{1/p}$ satisfies (N1) to (N4).

Solution: (N1) to (N3) are obvious. (N4) follows from Minkowski inequality for sums. More precisely, for $x = (\xi_j)$ and $y = (\eta_j)$,

$$||x+y|| = \left(\sum_{j=1}^{\infty} |\xi_j + \eta_j|^p\right)^{\frac{1}{p}} \le \left(\sum_{k=1}^{\infty} |\xi_k|^p\right)^{\frac{1}{p}} + \left(\sum_{m=1}^{\infty} |\eta_m|^p\right)^{\frac{1}{p}}.$$

8. There are several norms of practical importance on the vector space of ordered ntuples of numbers, notably those defined by

$$||x||_1 = |\xi_1| + |\xi_2| + \ldots + |\xi_n|$$

$$||x||_p = \left(|\xi_1|^p + |\xi_2|^p + \dots + |\xi_n|^p\right)^{1/p} \qquad (1
$$||x||_{\infty} = \max\{|\xi_1|, \dots, |\xi_n|\}.$$$$

In each case, verify that (N1) to (N4) are satisfied.

Solution: This is a generalisation of Problem 6, with the proof being almost identicall. The only thing that differs is we use **Minkowski inequality for sums** to prove (N4) for $\|\cdot\|_p$.

9. Verify that $||x|| = \max_{t \in [a,b]} |x(t)|$ defines a norm on the space C[a,b].

Solution: (N1) and (N2) are clear, as we readily see. For (N3), for any scalars α we have:

$$\|\alpha x\| = \max_{t \in [a,b]} |\alpha x(t)| = |\alpha| \max_{t \in [a,b]} |x(t)| = |\alpha| \|x\|.$$

Finally, for (N4),

$$||x + y|| = \max_{t \in [a,b]} |x(t) + y(t)| \le \max_{t \in [a,b]} |x(t)| + \max_{t \in [a,b]} |y(t)| = ||x|| + ||y||.$$

10. (Unit Sphere) The sphere

$$S_1(0) = \{x \in X : ||x|| = 1\}.$$

in a normed space X is called the *unit sphere*. Show that for the norms in Problem 6 and for the norm defined by $||x||_4 = (\xi_1^4 + \xi_2^4)^{1/4}$, the unit spheres look as shown in figure.

Solution: Refer to Kreyszig, page 65.

11. (Convex set, segment) A subset A of a vector space X is said to be *convex* if $x, y \in A$ implies

$$M = \{z \in X \colon z = \alpha x + (1 - \alpha)y, \quad 0 \le \alpha \le 1\} \subset A.$$

M is called a closed segment with boundary points x and y; any other $z \in M$ is called an interior point of M. Show that the closed unit ball in a normed space X is convex.

Solution: Choose any $x, y \in \tilde{B}_1(0)$, then for any $0 \le \alpha \le 1$,

$$\|\alpha x + (1 - \alpha)y\| \le \alpha \|x\| + (1 - \alpha)\|y\| \le \alpha + 1 - \alpha = 1.$$

This shows that the closed unit ball in X is convex.

12. Using Problem 11, show that

$$\psi(x) = \left(\sqrt{|\xi_1|} + \sqrt{|\xi_2|}\right)^2$$

does not define a norm on the vector space of all ordered pairs $x = (\xi_1, \xi_2)$ of real numbers. Sketch the curve $\psi(x) = 1$.

Solution: Problem 11 shows that if ψ is a norm, then the closed unit ball in a normed space $X=(X,\psi)$ is convex. Choose x=(1,0) and y=(0,1), x,y are elements of the closed unit ball in (X,ψ) since $\psi(x)=\psi(y)=1$. However, if we choose $\alpha=0.5$,

$$\psi(0.5x + 0.5y) = \left(\sqrt{|0.5|} + \sqrt{|0.5|}\right)^2 = (2\sqrt{0.5})^2 = 2 > 1.$$

This shows that for 0.5x + 0.5y is not an element of the closed unit ball in (X, ψ) , and contrapositive of result from Problem 11 shows that $\psi(x)$ does not define a norm on X.

13. Show that the discrete metric on a vector space $X \neq \{0\}$ cannot be obtained from a norm.

Solution: Consider a discrete metric space $X \neq \{0\}$. Choose distinct $x, y \in X$, for $\alpha = 2$, d(2x, 2y) = 1 but |2|d(x, y) = 2. The statement then follows from theorem.

14. If d is a metric on a vector space $X \neq \{0\}$ which is obtained from a norm, and \tilde{d} is defined by

$$\tilde{d}(x,x) = 0,$$
 $\tilde{d}(x,y) = d(x,y) + 1$ $(x \neq y),$

show that d cannot be obtained from a norm.

Solution: Consider a metric space $X \neq \{0\}$. Choose any $x \in X$, for $\alpha = 2$, $\tilde{d}(2x,2x) = d(2x,2x) + 1 = 1$ but $|2|\tilde{d}(x,x) = 2(d(x,x) + 1) = 2$. The statement then follows from theorem.

15. (Bounded set) Show that a subset M in a normed space X is bounded if and only if there is a positive number c such that $||x|| \le c$ for every $x \in M$.

Solution: Suppose a subset M in a normed space X is bounded. By definition, the diameter $\delta(M)$ of M is finite, i.e.

$$\delta(M) = \sup_{x,y \in M} d(x,y) = \sup_{x,y \in M} ||x - y|| < \infty.$$

Fix an $y \in M$, then for any $x \in M$,

$$||x|| = ||x - y + y|| \le ||x - y|| + ||y|| \le \delta(M) + ||y|| < \infty.$$

Choosing $c = \delta(M) + \|y\|$ yields the desired result. Conversely, suppose there exists an c > 0 such that $\|x\| \le c$ for all $x \in M$. Then for any $x, y \in M$,

$$d(x,y) = ||x - y|| \le ||x|| + ||y|| \le 2c.$$

Taking supremum over $x, y \in M$ on both sides, we obtain $\delta(M) \leq 2c < \infty$. This shows that M (in a normed space X) is bounded.

1.3 Further Properties of Normed Spaces.

Definition 1.5. A subspace Y of a normed space X is a subspace of X considered as a vector space, with the norm obtained by restricting the norm on X to the subset Y. This norm on Y is said to be **induced** by the norm on X.

Theorem 1.6. A subspace Y of a Banach space X is complete if and only if the set Y is closed in X.

Definition 1.7.

1. If (x_k) is a sequence in a normed space X, we can associate with (x_k) the sequence (s_n) of **partial sums**

$$s_n = x_1 + x_2 + \ldots + x_n$$

where $n = 1, 2, \ldots$ If (s_n) is convergent, say, $s_n \longrightarrow s$ as $n \longrightarrow \infty$, then the infinite series $\sum_{k=1}^{\infty} x_k$ is said to converge or to be **convergent**, s is called the **sum** of the infinite series and we write

$$s = \sum_{k=1}^{\infty} x_k = x_1 + x_2 + \dots$$

- 2. If $||x_1|| + ||x_2|| + \dots$ converges, the series $\sum_{k=1}^{\infty} x_k$ is said to be **absolutely convergent**.
- 3. If a normed space X contains a sequence (e_n) with the property that for every $x \in X$, there is a unique sequence of scalars (α_n) such that

$$||x - (\alpha_1 e_1 + \ldots + \alpha_n e_n)|| \longrightarrow 0$$
 as $n \longrightarrow \infty$.

then (e_n) is called a **Schauder basis** for X. The series $\sum_{j=1}^{\infty} \alpha_j e_j$ which has the sum x is called the **expansion** of x with respect to (e_n) , and we write

$$x = \sum_{j=1}^{\infty} \alpha_j e_j.$$

• If X has a Schauder basis, then it is separable. The converse is however not generally true.

Theorem 1.8. Let $X = (X, \|\cdot\|)$ be a normed space. There exists a Banach space \hat{X} and an isometry A from X onto a subspace W of \hat{X} which is dense in \hat{X} . The space \hat{X} is unique, except for isometries.

1. Show that $c \subset l^{\infty}$ is a vector subspace of l^{∞} and so is c_0 , the space of all sequences of scalars converging to zero.

Solution: The space c consists of all convergent sequences $x = (\xi_j)$ of complex numbers. Choose any $x = (\xi_j), y = (\eta_j) \in c \subset l^{\infty}$, with limit $\xi, \eta \in \mathbb{C}$ respectively. For fixed scalars α, β , the result is trivial if they are zero, so suppose not. Given any $\varepsilon > 0$, there exists $N_1, N_2 \in \mathbb{N}$ such that

$$|\xi_j - \xi| < \frac{\varepsilon}{2|\alpha|}$$
 for all $j > N_1$.
 $|\eta_j - \eta| < \frac{\varepsilon}{2|\beta|}$ for all $j > N_2$.

Choose $N = \max\{N_1, N_2\}$, then for all j > N we have that

$$\begin{aligned} |\alpha \xi_j + \beta \eta_j - \alpha \xi - \beta \eta| &= |\alpha(\xi_j - \xi) + \beta(\eta_j - \eta)| \\ &\leq |\alpha| |\xi_j - \xi| + |\beta| ||\eta_j - \eta|| \\ &< |\alpha| \frac{\varepsilon}{2|\alpha|} + |\beta| \frac{\varepsilon}{2|\beta|} = \varepsilon. \end{aligned}$$

This shows that the sequence $\alpha x + \beta y = (\alpha \xi_j + \beta \eta_j)$ is convergent, hence $x \in c$. Since α, β were arbitrary scalar, this proves that c is a subspace of l^{∞} . By replacing $\xi = \eta = 0$ as limit, the same argument also shows that c_0 is a subspace of l^{∞} .

2. Show that c_0 in Problem 1 is a closed subspace of l^{∞} , so that c_0 is complete.

Solution: Consider any $x = (\xi_j) \in \bar{c_0}$, the closure of c. There exists $x_n = (\xi_j^n) \in c_0$ such that $x_n \longrightarrow x$ in l^{∞} . Hence, given any $\varepsilon > 0$, there exists an $N \in \mathbb{N}$ such that for all $n \geq N$ and all j we have

$$|\xi_j^n - \xi_j| \le ||x_n - x|| < \frac{\varepsilon}{2}.$$

in particular, for n = N and all j. Since $x_N \in c_0$, its terms ξ_j^N form a convergent sequence with limit 0. Thus there exists an $N_1 \in \mathbb{N}$ such that for all $j \geq N_1$ we have

$$|\xi_j^N| < \frac{\varepsilon}{2}.$$

The triangle inequality now yields for all $j \geq N_1$ the following inequality:

$$|\xi_j| \le |\xi_j - \xi_j^N| + |\xi_j^N| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

This shows that the sequence $x = (\xi_j)$ is convergent with limit 0. Hence, $x \in c_0$. Since $x \in \bar{c_0}$ was arbitrary, this proves closedness of c_0 in l^{∞} .

3. In l^{∞} , let Y be the subset of all sequences with only finitely many nonzero terms. Show that Y is a subspace of l^{∞} but not a closed subspace.

Solution: Consider any $x = (\xi_j), y = (\eta_j) \in Y \subset l^{\infty}$, there exists $N_x, N_y \in \mathbb{N}$ such that $\xi_j = 0$ for all $j > N_x$ and $\eta_j = 0$ for all $j > N_y$. Thus for any scalars $\alpha, \beta, \alpha \xi_j + \beta \eta_j = 0$ for all $j > N = \max\{N_x, N_y\}$, and $\alpha x + \beta y \in Y$. This shows that Y is a subspace of l^{∞} . However, Y is not a closed subspace. Indeed, consider a sequence $x_n = (\xi_j^n) \in Y$ defined by

$$\xi_j^n = \begin{cases} \frac{1}{j} & \text{if } j \le n, \\ 0 & \text{if } j > n. \end{cases}$$

Let
$$x = (\xi_j) = \left(\frac{1}{j}\right)$$
, then $x_n \longrightarrow x$ in l^{∞} since

$$||x_n - x||_{l^{\infty}} = \sup_{j > n} |\xi_j| = \frac{1}{n+1} \longrightarrow 0$$
 as $n \longrightarrow \infty$.

but $x \notin Y$ since x has infinitely many nonzero terms.

4. (Continuity of vector space operations) Show that in a normed space X, vector addition and multiplication by scalars are continuous operation with respect to the norm; that is, the mappings defined by $(x, y) \mapsto x+y$ and $(\alpha, x) \mapsto \alpha x$ are continuous.

Solution: Consider any pair of points $(x_0, y_0) \in X \times X$. Given any $\varepsilon > 0$, choose $\delta_1 = \delta_2 = \frac{\varepsilon}{2} > 0$. Then for all x satisfying $||x - x_0|| < \delta_1$ and all y satisfying $||y - y_0|| < \delta_2$,

$$||x + y - (x_0 + y_0)|| \le ||x - x_0|| + ||y - y_0|| < \delta_1 + \delta_2 = \varepsilon.$$

Since $(x_0, y_0) \in X \times X$ was arbitrary, the mapping defined by $(x, y) \mapsto x + y$ is continuous with respect to the norm.

Choose any scalar α_0 . Consider any nonzero $x_0 \in X$. Given any $\varepsilon > 0$, choose $\delta_1 = \frac{\varepsilon}{2\|x_0\|} > 0$ and $\delta_2 > 0$ such that $(\delta_1 + |\alpha_0|)\delta_2 = \frac{\varepsilon}{2}$. Then for all α satisfying $\|\alpha - \alpha_0\| < \delta_1$ and all x satisfying $\|x - x_0\| < \delta_2$,

$$\|\alpha x - \alpha_0 x_0\| = \|\alpha x - \alpha x_0 + \alpha x_0 - \alpha_0 x_0\|$$

$$\leq |\alpha| \|x - x_0\| + |\alpha - \alpha_0| \|x_0\|$$

$$\leq (|\alpha - \alpha_0| + |\alpha_0|) \|x - x_0\| + |\alpha - \alpha_0| \|x_0\|$$

$$< (\delta_1 + |\alpha_0|) \delta_2 + \delta_1 \|x_0\| = \varepsilon.$$

If $x_0 = \mathbf{0} \in X$, choose $\delta_1 = 1 > 0$ and $\delta_2 = \frac{\varepsilon}{1 + |\alpha_0|} > 0$. Then for all α satisfying $|\alpha - \alpha_0| < \delta_1$ and all x satisfying $||x|| < \delta_2$,

$$\|\alpha x\| = |\alpha| \|x\| \le \left(|\alpha - \alpha_0| + |\alpha_0| \right) \|x\|$$

$$< \left(\delta_1 + |\alpha_0| \right) \delta_2$$

$$= \left(1 + |\alpha_0| \right) \frac{\varepsilon}{1 + |\alpha_0|} = \varepsilon.$$

Since α_0 and x_0 were arbitrary scalars and vectors in K and X, the mapping defined by $(\alpha, x) \mapsto \alpha x$ is continuous with respect to the norm.

5. Show that $x_n \longrightarrow x$ and $y_n \longrightarrow y$ implies $x_n + y_n \longrightarrow x + y$. Show that $\alpha_n \longrightarrow \alpha$ and $x_n \longrightarrow x$ implies $\alpha_n x_n \longrightarrow \alpha x$.

Solution: If $x_n \longrightarrow x$ and $y_n \longrightarrow y$, then

$$||x_n + y_n - x - y|| \le ||x_n - x|| + ||y_n - y|| \longrightarrow 0$$
 as $n \longrightarrow \infty$.

If $\alpha_n \longrightarrow \alpha$ and $x_n \longrightarrow x$, then

$$\|\alpha_n x_n - \alpha x\| = \|\alpha_n x_n - \alpha_n x + \alpha_n x - \alpha x\|$$

$$= \|\alpha_n (x_n - x) + (\alpha_n - \alpha) x\|$$

$$\leq |\alpha_n| \|x_n - x\| + |\alpha_n - \alpha| \|x\|$$

$$\leq C \underbrace{\|x_n - x\|}_{\longrightarrow 0} + \underbrace{|\alpha_n - \alpha|}_{\longrightarrow 0} \|x\|$$

where we use the fact that convergent sequences are bounded for the last inequality.

6. Show that the closure \bar{Y} of a subspace Y of a normed space X is again a vector subspace.

Solution: If $x, y \in \overline{Y}$, there exists sequences $x_n, y_n \in Y$ such that $x_n \longrightarrow x$ and $y_n \longrightarrow y$. Then for any scalars α, β ,

$$\|\alpha x_n + \beta y_n - (\alpha x + \beta y)\| \le |\alpha| \|x_n - x\| + |\beta| \|y_n - y\| \longrightarrow 0 \text{ as } n \longrightarrow \infty.$$

This shows that the sequence $(\alpha x_n + \beta y_n) \in Y$ converges to $\alpha x + \beta y$, which implies that $\alpha x + \beta y \in \overline{Y}$.

7. (Absolute convergence) Show that convergence of $||y_1|| + ||y_2|| + ||y_3|| + \dots$ may not imply convergence of $y_1 + y_2 + y_3 + \dots$

Solution: Let Y be the set of all sequences in l^{∞} with only finitely many nonzero terms, which is a normed space. Consider the sequence $(y_n) = (\eta_j^n) \in Y$ defined by

$$\eta_j^n = \begin{cases} \frac{1}{j^2} & \text{if } j = n, \\ 0 & \text{if } j \neq n. \end{cases}$$

Then $||y_n|| = \frac{1}{n^2}$ and $\sum_{n=1}^{\infty} \frac{1}{n^2} < \infty$. However, $y_1 + y_2 + y_3 + \ldots \longrightarrow y$, where $y = \left(\frac{1}{n^2}\right)$, since

$$\left\| \sum_{j=1}^{n} y_j - y \right\| = \frac{1}{(n+1)^2} \longrightarrow 0 \text{ as } n \longrightarrow \infty.$$

but $y \notin Y$.

8. If in a normed space X, absolute convergence of any series always implies convergence of that series, show that X is complete.

Solution: Choose (x_n) be any Cauchy sequence in X. Given any $k \in \mathbb{N}$, there exists $N_k \in \mathbb{N}$ such that for all $m, n \geq N_k$, $||x_m - x_n|| < \frac{1}{2^k}$; by construction, (N_k) is an increasing sequence. Consider the sequence (y_k) defined by $y_k = x_{N_{k+1}} - x_{N_k}$. Then

$$\sum_{k=1}^{\infty} \|y_k\| = \sum_{k=1}^{\infty} \|x_{N_{k+1}} - x_{N_k}\| < \sum_{k=1}^{\infty} \frac{1}{2^k} < \infty.$$

This shows that the series $\sum_{k=1}^{\infty} y_k$ is absolute convergent, which is also convergent by assumption. Thus,

$$\sum_{k=1}^{\infty} y_k = \lim_{n \to \infty} \sum_{k=1}^{n} y_k$$

$$= \lim_{n \to \infty} \sum_{k=1}^{n} x_{N_{k+1}} - x_{N_k}$$

$$= \lim_{n \to \infty} x_{N_{n+1}} - x_{N_1} < \infty.$$

Hence, $(x_{N_{n+1}})$ is a convergent subsequence of (x_n) , and since (x_n) is a Cauchy sequence, (x_n) is convergent. Since (x_n) was an arbitrary Cauchy sequence, X is complete.

9. Show that in a Banach space, an absolutely convergent series is convergent.

Solution: Let $\sum_{k=1}^{\infty} ||x_k||$ be any absolutely convergent series in a Banach space

X. Since a Banach space is a complete normed space, it suffices to show that the sequence (s_n) of partial sums $s_n = x_1 + x_2 + \ldots + x_n$ is Cauchy. Given any $\varepsilon > 0$, there exists an $N \in \mathbb{N}$ such that

$$\sum_{k=N+1}^{\infty} \|x_k\| < \varepsilon.$$

For any m > n > N,

$$||s_{m} - s_{n}|| = ||x_{n+1} + x_{n+2} + \dots + x_{m}||$$

$$\leq ||x_{n+1}|| + ||x_{n+2}|| + \dots + ||x_{m}||$$

$$= \sum_{k=n+1}^{m} ||x_{k}||$$

$$\leq \sum_{k=n+1}^{\infty} ||x_{k}||$$

$$\leq \sum_{k=n+1}^{\infty} ||x_{k}|| < \varepsilon.$$

This shows that (s_n) is Cauchy and the desired result follows from completeness of X.

10. (Schauder basis) Show that if a normed space has a Schauder basis, it is separable.

Solution: Suppose X has a Schauder basis (e_n) . Given any $x \in X$, there exists a unique sequence of scalars $(\lambda_n) \in K$ such that

$$||x - (\lambda_1 e_1 + \ldots + \lambda_n e_n)|| \longrightarrow 0$$
 as $n \longrightarrow \infty$.

Consider the sequence $(f_n) \subset X$ defined by $f_n = \frac{e_n}{\|e_n\|}$. Note that $\|f_n\| = 1$ for all $n \ge 1$ and (f_n) is a Schauder basis for X; indeed, if we choose $\mu_j = \lambda_j \|e_j\| \in K$, then

$$\left\| x - \sum_{j=1}^{n} \mu_j f_j \right\| = \left\| x - \sum_{j=1}^{n} \lambda_j e_j \right\| \longrightarrow 0 \quad \text{as } n \longrightarrow \infty.$$

In particular, for any $x \in X$, given any $\varepsilon > 0$, there exists an $N \in \mathbb{N}$ such that

$$\left\| x - \sum_{j=1}^{n} \mu_j f_j \right\| < \frac{\varepsilon}{2} \quad \text{for all } n > N.$$

Define M to be the set

$$M = \left\{ \sum_{j=1}^{n} \theta_j f_j \colon \theta_j \in \tilde{K}, n \in \mathbb{N} \right\}.$$

where \tilde{K} is a countable dense subset of K. Since $\mu_j \in K$, given any $\varepsilon > 0$, there exists an $\theta_j \in \tilde{K}$ such that $|\mu_j - \theta_j| < \frac{\varepsilon}{2n}$ for all $j = 1, \ldots, n$. Then

$$\left\| x - \sum_{j=1}^{n} \theta_{j} f_{j} \right\| \leq \left\| x - \sum_{j=1}^{n} \mu_{j} f_{j} \right\| + \left\| \sum_{j=1}^{n} \mu_{j} f_{j} - \sum_{j=1}^{n} \theta_{j} f_{j} \right\|$$

$$< \frac{\varepsilon}{2} + \sum_{j=1}^{n} |\mu_{j} - \theta_{j}| \|f_{j}\|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2n} \sum_{j=1}^{n} 1$$

$$= \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

This shows that there exists an $y \in M$ in any ε -neighbourhood of x. Since $x \in X$ was arbitrary, M is a countable dense subset of X and X is separable.

11. Show that (e_n) , where $e_n = (\delta_{nj})$, is a Schauder basis for l^p , where $1 \leq p < +\infty$.

Solution: Let $x = (\xi_j)$ be any sequence in l^p , we have

$$\left(\sum_{j=n+1}^{\infty} |\xi_j|^p\right)^{\frac{1}{p}} \longrightarrow 0 \quad \text{as } n \longrightarrow \infty.$$

Now choose a sequence of scalars $(\lambda_n) \in \mathbb{C}$ defined by $\lambda_j = \xi_j$,

$$||x - (\lambda_1 e_1 + \ldots + \lambda_n e_n)|| = \left(\sum_{j=n+1}^{\infty} |\xi_j|^p\right)^{\frac{1}{p}} \longrightarrow 0$$
 as $n \longrightarrow \infty$.

This shows that $(e_n) = (\delta_{nj})$ is a Schauder basis for l^p . Uniqueness?

12. (Seminorm) A seminorm on a vector space X is a mapping $p: X \longrightarrow \mathbb{R}$ satisfying (N1), (N3), (N4). (Some authors call this a pseudonorm.) Show that

$$p(0) = 0,$$
 $|p(y) - p(x)| \le p(y - x).$

(Hence if $p(x) = 0 \implies x = 0$, then p is a norm.)

Solution: Using (N3),

$$p(\mathbf{0}) = p(0x) = 0p(x) = 0.$$

Using (N4), for any $x, y \in X$,

$$p(y) \le p(y-x) + p(x).$$

$$p(x) \le p(x-y) + p(y) = p(y-x) + p(y).$$

$$\implies |p(y) - p(x)| \le p(y-x).$$

13. Show that in Problem 12, the elements $x \in X$ such that p(x) = 0 form a subspace N of X and a norm on X/N is defined by $\|\hat{x}\|_0 = p(x)$, where $x \in \hat{x}$ and $\hat{x} \in X/N$.

Solution: Let N be the set consisting of all elements $x \in X$ such that p(x) = 0. For any $x, y \in N$ and scalars α, β ,

$$0 \le p(\alpha x + \beta y) \le p(\alpha x) + p(\beta y) = |\alpha|p(x) + |\beta|p(y) = 0.$$

This shows that N is a subspace of X. Consider $\|\hat{x}\|_0 = p(x)$, where $x \in \hat{x}$ and $\hat{x} \in X/N$. We start by showing $\|\cdot\|_0$ is well-defined. Indeed, for any $u, v \in \hat{x}$, there exists $n_u, n_v \in N$ such that $u = x + n_u$ and $v = x + n_v$. Since N is a subspace of X,

$$0 \le |p(u) - p(v)| \le |p(u - v)| = |p(n_u - n_v)| = 0.$$

- $\|\hat{x}\|_0 = p(x) \ge 0.$
- Suppose $\hat{x} = \hat{\mathbf{0}} = N$, then $\|\hat{x}\|_0 = p(x) = 0$. Now suppose $\|\hat{x}\|_0 = 0$, then $p(x) = 0 \implies x \in N \implies \hat{x} = \hat{\mathbf{0}}$. Thus, (N2) is satisfied.
- For any nonzero scalars α , any $y \in \alpha \hat{x}$ can be written $y = \alpha x + n$ for some $n \in \mathbb{N}$. Thus,

$$\|\alpha \hat{x}\|_{0} = p(\alpha x + n) = |\alpha| p\left(x + \frac{n}{\alpha}\right)$$
$$= |\alpha| \|\hat{x}\|_{0}.$$

If $\alpha = 0$, then $0\hat{x} = N$ and $||0\hat{x}||_0 = 0$ by definition of N.

• Lastly, for any $\hat{x}, \hat{y} \in X/N$,

$$\|\hat{x} + \hat{y}\|_{0} = p(x+y) \le p(x) + p(y)$$
$$= \|\hat{x}\|_{0} + \|\hat{y}\|_{0}.$$

Thus, (N4) is satisfied.

14. (Quotient space) Let Y be a closed subspace of a normed space $(X, \|\cdot\|)$. Show that a norm $\|\cdot\|_0$ on X/Y is defined by

$$\|\hat{x}\|_0 = \inf_{x \in \hat{x}} \|x\|.$$

where $\hat{x} \in X/Y$, that is, \hat{x} is any coset of Y.

Solution: Define $\|\hat{x}\|_0$ as above. Also, recall that $X/Y = \{\hat{x} = x + Y : x \in X\}$ and its algebraic operations are defined by

$$\hat{u} + \hat{v} = (u+Y) + (v+Y) = (u+v) + Y = \widehat{u+v}.$$

$$\alpha \hat{u} = \alpha(u+Y) = \alpha u + Y = \widehat{\alpha u}.$$

- (N1) is obvious.
- If $\hat{x} = \hat{\mathbf{0}} = Y$, then $\|\hat{x}\|_0 = 0$ since $\mathbf{0} \in Y$. Conversely, suppose $\|\hat{x}\|_0 = \inf_{x \in \hat{x}} \|x\| = 0$. Properties of infimum gives that there exists a minimising sequence $(x_n) \in \hat{x}$ such that $\|x_n\|_0 \longrightarrow 0$, with limit $x = \mathbf{0}$. Since Y is closed, any $\hat{x} \in X/Y$ is closed, this implies that $\mathbf{0} \in \hat{x}$, and $\hat{x} = \hat{\mathbf{0}}$. Thus, (N2) is satisfied.
- For any nonzero scalars α ,

$$\|\alpha \hat{x}\|_{0} = \inf_{y \in Y} \|\alpha x + y\|$$

$$= |\alpha| \inf_{y \in Y} \|x + \frac{y}{\alpha}\|$$

$$= |\alpha| \inf_{y \in Y} \|x + y\|$$

$$= |\alpha| \|\hat{x}\|_{0}.$$

If $\alpha = 0$, then $\|0\hat{x}\|_0 = \|\widehat{0x}\|_0 = \|\widehat{0}\|_0 = 0 = 0 \|\hat{x}\|_0$. Thus, (N3) is satisfied

• For any $\hat{u}, \hat{v} \in X/Y$,

$$\|\hat{u} + \hat{v}\|_{0} = \inf_{y_{1}, y_{2} \in Y} \|u + y_{1} + v + y_{2}\|$$

$$\leq \inf_{y_{1}, y_{2} \in Y} \|u + y_{1}\| + \|v + y_{2}\|$$

$$= \inf_{y_{1} \in Y} \|u + y_{1}\| + \inf_{y_{2} \in Y} \|v + y_{2}\|$$

$$= \|\hat{u}\|_{0} + \|\hat{v}\|_{0}.$$

15. (Product of normed spaces) If $(X_1, \|\cdot\|_1)$ and $(X_2, \|\cdot\|_2)$ are normed spaces, show that the product vector space $X = X_1 \times X_2$ becomes a normed space if we define

$$||x|| = \max \{||x_1||_1, ||x_2||_2\}, \text{ where } x = (x_1, x_2).$$

Solution: (N1) to (N3) are obvious. To verify (N4), for $x=(x_1,x_2),y=(y_1,y_2)\in X_1\times X_2,$

$$||x + y|| = \max \left\{ ||x_1 + y_1||_1, ||x_2 + y_2||_2 \right\}$$

$$\leq \max \left\{ ||x_1||_1 + ||y_1||_1, ||x_2||_2 + ||y_2||_2 \right\}$$

$$\leq \max \left\{ ||x_1||_1, ||x_2||_2 \right\} + \max \left\{ ||y_1||_1, ||y_2||_2 \right\}$$

$$= ||x|| + ||y||.$$

where we use the inequality $|a| \leq \max\{|a|, |b|\}$ for any $a, b \in \mathbb{R}$.

1.4 Finite Dimensional Normed Spaces and Subspaces.

Lemma 1.9. Let $\{x_1, \ldots, x_n\}$ be a linearly independent set of vectors in a normed space X (of any dimension). There exists a number c > 0 such that for every choice of scalars $\alpha_1, \ldots, \alpha_n$ we have

$$\|\alpha_1 x_1 + \ldots + \alpha_n x_n\| \ge c(|\alpha_1| + \ldots + |\alpha_n|).$$

• Roughly speaking, it states that in the case of linear independence of vectors, we cannot find a linear combination that involves large scalars but represents a small vector.

Theorem 1.10. Every finite dimensional subspace Y of a normed space X is complete. In particular, every finite dimensional normed space is complete.

Theorem 1.11. Every finite dimensional subspace Y of a normed space X is closed in X.

Definition 1.12. A norm $\|\cdot\|$ on a vector space X is said to be **equivalent** to a norm $\|\cdot\|_0$ on X if there are positive constants a and b such that for all $x \in X$ we have

$$a||x||_0 \le ||x|| \le b||x||_0.$$

• Equivalent norms on X define the same topology for X.

Theorem 1.13. On a finite dimensional vector space X, any norm $\|\cdot\|$ is equivalent to any other norm $\|\cdot\|_0$.

1. Given examples of subspaces of l^{∞} and l^2 which are not closed.

Solution:

- 2. What is the largest possible c in (1) if
 - (a) $X = \mathbb{R}^2$ and $x_1 = (1, 0), x_2 = (0, 1),$

Solution:

(b) $X = \mathbb{R}^3$ and $x_1 = (1, 0, 0), x_2 = (0, 1, 0), x_3 = (0, 0, 1).$

Solution:

3. Show that in the definition of equivalence of norms, the axioms of an equivalence relation hold.

Solution: We say that $\|\cdot\|$ on X is equivalent to $\|\cdot\|_0$ on X, denoted by $\|\cdot\| \sim \|\cdot\|_0$ if there exists positive constants a, b > 0 such that for all $x \in X$ we have

$$a||x||_0 \le ||x|| \le b||x||_0.$$

- Reflexivity is immediate.
- Suppose $\|\cdot\| \sim \|\cdot\|_0$. There exists a, b > 0 such that for all $x \in X$ we have

$$a||x||_0 \le ||x|| \le b||x||_0 \implies \frac{1}{b}||x|| \le ||x||_0 \le \frac{1}{a}||x||.$$

This shows that $\|\cdot\|_0 \sim \|\cdot\|$, and symmetry is shown.

• Suppose $\|\cdot\| \sim \|\cdot\|_0$ and $\|\cdot\|_0 \sim \|\cdot\|_1$. There exists a, b, c, d > 0 such that for all $x \in X$ we have

$$a||x||_0 \le ||x|| \le b||x||_0.$$

 $c||x||_1 \le ||x||_0 \le d||x||_1.$

On one hand,

$$||x|| \le b||x||_0 \le bd||x||_1$$
.

On the other hand,

$$||x|| \ge a||x||_0 \ge ac||x||_1.$$

Combining them yields for all $x \in X$

$$ac||x||_1 \le ||x||_0 \le bd||x||_1.$$

This shows tht $\|\cdot\| \sim \|\cdot\|_1$, and transitivity is shown.

4. Show that equivalent norms on a vector space X induce the same topology for X.

Solution: Suppose $\|\cdot\|$ and $\|\cdot\|_0$ are equivalent norms on a vector space X. There exists positive constants a, b > 0 such that for all $x \in X$ we have

$$a||x||_0 \le ||x|| \le b||x||_0.$$

To show that they induce the same topology for X, we want to show that the open sets in $(X, \|\cdot\|)$ and $(X, \|\cdot\|)$ are the same. Consider the identity map

$$I: (X, \|\cdot\|) \longrightarrow (X, \|\cdot\|_0).$$

Let x_0 be any point in X. Given any $\varepsilon > 0$, choose $\delta = a\varepsilon > 0$. For all x satisfying $||x - x_0|| < \delta$, we have

$$||x - x_0||_0 \le \frac{1}{a}||x - x_0|| < \frac{\alpha \varepsilon}{\alpha} = \varepsilon.$$

Since $x_0 \in X$ is arbitrary, this shows that I is continuous. Hence, if $M \subset X$ is open in $(X, \|\cdot\|_0)$, its preimage M again is also open in $(X, \|\cdot\|)$. Similarly, consider the identity map

$$\tilde{I}: (X, \|\cdot\|_0) \longrightarrow (X, \|\cdot\|).$$

Let x_0 be any point in X. Given any $\varepsilon > 0$, choose $\delta = \frac{\varepsilon}{b} > 0$. For all x satisfying $||x - x_0||_0 < \delta$, we have

$$||x - x_0|| \le b||x - x_0||_0 < \frac{b\varepsilon}{k} = \varepsilon.$$

Since $x_0 \in X$ is arbitrary, this shows that \tilde{I} is continuous. Hence, if $M \subset X$ is open in $(X, \|\cdot\|)$, its preimage M is also open in $(X, \|\cdot\|_0)$.

<u>Remark</u>: The converse is also true, i.e. if two norms $\|\cdot\|$ and $\|\cdot\|_0$ on X give the same topology, then they are equivalent norms on X.

5. If $\|\cdot\|$ and $\|\cdot\|_0$ are equivalent norms on X, show that the Cauchy sequences in $(X, \|\cdot\|)$ and $(X, \|\cdot\|_0)$ are the same.

Solution: Suppose $\|\cdot\|$ on X is equivalent to $\|\cdot\|_0$ on X. There exists positive constants a, b > 0 such that for all $x \in X$ we have

$$a||x||_0 \le ||x|| \le b||x||_0.$$

Let (x_n) be any Cauchy sequence in $(X, \|\cdot\|)$. Given any $\varepsilon > 0$, there exists $N_1 \in \mathbb{N}$ such that

$$||x_m - x_n|| < a\varepsilon$$
 for all $m, n > N_1$.

which implies

$$||x_m - x_n||_0 \le \frac{1}{a} ||x_m - x_n|| < \frac{\alpha \varepsilon}{\alpha} = \varepsilon.$$
 for all $m, n > N_1$.

This shows that (x_n) is also a Cauchy sequence in $(X, \|\cdot\|_0)$. Conversely, let (x_n) be any Cauchy sequence in $(X, \|\cdot\|_0)$. Given any $\varepsilon > 0$, there exists $N_2 \in \mathbb{N}$ such that

$$||x_m - x_n||_0 < \frac{\varepsilon}{b}$$
 for all $m, n > N_1$.

which implies

$$||x_m - x_n|| \le b||x_m - x_n||_0 < \frac{b\varepsilon}{b} = \varepsilon$$
 for all $m, n > N_2$.

This shows that (x_n) is also a Cauchy sequence in $(X, \|\cdot\|)$.

6. Theorem 2.4.5 implies that $\|\cdot\|_2$ and $\|\cdot\|_{\infty}$ are equivalent. Give a direct proof of this fact.

Solution: Let $X = \mathbb{R}^n$, and $x = (\xi_j)$ be any element of X. On one hand,

$$||x||_{\infty}^2 = \left(\max_{j=1,\dots,n} |\xi_j|\right)^2 \le |\xi_1|^2 + \dots + |\xi_n|^2 = ||x||_2^2.$$

Taking square roots of both sides yields $||x||_{\infty} \leq ||x||_2$. On the other hand,

$$||x||_2^2 = |\xi_1|^2 + \ldots + |\xi_n|^2 \le n \Big(\max_{j=1,\ldots,n} |\xi_j|^2 \Big) = n ||x||_{\infty}^2.$$

Taking square roots of both sides yields $||x||_2 \le \sqrt{n} ||x||_{\infty}$. Hence, combining these inequalities gives for all $x \in X$

$$||x||_{\infty} \le ||x||_2 \le \sqrt{n} ||x||_{\infty}.$$

7. Let $\|\cdot\|_2$ be as in Problem 8, section 2.2, and let $\|\cdot\|$ be any norm on that vector space, call it X. Show directly that there is a b>0 such that $\|x\|\leq b\|x\|_2$ for all x.

Solution: Let $X = \mathbb{R}^n$, and $\{e_1, \ldots, e_n\}$ be the standard basis of X defined by $\xi_j^n = \delta_{jn}$. Any $x = (\xi_j)$ in X has a unique representation $x = \xi_1 e_1 + \ldots + \xi_2 e_2$. Thus,

$$||x|| = ||\xi_1 e_1 + \dots + \xi_n e_n|| \le |\xi_1| ||e_1|| + \dots + |\xi_n| ||e_n||$$

$$= \sum_{j=1}^n |\xi_j| ||e_j||$$

$$\le \left(\sum_{j=1}^n |\xi_j|^2\right)^{\frac{1}{2}} \left(\sum_{j=1}^n ||e_j||^2\right)^{\frac{1}{2}}$$

$$= b||x||_2.$$

where we use Cauchy-Schwarz inequality for sums in the last inequality. Since $x \in X$ was arbitrary, the result follows.

8. Show that the norms $\|\cdot\|_1$ and $\|\cdot\|_2$ satisfy

$$\frac{1}{\sqrt{n}} \|x\|_1 \le \|x\|_2 \le \|x\|_1.$$

Solution: Let $X = \mathbb{R}^n$, and $x = (\xi_j)$ be any element of X. Note that if $x = \mathbf{0}$, the inequality is trivial since $||x||_1 = ||x||_2 = 0$ by definition of a norm. So, pick any nonzero $x \in \mathbb{R}^n$. Using Cauchy-Schwarz inequality for sums,

$$||x||_1 = \sum_{j=1}^n |\xi_j| \le \left(\sum_{j=1}^n 1^2\right)^{\frac{1}{2}} \left(\sum_{j=1}^n |\xi_j|^2\right)^{\frac{1}{2}} = \sqrt{n} ||x||_2.$$

On the other hand, since $||x||_2 \neq 0$, define $y = (\eta_j)$, where $\eta_j = \frac{\xi_j}{||x||_2}$. Then

$$||y||_{2} = \left(\sum_{j=1}^{n} |\eta_{j}|^{2}\right)^{\frac{1}{2}} = \left(\frac{1}{||x||_{2}^{2}} \sum_{j=1}^{n} |\xi_{j}|^{2}\right)^{\frac{1}{2}}$$

$$= \frac{1}{||x||_{2}} ||x||_{2} = 1.$$

$$||y||_{1} = \left(\sum_{j=1}^{n} |\eta_{j}|\right) = \frac{1}{||x||_{2}} \sum_{j=1}^{n} |\xi_{j}|$$

$$= \frac{||x||_{1}}{||x||_{2}}.$$

and

$$||y||_{2}^{2} = \sum_{j=1}^{n} |\eta_{j}|^{2} \le \left[\max_{i=1,\dots,n} |\eta_{i}| \right] \sum_{j=1}^{n} |\eta_{j}| \le ||y||_{1}$$

$$\implies 1 \le ||y||_{1} = \frac{||x||_{1}}{||x||_{2}}$$

$$\implies ||x||_{2} \le ||x||_{1}.$$

To justfiy the second inequality on the first line, note that it suffices to prove that $|\eta_i| \leq 1$ for all i = 1, ..., n, or equivalently, $|\xi_i| \leq ||x||_2$ for all i = 1, ..., n. From the definition of $||\cdot||_2$,

$$||x||_2^2 = \sum_{i=1}^n |\xi_i|^2 \ge |\xi_i|^2$$
 for all $i = 1, \dots, n$.

Taking square roots of both sides yields $||x||_2 \ge |\xi_i|$ for all i = 1, ..., n.

<u>Remark</u>: Alternatively,

$$||x||_1^2 = \left(\sum_{j=1}^n |\xi_j|\right)^2 = \left(\sum_{j=1}^n |\xi_j|^2\right) + \left(\sum_{i\neq j}^n |\xi_i||\xi_j|\right)$$
$$\geq \left(\sum_{j=1}^n |\xi_j|^2\right) = ||x||_2^2.$$

9. If two norms $\|\cdot\|$ and $\|\cdot\|_0$ on a vector space X are equivalent, show that

$$||x_n - x|| \longrightarrow 0 \iff ||x_n - x||_0 \longrightarrow 0.$$

Solution: Suppose two norms $\|\cdot\|$ and $\|\cdot\|_0$ on a vector space X are equivalent, there exists positive constant a, b > 0 such that for all $x \in X$ we have

$$a||x||_0 \le ||x|| \le b||x||_0.$$

If $||x_n - x|| \longrightarrow 0$, then

$$||x_n - x||_0 \le \frac{1}{a}||x_n - x|| \longrightarrow 0$$
 as $n \longrightarrow 0$.

Conversely, if $||x_n - x||_0 \longrightarrow 0$, then

$$||x_n - x|| \le b||x_n - x||_0 \longrightarrow 0$$
 as $n \longrightarrow 0$.

10. Show that all complex $m \times n$ matrices $A = (\alpha_{jk})$ with fixed m and n constitute an mn-dimensional vector space Z. Show that all norms on Z are equivalent. What would be the analogues of $\|\cdot\|_1, \|\cdot\|_2$ and $\|\cdot\|_{\infty}$ for the present space Z?

Solution:

1.5 Linear Operators.

Definition 1.14. A linear operator T is an operator such that

- (a) the domain $\mathcal{D}(T)$ of T is a vector space and the range $\mathcal{R}(T)$ lies in a vector space over the same field,
- (b) for all $x, y \in \mathcal{D}(T)$ and scalars α, β ,

$$T(\alpha x + \beta y) = \alpha T(x) + \beta T(y).$$

- Note that the above formula expresses the fact that a linear operator T is a **homomorphism** of a vector space (its domain) into another vector space, that is, T preserves the two operations of a vector space.
- On the LHS, we first apply a vector space operation (addition or scalar multiplication) and then map the resulting vector into Y, whereas on the RHS we first map x and y into Y and then perform the vector space operations in Y, the outcome being the same.

Theorem 1.15. Let T be a linear operator. Then:

- (a) The range $\mathcal{R}(T)$ is a vector space.
- (b) If $\dim \mathcal{D}(T) = n < \infty$, then $\dim \mathcal{R}(T) < n$.
- (c) The null space $\mathcal{N}(T)$ is a vector space.
 - An immediate consequence of part (b) is worth noting: Linear operators preserve linear dependence.

Theorem 1.16. Let X, Y be a vector spaces, both real or both complex. Let $T : \mathcal{D}(T) \longrightarrow Y$ be a linear operator with domain $\mathcal{D}(T) \subset X$ and range $\mathcal{R}(T) \subset Y$. Then:

- (a) The inverse $T^{-1}: \mathcal{R}(T) \longrightarrow \mathcal{D}(T)$ exists if and only if $Tx = \mathbf{0} \implies x = \mathbf{0}$.
- (b) If T^{-1} exists, it is a linear operator.
- (c) If dim $\mathcal{D}(T) = n < \infty$ and T^{-1} exists, then dim $\mathcal{R}(T) = \dim \mathcal{D}(T)$.

Theorem 1.17. Let $T: X \longrightarrow Y$ and $S: Y \longrightarrow Z$ be bijective linear operators, where X, Y, Z are vector spaces. Then the inverse $(ST)^{-1}: Z \longrightarrow X$ of the composition ST exists, and

$$(ST)^{-1} = T^{-1}S^{-1}.$$

1. Show that the identity operator, the zero operator and the differentiation operator (on polynomials) are linear.

Solution: For any scalars
$$\alpha, \beta$$
 and $x, y \in X$,
$$I_X(\alpha x + \beta y) = \alpha x + \beta y = \alpha I_X x + \beta I_X y.$$

$$\mathbf{0}(\alpha x + \beta y) = \mathbf{0} = \alpha \mathbf{0} x + \beta \mathbf{0} y.$$

$$T(\alpha x(t) + \beta y(t)) = (\alpha x(t) + \beta y(t))'$$

$$= \alpha x'(t) + \beta y'(t) = \alpha T x(t) + \beta T y(t).$$

2. Show that the operators T_1, \ldots, T_4 from \mathbb{R}^2 into \mathbb{R}^2 defined by

$$T_1: (\xi_1, \xi_2) \mapsto (\xi_1, 0)$$

$$T_2: (\xi_1, \xi_2) \mapsto (0, \xi_2)$$

$$T_3: (\xi_1, \xi_2) \mapsto (\xi_2, \xi_1)$$

$$T_4: (\xi_1, \xi_2) \mapsto (\gamma \xi_1, \gamma \xi_2)$$

respectively, are linear, and interpret these operators geometrically.

Solution: Denote
$$x = (\xi_1, \xi_2)$$
 and $y = (\eta_1, \eta_2)$. For any scalars α, β ,

$$T_1(\alpha x + \beta y) = (\alpha \xi_1 + \beta \eta_1, 0)$$

$$= \alpha(\xi_1, 0) + \beta(\eta_1, 0) = \alpha T_1(x) + \beta T_1(y).$$

$$T_2(\alpha x + \beta y) = (0, \alpha \xi_2 + \beta \eta_2)$$

$$= \alpha(0, \xi_2) + \beta(0, \eta_2) = \alpha T_2(x) + \beta T_2(y).$$

$$T_3(\alpha x + \beta y) = (\alpha \xi_2 + \beta \eta_2, \alpha \xi_1 + \beta \eta_1)$$

$$= (\alpha \xi_2, \alpha \xi_1) + (\beta \eta_2, \beta \eta_1)$$

$$= \alpha(\xi_2, \xi_1) + \beta(\eta_2, \eta_1) = \alpha T_3(x) + \beta T_3(y).$$

$$T_4(\alpha x + \beta y) = \left(\gamma(\alpha \xi_1 + \beta \eta_1), \gamma(\alpha \xi_2 + \beta \eta_2)\right)$$

$$= (\alpha \gamma \xi_1, \alpha \gamma \xi_2) + (\beta \gamma \eta_1, \beta \gamma \eta_2)$$

$$= \alpha(\gamma \xi_1, \gamma \xi_2) + \beta(\gamma \eta_1, \gamma \eta_2) = \alpha T_4(x) + \beta T_4(y).$$

 T_1 and T_2 are both projection to x-axis and y-axis respectively, while T_4 is a scaling transformation. T_3 first rotates the vector 90° anti-clockwise about the origin, then reflects across the y-axis.

3. What are the domain, range and null space of T_1, T_2, T_3 in Problem 2?

Solution: The domain of T_1, T_2, T_3 is \mathbb{R}^2 , and the range is the x-axis for T_1 , the y-axis for T_2 and \mathbb{R}^2 for T_3 . The null space is the line $\xi_1 = 0$ for T_1 , the line $\xi_2 = 0$ for T_2 and the origin (0,0) for T_3 .

4. What is the null space of T_4 in Problem 2? Of T_1 and T_2 in 2.6-7? Of T in 2.6-4?

Solution: The null space of T_4 is \mathbb{R}^2 if $\gamma = 0$ and the origin (0,0) if $\gamma \neq 0$. Fix a vector $a = (a_1, a_2, a_3) \in \mathbb{R}^3$. Consider the linear operators T_1 and T_2 defined by

$$T_1 x = x \times a = \begin{bmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{bmatrix} \times \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} \xi_2 a_3 - \xi_3 a_2 \\ \xi_3 a_1 - \xi_1 a_3 \\ \xi_1 a_2 - \xi_2 a_1 \end{bmatrix}.$$

$$T_2 x = x \cdot a = \xi_1 a_1 + \xi_2 a_2 + \xi_3 a_3.$$

i.e. T_1 and T_2 are the cross product and the dot product with the fixed vector a respectively. The null space of T_1 is any scalar multiple of the vector a, while the null space of T_2 is the plane $\xi_1 a_1 + \xi_2 a_2 + \xi_3 a_3 = 0$ in \mathbb{R}^3 . For the differentiation operator, the null space is any constant functions x(t) for $t \in [a, b]$.

- 5. Let $T: X \longrightarrow Y$ be a linear operator.
 - (a) Show that the image of a subspace V of X is a vector space.

Solution: Denote the image of a subspace V of X under T by Im(V), it suffices to show that Im(V) is a subspace of X. Choose any $y_1, y_2 \in \text{Im}(V)$, there exists $x_1, x_2 \in V$ such that $Tx_1 = y_1$ and $Tx_2 = y_2$. For any scalars α, β ,

$$\alpha y_1 + \beta y_2 = \alpha T x_1 + \beta T x_2 = T(\alpha x_1 + \beta x_2).$$

This shows that $\alpha y_1 + \beta y_2 \in \text{Im}(V)$ since $\alpha x_1 + \beta x_2 \in V$ due to V being a subspace of X.

(b) Show that the inverse image of a subspace W of Y is a vector space.

Solution: Denote the inverse image of a subspace W of Y under T by PIm(W), it suffices to show that PIm(W) is a subspace of Y. Choose any $x_1, x_2 \in PIm(W)$, there exists $y_1, y_2 \in W$ such that $Tx_1 = y_1$ and $Tx_2 = y_2$. For any scalars α, β ,

$$T(\alpha x_1 + \beta x_2) = \alpha T x_1 + \beta T x_2 = \alpha y_1 + \beta y_2.$$

This shows that $\alpha x_1 + \beta x_2 \in \text{PIm}(W)$ since $\alpha y_1 + \beta y_2 \in W$ due to W being a subspace of Y.

6. If the composition of two linear operators exists, show that it is linear.

Solution: Consider any two linear operators $T: X \longrightarrow Y$, $S: Y \longrightarrow Z$. For any $x, y \in X$ and scalars α, β ,

$$ST(\alpha x + \beta y) = S(\alpha Tx + \beta Ty)$$
 by linearity of T .

$$= \alpha(ST)x + \beta(ST)y$$
 [by linearity of S.]

7. (Commutativity) Let X be any vector space and $S: X \longrightarrow X$ and $T: X \longrightarrow X$ any operators. S and T are said to commute if ST = TS, that is, (ST)x = (TS)x for all $x \in X$. Do T_1 and T_3 in Problem 2 commute?

Solution: No. Choose x = (1, 2), then

$$(T_1T_3)(1,2) = T_1(2,1) = (2,0).$$

 $(T_3T_1)(1,2) = T_3(1,0) = (0,1).$

8. Write the operators in Problem 2 using 2×2 matrices.

Solution:

$$T_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \quad T_2 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \quad T_3 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad T_4 = \begin{bmatrix} \gamma & 0 \\ 0 & \gamma \end{bmatrix}.$$

9. In 2.6-8, write y = Ax in terms of components, show that T is linear and give examples.

Solution: For any j = 1, ..., r, we have that $\eta_j = \sum_{k=1}^n a_{jk} \xi_k = a_{j1} \xi_1 + ... + a_{jn} \xi_n$.

To see that T is linear, for any j = 1, ..., r,

$$\left(A(\alpha x + \beta y)\right)_j = \sum_{k=1}^n a_{jk} (\alpha \xi_k + \beta \eta_k)$$

$$= \alpha \sum_{k=1}^n a_{jk} \xi_k + \beta \sum_{k=1}^n a_{jk} \eta_k = \alpha (Ax)_j + \beta (Ay)_j.$$

10. Formulate the condition in 2.6-10(a) in terms of the null space of T.

Solution: Let X, Y be vector spaces, both real or both complex. Let $T : \mathcal{D}(T) \longrightarrow Y$ be a linear operator with domain $\mathcal{D}(T) \subset X$ and $\mathcal{R}(T) \subset Y$. The inverse $T^{-1} : \mathcal{R}(T) \longrightarrow \mathcal{D}(T)$ exists if and only if the null space of $T, \mathcal{N}(T) = \{\mathbf{0}\}$.

11. Let X be the vector space of all complex 2×2 matrices and define $T: X \longrightarrow X$ by Tx = bx, where $b \in X$ is fixed and bx denotes the usual product of matrices. Show that T is linear. Under what condition does T^{-1} exists?

Solution: For any $x, y \in X$ and scalars α, β ,

$$T(\alpha x + \beta y) = \begin{bmatrix} b_1 & b_2 \\ b_3 & b_4 \end{bmatrix} \begin{bmatrix} \alpha \xi_1 + \beta \eta_1 & \alpha \xi_2 + \beta \eta_2 \\ \alpha \xi_3 + \beta \eta_3 & \alpha \xi_4 + \beta \eta_4 \end{bmatrix}$$
$$= \begin{bmatrix} b_1 & b_2 \\ b_3 & b_4 \end{bmatrix} \left\{ \alpha \begin{bmatrix} \xi_1 & \xi_2 \\ \xi_3 & \xi_4 \end{bmatrix} + \beta \begin{bmatrix} \eta_1 & \eta_2 \\ \eta_3 & \eta_4 \end{bmatrix} \right\}$$
$$= \alpha b x + \beta b y = \alpha T x + \beta T y.$$

This shows that T is linear. T^{-1} exists if and only if b is a non-singular 2×2 complex matrix.

12. Does the inverse of T in 2.6-4 exist?

Solution: The inverse of the differentiation operator T does not exist because $\mathcal{N}(T) \neq \{0\}$, the zero function.

13. Let $T: \mathcal{D}(T) \longrightarrow Y$ be a linear operator whose inverse exists. If $\{x_1, \ldots, x_n\}$ is a linearly independent set in $\mathcal{D}(T)$, show that the set $\{Tx_1, \ldots, Tx_n\}$ is linearly independent.

Solution: Let $T: \mathcal{D}(T) \longrightarrow Y$ be a linear operator whose inverse exists. Suppose

$$\alpha_1 T x_1 + \ldots + \alpha_n T x_n = \mathbf{0}_Y.$$

By linearity of T, the equation above is equivalent to

$$T(\alpha_1 x_1 + \ldots + \alpha_n x_n) = \mathbf{0}_Y.$$

Since T^{-1} exists, we must have " $Tx = \mathbf{0}_Y \implies x = \mathbf{0}_X$ ". Thus,

$$\alpha_1 x_1 + \ldots + \alpha_n x_n = \mathbf{0}_X.$$

but $\{x_1, \ldots, x_n\}$ is a linearly independent set in $\mathcal{D}(T)$, so this gives $\alpha_1 = \ldots = \alpha_n = 0$.

14. Let $T: X \longrightarrow Y$ be a linear operator and dim $X = \dim Y = n < \infty$. Show that $\mathcal{R}(T) = Y$ if and only if T^{-1} exists.

Solution: Suppose $\mathcal{R}(T) = Y$, by definition, for all $y \in Y$, there exists $x \in X$ such that Tx = y, i.e. T is surjective. We now show that T is injective. Since $\dim(X) = \dim(Y) = n < \infty$, the **Rank-Nullity Theorem** gives us

$$\dim(\mathcal{R}(T)) + \dim(\mathcal{N}(T)) = \dim(X).$$

but by assumption, $\mathcal{R}(T) = Y$, so

$$\dim(Y) + \dim(\mathcal{N}(T)) = \dim(X).$$

$$\implies \dim(\mathcal{N}(T)) = \dim(X) - \dim(Y) = 0.$$

$$\implies \mathcal{N}(T) = \{\mathbf{0}_X\}.$$

This shows that T is injective. Indeed, suppose for any x_1, x_2 , we have $Tx_1 = Tx_2$. By linearity of T, $Tx_1 - Tx_2 = T(x_1 - x_2) = \mathbf{0}_Y \implies x_1 - x_2 = \mathbf{0}_X \implies x_1 = x_2$. Since T is both injective and surjective, we conclude that the inverse of T, T^{-1} , exists.

Conversely, suppose T^{-1} exists. From Problem 10, this means that $\mathcal{N}(T) = \{\mathbf{0}_X\} \implies \dim(\mathcal{N}(T)) = 0$. Invoking the **Rank-Nullity Theorem** gives

$$\dim(\mathcal{R}(T)) + \dim(\mathcal{N}(T)) = \dim(X).$$

$$\implies \dim(\mathcal{R}(T)) = \dim(X) = n.$$

This implies that $\mathcal{R}(T) = Y$ since any proper subspace W of Y has dimension less than n.

15. Consider the vector space X of all real-valued functions which are defined on \mathbb{R} and have derivatives of all orders everywhere on \mathbb{R} . Define $T: X \longrightarrow X$ by y(t) = Tx(t) = x'(t). Show that $\mathcal{R}(T)$ is all of X but T^{-1} does not exist. Compare with Problem 14 and comment.

Solution: For any $y(t) \in \mathcal{R}(T)$, define $x(t) = \int_{-\infty}^{t} y(s) ds \in X$; Fundamental Theorem of Calculus gives that x'(t) = Tx(t) = y(t). On the other hand, T^{-1} does not exist since the null space of T consists of every constant functions on \mathbb{R} . However, it doesn't contradict Problem 14 since X is an infinite-dimensional vector space.

1.6 Bounded and Continuous Linear Operators.

Definition 1.18.

- 1. Let X and Y be normed spaces and $T: \mathcal{D}(T) \longrightarrow Y$ a linear operator, where $\mathcal{D}(T) \subset X$. The operator T is said to be **bounded** if there is a nonnegative number C such that for all $x \in \mathcal{D}(T)$, $||Tx|| \leq C||x||$.
 - This also shows that a bounded linear operator maps bounded sets in $\mathcal{D}(T)$ onto bounded sets in Y.
- 2. The **norm** of a bounded linear operator T is defined as

$$||T|| = \sup_{\substack{x \in \mathcal{D}(T) \\ x \neq \mathbf{0}}} \frac{||Tx||}{||x||}.$$

- This is the smallest possible C for all nonzero $x \in \mathcal{D}(T)$.
- With C = ||T||, we have the inequality $||Tx|| \le ||T|| ||x||$.
- If $\mathcal{D}(T) = \{0\}$, we define ||T|| = 0.

Lemma 1.19. Let T be a bounded linear operator. Then:

(a) An alternative formula for the norm of T is

$$||T|| = \sup_{\substack{x \in \mathcal{D}(T) \\ ||x|| = 1}} ||Tx||.$$

(b) ||T|| is a norm.

Theorem 1.20. If a normed space X is finite dimensional, then every linear operator on X is bounded.

Theorem 1.21. Let $T : \mathcal{D}(T) \longrightarrow Y$ be a linear operator, where $\mathcal{D}(T) \subset X$ and X, Y are normed spaces.

- (a) T is continuous if and only if T is bounded.
- (b) If T is continuous at a single point, it is continuous.

Corollary 1.22. Let T be a bounded linear operator. Then:

- (a) $x_n \longrightarrow x$ [where $x_n, x \in \mathcal{D}(T)$] implies $Tx_n \longrightarrow Tx$.
- (b) The null space $\mathcal{N}(T)$ is closed.
 - It is worth noting that the range of a bounded linear operator may not be closed.

Definition 1.23.

- 1. Two operators T_1 and T_2 are defined to be **equal**, written $T_1 = T_2$ if they have the same domain $\mathcal{D}(T_1) = \mathcal{D}(T_2)$ and if $T_1x = T_2x$ for all $x \in \mathcal{D}(T_1) = \mathcal{D}(T_2)$.
- 2. The **restriction** of an operator $T: \mathcal{D}(T) \longrightarrow Y$ to a subset $B \subset \mathcal{D}(T)$ is denoted by $T|_B$ and is the operator defined by $T|_B: B \longrightarrow Y$, satisfying

$$T|_B x = Tx$$
 for all $x \in B$.

- 3. The **extension** of an operator $T: \mathcal{D}(T) \longrightarrow Y$ to a superset $M \supset \mathcal{D}(T)$ is an operator $\tilde{T}: M \longrightarrow Y$ such that $\tilde{T}|_{\mathcal{D}(T)} = T$, that is, $\tilde{T}x = Tx$ for all $x \in \mathcal{D}(T)$. [Hence T is the restriction of \tilde{T} to $\mathcal{D}(T)$.]
 - If $\mathcal{D}(T)$ is a proper subset of M, then a given T has many extensions; of practical interest are those extensions which preserve linearity or boundedness.

Theorem 1.24 (Bounded linear extension).

Let $T: \mathcal{D}(T) \longrightarrow Y$ be a bounded linear operator, where $\mathcal{D}(T)$ lies in a normed space X and Y is a Banach space. Then T has an extension $\tilde{T}: \mathcal{D}(T) \longrightarrow Y$, where \tilde{T} is a bounded linear operator with norm $\|\tilde{T}\| = \|T\|$.

- The theorem concerns an extension of a bounded linear operator T to the closure $\overline{\mathcal{D}(T)}$ of the domain such that the extended operator is again bounded and linear, and even has the same norm.
- This includes the case of an extension from a dense set in a normed space X to all of X.
- It also includes the case of an extension from a normed space X to its completion.
- 1. Prove $||T_1T_2|| \le ||T_1|| ||T_2||$ and $||T^n|| \le ||T||^n$ $(n \in \mathbb{N})$ for bounded linear operators $T_2 \colon X \longrightarrow Y$, $T_1 \colon Y \longrightarrow Z$ and $T \colon X \longrightarrow X$, where X, Y, Z are normed spaces.

Solution: Using boundedness of T_1 and T_2 ,

$$||(T_1T_2)x|| = ||T_1(T_2x)|| \le ||T_1|| ||T_2x|| \le ||T_1|| ||T_2|| ||x||.$$

The first inequality follows by taking supremum over all x of norm 1. A similar argument also shows the second inequality.

2. Let X and Y be normed spaces. Show that a linear operator $T: X \longrightarrow Y$ is bounded if and only if T maps bounded sets in X into bounded sets in Y.

Solution: Suppose $T: X \longrightarrow Y$ is bounded, there exists an C > 0 such that $||Tx|| \le C||x||$ for all $x \in X$. Take any bounded subset A of X, there exists $M_A > 0$ such that $||x|| \le M_A$ for all $x \in A$. For any $x \in A$,

$$||Tx|| \le C||x|| \le CM_A.$$

This shows that T maps bounded sets in X into bounded sets in Y.

Conversely, suppose a linear operator $T: X \longrightarrow Y$ maps bounded sets in X into bounded sets in Y. This means that for any fixed R > 0, there exists a constant $M_R > 0$ such that $||x|| \le R \implies ||Tx|| \le M_R$. We now take any nonzero $y \in X$ and set

$$x = R \frac{y}{\|y\|} \implies \|x\| = R.$$

Thus,

$$\frac{R}{\|y\|}\|Ty\| = \left\|T\left(\frac{R}{\|y\|}y\right)\right\| = \|Tz\| \le M_R.$$

$$\implies \|Ty\| \le \frac{M_R}{R}\|y\|.$$

where we crucially used the linearity of T. Rearranging and taking supremum over all y of norm 1 shows that T is bounded.

3. If $T \neq 0$ is a bounded linear operator, show that for any $x \in \mathcal{D}(T)$ such that ||x|| < 1 we have the strict inequality ||Tx|| < ||T||.

Solution: We have $||Tx|| \le ||T|| ||x|| < ||T||$.

4. Let $T: \mathcal{D}(T) \longrightarrow Y$ be a linear operator, where $\mathcal{D}(T) \subset X$ and X, Y are normed spaces. Show that if T is continuous at a single point, it is continuous on $\mathcal{D}(T)$.

Solution: Suppose T is continuous at an arbitrary $x_0 \in \mathcal{D}(T)$. This means that given any $\varepsilon > 0$, there exists a $\delta > 0$ such that $||Tx - Tx_0|| \le \varepsilon$ for all $x \in \mathcal{D}(T)$ satisfying $||x - x_0|| \le \delta$. Fix an $y_0 \in \mathcal{D}(T)$, and set

$$x - x_0 = \delta \frac{y - y_0}{\|y - y_0\|} \implies \|x - x_0\| = \delta.$$

Since T is linear, for any $y \in \mathcal{D}(T)$ satisfying $||y - y_0|| \le \delta$,

$$\frac{\delta}{\|y - y_0\|} \|T(y - y_0)\| = \left\| T\left(\frac{\delta}{\|y - y_0\|} (y - y_0)\right) \right\| = \|T(x - x_0)\| \le \varepsilon$$

$$\implies \|T(y - y_0)\| \le \varepsilon \frac{\|y - y_0\|}{\delta} \le \frac{\varepsilon \delta}{\delta} = \varepsilon.$$

This shows that T is continuous at y_0 . Since $y_0 \in \mathcal{D}(T)$ is arbitrary, the statement follows.

5. Show that the operator $T: l^{\infty} \longrightarrow l^{\infty}$ defined by $y = (\eta_j) = Tx$, $\eta_j = \xi_j/j$, $x = (\xi_j)$, is linear and bounded.

Solution: For any $x, z \in l^{\infty}$ and scalars α, β ,

$$T(\alpha x + \beta z) = \left(\alpha \frac{\xi_j}{j} + \beta \frac{\kappa_j}{j}\right) = \alpha \left(\frac{\xi_j}{j}\right) + \beta \left(\frac{\kappa_j}{j}\right) = \alpha Tx + \beta Tz.$$

For any $x = (\xi_j) \in l^{\infty}$,

$$\left|\frac{\xi_j}{j}\right| \le |\xi_j| \le \sup_{j \in \mathbb{N}} |\xi_j| = ||x||.$$

Taking supremum over $j \in \mathbb{N}$ on both sides yields $||Tx|| \leq ||x||$. We conclude that T is a bounded linear operator.

6. (Range) Show that the range $\mathcal{R}(T)$ of a bounded linear operator $T: X \longrightarrow Y$ need not be closed in Y.

Solution: Define (x_n) to be a sequence in the space l^{∞} , where $x_n = (\xi_i^n)$ and

$$\xi_j^n = \begin{cases} \sqrt{j} & \text{if } j \le n, \\ 0 & \text{if } j > n. \end{cases}$$

Consider the operator $T: l^{\infty} \longrightarrow l^{\infty}$ in Problem 5. Then $Tx_n = y_n = (\eta_j^n)$, where

$$\eta_j^n = \frac{\xi_j^n}{j} = \begin{cases} \frac{1}{\sqrt{j}} & \text{if } j \le n, \\ 0 & \text{if } j > n. \end{cases}$$

We now have our sequence $(y_n) \in \mathcal{R}(T) \subset l^{\infty}$. We claim that it converges to y in l^{∞} , where y is a sequence in l^{∞} defined as $y = (\eta_j)$, $\eta_j = \frac{1}{\sqrt{j}}$. Indeed,

$$||y_n - y||_{l^{\infty}} = \sup_{j \in \mathbb{N}} |\eta_j^n - \eta_j| = \frac{1}{\sqrt{n+1}} \longrightarrow 0 \quad \text{as } n \longrightarrow \infty.$$

However, $y \notin \mathcal{R}(T)$. Indeed, if there exists an $x \in l^{\infty}$ such that Tx = y, then x must be the sequence (ξ_j) , with $\xi_j = \sqrt{j}$, which is clearly not in the space l^{∞} . Hence, $\mathcal{R}(T)$ is not closed in l^{∞} .

7. (Inverse operator) Let T be a bounded linear operator from a normed space X onto a normed space Y. If there is a positive b such that

$$||Tx|| \ge b||x||$$
 for all $x \in X$,

show that then $T^{-1}: Y \longrightarrow X$ exists and is bounded.

Solution: We first show that T is injective, and therefore the inverse T^{-1} exists since T is bijective (T is surjective by assumption). Indeed, choose any $x_1, x_2 \in X$ and suppose $x_1 \neq x_2$, then $||x_1 - x_2|| > 0$. Since T is linear,

$$||Tx_1 - Tx_2|| = ||T(x_1 - x_2)|| \le b||x_1 - x_2|| > 0 \implies Tx_1 \ne Tx_2.$$

We are left to show there exists an C > 0 such that $||T^{-1}y|| \leq C||y||$ for all $y \in Y$. Since T is surjective, for any $y \in Y$, there exists $x \in X$ such that y = Tx; existence of T^{-1} then implies $x = T^{-1}y$. Thus,

$$||T(T^{-1}(y))|| \ge b||T^{-1}y|| \implies ||T^{-1}y|| \le \frac{1}{b}||y||.$$

where $C = \frac{1}{b} > 0$.

8. Show that the inverse $T^{-1}: \mathcal{R}(T) \longrightarrow X$ of a bounded linear operator $T: X \longrightarrow Y$ need not be bounded.

Solution: Consider the operator $T: l^{\infty} \longrightarrow l^{\infty}$ defined by $y = Tx = (\eta_j)$, $\eta_j = \xi_j/j$, $x = (\xi_j)$. We shown in Problem 6 that T is a bounded linear operator. We first show that T is injective. For any $x_1, x_2 \in l^{\infty}$, suppose $Tx_1 = Tx_2$. For any $j \in \mathbb{N}$,

$$(Tx_1)_j = (Tx_2)_j \implies \frac{\xi_j^1}{j} = \frac{\xi_j^2}{j} \implies \xi_j^1 = \xi_j^2 \quad \text{since } \frac{1}{j} \neq 0.$$

This shows that $x_1 = x_2$ and T is injective. Thus, there exists an inverse $T^{-1} \colon \mathcal{R}(T) \longrightarrow l^{\infty}$ defined by $x = T^{-1}y = (\xi_j)$, $\xi_j = j\eta_j$, $y = (\eta_j)$. Let's verify that this is indeed the inverse operator.

$$T^{-1}(Tx) = T^{-1}y = T^{-1}\left(\frac{\xi_j}{j}\right) = \left(j\frac{\xi_j}{j}\right) = (\xi_j) = x.$$
$$T(T^{-1}y) = Tx = T((j\eta_j)) = \left(\frac{j\eta_j}{j}\right) = (\eta_j) = y.$$

We claim that T^{-1} is not bounded. Indeed, let $y_n = (\delta_{jn})_{j=1}^{\infty}$, where δ_{jn} is the Kronecker delta function. Then $||y_n|| = 1$ and

$$||T^{-1}y_n|| = ||(j\delta_{jn})|| = n \implies \frac{||T^{-1}y_n||}{||y_n||} = n.$$

Since $n \in \mathbb{N}$ is arbitrary, this shows that there is no fixed number C > 0 such that $\frac{\|T^{-1}y_n\|}{\|y_n\|} \leq C$, i.e. T^{-1} is not bounded.

9. Let $T: C[0,1] \longrightarrow C[0,1]$ be defined by

$$y(t) = \int_0^t x(s) \, ds.$$

Find $\mathcal{R}(T)$ and $T^{-1} \colon \mathcal{R}(T) \longrightarrow C[0,1]$. Is T^{-1} linear and bounded?

Solution: First, Fundamental Theorem of Calculus yields

$$\mathcal{R}(T) = \{ y(t) \in C[0,1] \colon y(t) \in C^1[0,1], y(0) = 0 \} \subset C[0,1].$$

Next, we show that T is injective and thus the inverse $T^{-1}: \mathcal{R}(T) \longrightarrow C[0,1]$ exists. Indeed, suppose for any $x_1, x_2 \in C[0,1], Tx_1 = Tx_2$. Then

$$Tx_1 = Tx_2 \implies \int_0^t x_1(s) \, ds = \int_0^t x_2(s) \, ds$$

$$\implies \int_0^t \left[x_1(s) - x_2(s) \right] \, ds = 0$$

$$\implies x(s) = y(s) \text{ for all } s \in [0, t].$$

where the last implication follows from x-y being a continuous function in $[0,t] \subset [0,1]$. The inverse operator T^{-1} is defined by $T^{-1}y(t)=y'(t)$, i.e. T^{-1} is the differentiation operator. Since differentiation is a linear operation, so is T^{-1} . However, T^{-1} is not bounded. Indeed, let $y_n(t)=t^n$, where $n \in \mathbb{N}$. Then $||y_n||=1$ and

$$||T^{-1}y_n|| = ||nt^{n-1}|| = n \implies \frac{||T^{-1}y_n||}{||y_n||} = n.$$

Since $n \in \mathbb{N}$ is arbitrary, this shows that there is no fixed number C > 0 such that $\frac{\|T^{-1}y_n\|}{\|y_n\|} \leq C$, i.e. T^{-1} is not bounded.

10. On C[0,1] define S and T

$$Sx(t) = y(t) = t \int_0^1 x(s) ds$$
 $Tx(t) = y(t) = tx(t).$

respectively. Do S and T commute? Find ||S||, ||T||, ||ST|| and ||TS||.

Solution: They do not commute. Take $x(t) = t \in C[0,1]$. Then

$$(ST)x(t) = S(t^2) = t \int_0^1 s^2 ds = \frac{t}{3}.$$

 $(TS)x(t) = T\left(\frac{t}{2}\right) = \frac{t^2}{2}.$

11. Let X be the normed space of all bounded real-valued functions on \mathbb{R} with norm defined by

$$||x|| = \sup_{t \in \mathbb{R}} |x(t)|,$$

and let $T: X \longrightarrow X$ defined by

$$y(t) = Tx(t) = x(t - \Delta)$$

where $\Delta > 0$ is a constant. (This is model of a *delay line*, which is an electric device whose output y is a delayed version of the input x, the time delay being Δ .) Is T linear? Bounded?

Solution: For any $x, z \in X$ and scalars α, β ,

$$T(\alpha x + \beta z) = \alpha x(t - \Delta) + \beta z(t - \Delta) = \alpha Tx + \beta Tz.$$

This shows that T is linear. T is bounded since

$$||Tx|| = \sup_{t \in \mathbb{R}} |x(t - \Delta)| = ||x||.$$

12. (Matrices) We know that an $r \times n$ matrix $A = (\alpha_{jk})$ defines a linear operator from the vector space X of all ordered n-tuples of numbers into the vector space Y of all ordered r-tuples of numbers. Suppose that any norm $\|\cdot\|_1$ is given on X and any norm $\|\cdot\|_2$ is given on Y. Remember from Problem 10, Section 2.4, that there are various norms on the space Z of all those matrices (r and r fixed). A norm $\|\cdot\|$ on Z is said to be *compatible* with $\|\cdot\|_1$ and $\|\cdot\|_2$ if

$$||Ax||_2 \le ||A|| ||x||_1.$$

Show that the norm defined by

$$||A|| = \sup_{\substack{x \in X \\ x \neq 0}} \frac{||Ax||_2}{||x||_1}$$

is compatible with $\|\cdot\|_1$ and $\|\cdot\|_2$. This norm is often called the *natural norm* defined by $\|\cdot\|_1$ and $\|cdot\|_2$. IF we choose $\|x\|_1 = \max_j |\xi_j|$ and $\|y\|_2 = \max_j |\eta_j|$, show that the natural norm is

$$||A|| = \max_{j} \sum_{k=1}^{n} |\alpha_{jk}|.$$

Solution:

13. Show that in 2.7-7 with r = n, a compatible norm is defined by

$$||A|| = \left(\sum_{j=1}^{n} \sum_{k=1}^{n} \alpha_{jk}^{2}\right)^{\frac{1}{2}},$$

but for n > 1 this is *not* the natural norm defined by the Euclidean norm on \mathbb{R}^n .

Solution:

14. If in Problem 12, we choose

$$||x||_1 = \sum_{k=1}^n |\xi_k| \qquad ||y||_2 = \sum_{j=1}^r |\eta_j|,$$

show that a compatible norm is defined by

$$||A|| = \max_{k} \sum_{j=1}^{r} |\alpha_{jk}|.$$

Solution:

15. Show that for r = n, the norm in Problem 14 is the natural norm corresponding to $\|\cdot\|_1$ and $\|\cdot\|_2$ as defined in that problem.

Solution:

1.7 Linear Functionals.

Definition 1.25.

- 1. A linear functional f is a linear operator with domain in a vector space X and range in the scalar field K of X; thus, $f : \mathcal{D}(f) \longrightarrow K$, where $K = \mathbb{R}$ if X is real and $K = \mathbb{C}$ if X is complex.
- 2. A **bounded linear functional** f is a bounded linear operator with range in the scalar field of the normed space X in which the domain $\mathcal{D}(f)$ lies. Thus there exists a nonnegative number C such that for all $x \in \mathcal{D}(f)$, $|f(x)| \leq C||x||$. Furthermore, the **norm** of f is

$$||f|| = \sup_{\substack{x \in \mathcal{D}(f) \\ x \neq \mathbf{0}}} \frac{|f(x)|}{||x||} = \sup_{\substack{x \in \mathcal{D}(f) \\ ||x|| = 1}} |f(x)|.$$

• As before, we have that $|f(x)| \leq ||f|| ||x||$.

Theorem 1.26. A linear functional f with domain $\mathcal{D}(f)$ in a normed space X is continuous if and only if f is bounded.

Definition 1.27.

- 1. The set of all linear functionals defined on a vector space X can itself be made into a vector space. This space is denoted by X* and is called the **algebraic dual** space of X. Its algebraic operations of vector space are defined in a natural way as follows.
 - (a) The sum $f_1 + f_2$ of two functionals f_1 and f_2 is the functional s whose value at every $x \in X$ is

$$s(x) = (f_1 + f_2)(x) = f_1(x) + f_2(x).$$

(b) The product αf of a scalar α and a functional f is the functional p whose value at every $x \in X$ is

$$p(x) = (\alpha f)(x) = \alpha f(x).$$

- 2. We may also consider the algebraic dual $(X^*)^*$ of X^* , whose elements are the linear functionals defined on X^* . We denote $(X^*)^*$ by X^{**} and call it the **second algebraic dual space** of X.
 - We can obtain an interesting and important relation between X and X^{**} , as follows. We can obtain a $g \in X^{**}$, which is a linear functional defined on X^* , by choosing a **fixed** $x \in X$ and setting

$$g(f) = g_x(f) = f(x)$$
 where $x \in X$ fixed, $f \in X^*$ variable.

• g_x is linear. Indeed,

$$q_x(\alpha f_1 + \beta f_2) = (\alpha f_1 + \beta f_2)(x) = \alpha f_1(x) + \beta f_2(x) = \alpha q_x(f_1) + \beta q_x(f_2).$$

Hence, g_x is an element of X^** , by the definition of X^{**} .

• To each $x \in X$ there corresponds a $g_x \in X^{**}$. This defines a mapping $C: X \longrightarrow X^{**}$, $C: x \mapsto g_x$; C is called the **canonical mapping** of X into X^{**} . C is linear since its domain is a vector space and we have

$$(C(\alpha x + \beta y))(f) = g_{\alpha x + \beta y}(f)$$

$$= f(\alpha x + \beta y)$$

$$= \alpha f(x) + \beta f(y)$$

$$= \alpha g_x(f) + \beta g_y(f)$$

$$= \alpha (Cx)(f) + \beta (Cy)(f).$$

C is also called the **canonical embedding** of X into X^{**} .

- 3. An **metric space isomorphism** T of a metric space X = (X, d) onto a metric space $\tilde{X} = (\tilde{X}, \tilde{d})$ is a bijective mapping which preserves distance, that is, for all $x, y \in X$, $\tilde{d}(Tx, Ty) = d(x, y)$. \tilde{X} is then called **isomorphic** with X.
- 4. An **vector space isomorphism** T of a vector space X onto a vector space \tilde{X} over the same field is a bijective mapping which preserves the two algebraic operations of vector space; thus, for all $x, y \in X$ and scalars α ,

$$T(x+y) = Tx + Ty$$
 and $T(\alpha x) = \alpha Tx$,

that is, $T: X \longrightarrow \tilde{X}$ is a bijective linear operator. \tilde{X} is then called **isomorphic** with X, and X and \tilde{X} are called **isomorphic vector spaces**.

- 5. If X is isomorphic with a subspace of a vector space Y, we say that X is **embed-dable** in Y.
 - It can be shown that the canonical mapping C is injective. Since C is linear, it is a vector space isomorphism of X onto the range $\mathcal{R}(C) \subset X^{**}$.
 - Since $\mathcal{R}(C)$ is a subspace of X^{**} , X is embeddable in X^{**} , and C is also called the **canonical embedding** of X into X^{**} .
 - If C is surjective (hence bijective), so that $\mathcal{R}(C) = X^{**}$, then X is said to be algebraically reflexive.
- 1. Show that the functionals in 2.8-7 and 2.8-8 are linear.

Solution: Choose a fixed $t_0 \in J = [a, b]$ and set $f_1(x) = x(t_0)$, where $x \in C[a, b]$. For any $x, y \in C[a, b]$ and scalars α, β ,

$$f_1(\alpha x + \beta y) = (\alpha x + \beta y)(t_0) = \alpha x(t_0) + \beta y(t_0) = \alpha f_1(x) + \beta f_1(y).$$

Choose a fixed $a = (a_j) \in l^2$ and set $f(x) = \sum_{j=1}^{\infty} \xi_j \alpha_j$, where $x = (\xi_j) \in l^2$. For any $x = (\xi_j), y = (\eta_j) \in l^2$ and scalars α, β ,

$$f(\alpha x + \beta y) = \sum_{j=1}^{\infty} (\alpha \xi_j + \beta \eta_j) \alpha_j = \alpha \sum_{j=1}^{\infty} .\xi_j \alpha_j + \beta \sum_{j=1}^{\infty} \eta_j \alpha_j = \alpha f(x) + \beta f(y).$$

Note we can split the infinite sum because the two infinite sums are convergent by Cauchy-Schwarz inequality.

2. Show that the functionals defined on C[a, b] by

$$f_1(x) = \int_a^b x(t)y_0(t) dt$$
 $(y_0 \in C[a, b] \text{ fixed.})$
 $f_2(x) = \alpha x(a) + \beta x(b)$ $(\alpha, \beta \text{ fixed.})$

are linear and bounded.

Solution: For any $x, y \in C[a, b]$ and scalars γ, δ ,

$$f_1(\gamma x + \delta y) = \int_a^b \left[\gamma x(t) + \delta y(t) \right] y_0(t) dt$$

$$= \gamma \int_a^b x(t) y_0(t) dt + \delta \int_a^b y(t) y_0(t) dt.$$

$$= \gamma f_1(x) + \delta f_1(y).$$

$$f_2(\gamma x + \delta y) = \alpha (\gamma x + \delta y)(a) + \beta (\gamma x + \delta y)(b)$$

$$= \alpha (\gamma x(a) + \delta y(a)) + \beta (\gamma x(b) + \delta y(b))$$

$$= \gamma (\alpha x(a) + \beta x(b)) + \delta (\alpha y(a) + \beta y(b))$$

$$= \gamma f_2(x) + \delta f_2(y).$$

To show that f_1 and f_2 are bounded, for any $x \in C[a, b]$,

$$|f_{1}(x)| = \left| \int_{a}^{b} x(t)y_{0}(t) dt \right| \leq \max_{t \in [a,b]} |x(t)| \int_{a}^{b} y_{0}(t) dt$$

$$= \left(\int_{a}^{b} y_{0}(t) dt \right) ||x||.$$

$$|f_{2}(x)| = |\alpha x(a) + \beta x(b)| \leq \alpha \max_{t \in [a,b]} |x(t)| + \beta \max_{t \in [a,b]} |x(t)|$$

$$= (\alpha + \beta) ||x||.$$

3. Find the norm of the linear functional f defined on C[-1,1] by

$$f(x) = \int_{-1}^{0} x(t) dt - \int_{0}^{1} x(t) dt.$$

Solution:

$$|f(x)| = \left| \int_{-1}^{0} x(t) dt - \int_{0}^{1} x(t) dt \right|$$

$$\leq \left| \int_{-1}^{0} x(t) dt \right| + \left| \int_{0}^{1} x(t) dt \right|$$

$$\leq ||x|| \left| \int_{-1}^{0} dt \right| + ||x|| \left| \int_{0}^{1} dt \right|$$

$$= 2||x||$$

Taking the supremum over all x of norm 1, we obtain $||f|| \le 2$. To get $||f|| \ge 2$, we choose the particular $x(t) \in C[-1,1]$ defined by

$$x(t) = \begin{cases} -2t - 2 & \text{if } -1 \le t \le -\frac{1}{2}, \\ 2t & \text{if } -\frac{1}{2} \le t \le \frac{1}{2}, \\ -2t + 2 & \text{if } \frac{1}{2} \le t \le 1. \end{cases}$$

Note that ||x|| = 1 and

$$||f|| \le \frac{|f(x)|}{||x||} = |f(x)| = 2.$$

4. Show that for J = [a, b],

$$f_1(x) = \max_{t \in J} x(t)$$
 $f_2(x) = \min_{t \in J} x(t)$

define functionals on C[a, b]. Are they linear? Bounded?

Solution: Both f_1 and f_2 define functionals on C[a,b] since continuous functions attains its maximum and minimum on closed interval. They are not linear.

Choose
$$x(t) = \frac{t-a}{b-a}$$
 and $y(t) = \frac{-(t-a)}{b-a}$. Then

$$f_1(x+y) = 0$$
 but $f_1(x) + f_1(y) = 1 + 0 = 1$.
 $f_2(x+y) = 0$ but $f_2(x) + f_2(y) = 0 - 1 = -1$.

They are, however, bounded, since for any $x \in C[a, b]$,

$$|f_1(x)| = \max_{t \in J} x(t) \le \max_{t \in J} |x(t)| = ||x||.$$

 $|f_2(x)| = \min_{t \in J} x(t) \le \max_{t \in J} |x(t)| = ||x||.$

5. Show that on any sequence space X we can define a linear functional f by setting $f(x) = \xi_n$ (n fixed), where $x = (\xi_j)$. Is f bounded if $X = l^{\infty}$?

Solution: For any $x = (\xi_j), y = (\eta_j) \in X$ and scalars α, β ,

$$f(\alpha x + \beta y) = \alpha \xi_n + \beta \eta_n = \alpha f(x) + \beta f(y).$$

f is bounded if $X = l^{\infty}$. Indeed, for any $x \in l^{\infty}$,

$$|f(x)| = |\xi_n| \le \sup_{j \in \mathbb{N}} |\xi_j| = ||x||.$$

<u>Remark</u>: In fact, we can show that ||f|| = 1. Taking supremum over all x of norm 1 on previous equation yields $||f|| \le 1$. To get $||f|| \ge 1$, we choose the particular $x = (\xi_j) = (\delta_{jn})$, note that ||x|| = 1 and

$$||f|| \ge \frac{|f(x)|}{||x||} = |f(x)| = 1.$$

6. (Space $C^1[a, b]$) The space $C^1[a, b]$ is the normed space of all continuously differentiable functions on J = [a, b] with norm defined by

$$||x|| = \max_{t \in J} |x(t)| + \max_{t \in J} |x'(t)|.$$

(a) Show that the axioms of a norm are satisfied.

Solution: (N1) and (N3) are obvious. For (N2), if $x(t) \equiv 0$, then ||x|| = 0. On the other hand, if ||x|| = 0, since both $\max_{t \in J} |x(t)|$ and $\max_{t \in J} |x'(t)|$ are nonnegative, we must have |x(t)| = 0 and |x'(t)| = 0 for all $t \in [a, b]$ which implies $x(t) \equiv 0$. Finally, (N4) follows from

$$||x + y|| = \max_{t \in J} |x(t) + y(t)| + \max_{t \in J} |x'(t) + y'(t)|$$

$$\leq \max_{t \in J} |x(t)| + \max_{t \in J} |y(t)| + \max_{t \in J} |x'(t)| + \max_{t \in J} |y'(t)|$$

$$= ||x|| + ||y||.$$

(b) Show that f(x) = x'(c), $c = \frac{a+b}{2}$, defines a bounded linear functional on $C^1[a,b]$.

Solution: For any $x, y \in C^1[a, b]$ and scalars α, β ,

$$f(\alpha x + \beta y) = \alpha x'(c) + \beta y'(c) = \alpha f(x) + \beta f(y).$$

To see that f is bounded,

$$|f(x)| = |x'(c)| \le \max_{t \in I} |x'(t)| \le ||x||.$$

(c) Show that f is not bounded, considered as functional on the subspace of C[a, b] which consists of all continuously differentiable functions.

Solution:

7. If f is a bounded linear functional on a complex normed space, is \bar{f} bounded? Linear? (The bar denotes the complex conjugate.)

Solution: \bar{f} is bounded since $|\underline{f}(x)| = |\underline{\bar{f}}(x)|$, but it is not linear since for any $x \in X$ and complex numbers α , $\overline{f}(\alpha x) = \alpha \overline{f}(x) = \overline{\alpha} \overline{f}(x) \neq \alpha \overline{f}(x)$.

8. (Null space) The null space $\mathcal{N}(M^*)$ of a set $M^* \subset X^*$ is defined to be the set of all $x \in X$ such that f(x) = 0 for all $f \in M^*$. Show that $\mathcal{N}(M^*)$ is a vector space.

Solution: Since X is a vector space, it suffices to show that $\mathcal{N}(M^*)$ is a subspace of X. Note that all element of M^* are linear functionals. For any $x, y \in \mathcal{N}(M^*)$, we have f(x) = f(y) = 0 for all $f \in M^*$. Then for any $f \in M^*$ and scalars α, β ,

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y) = 0.$$
 by linearity of $f \in M^*$

This shows that $\alpha x + \beta y \in \mathcal{N}(M^*)$ and the statement follows.

9. Let $f \neq 0$ be any linear functional on a vector space X and x_0 any fixed element of $X \setminus \mathcal{N}(f)$, where $\mathcal{N}(f)$ is the null space of f. Show that any $x \in X$ has a unique representation $x = \alpha x_0 + y$, where $y \in \mathcal{N}(f)$.

Solution: Let $f \neq 0$ be any linear functional on X and x_0 any fixed element of $X \setminus \mathcal{N}(f)$. We claim that for any $x \in X$, there exists a scalar α such that $x = \alpha x_0 + y$, where $y \in \mathcal{N}(f)$. First, applying f on both sides yields

$$f(x) = f(\alpha x_0 + y) = \alpha f(x_0) + f(y) \implies f(y) = f(x) - \alpha f(x_0).$$

By choosing $\alpha = \frac{f(x)}{f(x_0)}$ (which is well-defined since $f(x_0) \neq 0$), we see that

$$f(y) = f(x) - \frac{f(x)}{f(x_0)} f(x_0) = 0 \implies y \in \mathcal{N}(f).$$

To show uniqueness, suppose x has two representations $x = \alpha_1 x_0 + y_1 = \alpha_2 x_0 + y_2$, where α_1, α_2 are scalars and $y_1, y_2 \in \mathcal{N}(f)$. Subtracting both representations yields

$$(\alpha_1 - \alpha_2)x_0 = y_2 - y_1.$$

Applying f on both sides gives

$$f((\alpha_1 - \alpha_2)x_0) = f(y_2 - y_1)$$

$$(\alpha_1 - \alpha_2)f(x_0) = f(y_2) - f(y_1) = 0$$

by linearity of f and $y_1, y_2 \in \mathcal{N}(f)$. Since $f(x_0) \neq 0$, we must have $\alpha_1 - \alpha_2 = 0$. This also implies $y_1 - y_2 = 0$.

10. Show that in Problem 9, two elements $x_1, x_2 \in X$ belong to the same element of the quotient space $X/\mathcal{N}(f)$ if and only if $f(x_1) = f(x_2)$. Show that codim $\mathcal{N}(f) = 1$.

Solution: Suppose two elements $x_1, x_2 \in X$ belong to the same element of the quotient space $X/\mathcal{N}(f)$. This means that there exists an $x \in X$ and $y_1, y_2 \in \mathcal{N}(f)$ such that

$$x_1 = x + y_1$$
 and $x_2 = x + y_2$.

Substracting these equations and applying f yields

$$x_1 - x_2 = y_1 - y_2 \implies f(x_1 - x_2) = f(y_1 - y_2)$$

 $\implies f(x_1) - f(x_2) = f(y_1) - f(y_2) = 0.$

where we use the linearity of f and $y_1, y_2 \in \mathcal{N}(f)$. Conversely, suppose $f(x_1) - f(x_2) = 0$; linearity of f gives

$$f(x_1 - x_2) = 0 \implies x_1 - x_2 \in \mathcal{N}(f).$$

This means that there exists $y \in \mathcal{N}(f)$ such that $x_1 - x_2 = \mathbf{0} + y$, which implies that $x_1, x_2 \in X$ must belong to the same coset of $X/\mathcal{N}(f)$.

Codimension of $\mathcal{N}(f)$ is defined to be the dimension of the quotient space $X/\mathcal{N}(f)$. Choose any $\hat{x} \in X/\mathcal{N}(f)$, there exists an $x \in X$ such that $\hat{x} = x + \mathcal{N}(f)$. Since $f \neq 0$, there exists an $x_0 \in X \setminus \mathcal{N}(f)$ such that $f(x_0) \neq 0$. Looking at Problem 9, we deduce that \hat{x} has a unique representation $\hat{x} = \alpha x_0 + \mathcal{N}(f) = \alpha(x_0 + \mathcal{N}(f))$. This shows that $x_0 + \mathcal{N}(f)$ is a basis for $X/\mathcal{N}(f)$ and codim $\mathcal{N}(f) = 1$.

11. Show that two linear functionals $f_1 \neq 0$ and $f_2 \neq 0$ which are defined on the same vector space and have the same null space are proportional.

Solution: Let $x, x' \in X$ and consider $z = xf_1(x') - x'f_1(x)$. Clearly, $f_1(z) = 0 \implies z \in \mathcal{N}(f_1) = \mathcal{N}(f_2)$. Thus,

$$0 = f_2(z) = f_2(x)f_1(x') - f_2(x')f_1(x).$$

Since $f_1 \neq 0$, there exists some $x' \in X \setminus \mathcal{N}(f_1)$ such that $f_1(x') \neq 0$; we also have $f_2(x') \neq 0$ since $\mathcal{N}(f_1) = \mathcal{N}(f_2)$. Hence, for such an x', we have

$$f_2(x) = \frac{f_2(x')}{f_1(x')} f_1(x).$$

Since $x \in X$ is arbitrary, the result follows.

12. **(Hyperplane)** If Y is a subspace of a vector space X and codimY = 1, then every element of X/Y is called a hyperplane parallel to Y. Show that for any linear functional $f \neq 0$ on X, the set $H_1 = \{x \in X : f(x) = 1\}$ is a hyperplane parallel to the null space $\mathcal{N}(f)$ of f.

Solution: Since $f \neq 0$ on X, H_1 is not empty. Fix an $x_0 \in H_1$, and consider the coset $x_0 + \mathcal{N}(f)$. Note that this is well-defined irrespective of elements in H_1 . Indeed, for any $y \in H_1, y \neq x_0, y - x_0 \in \mathcal{N}(f)$ since $f(y - x_0) = f(y) - f(x_0) = 1 - 1 = 0$; this shows that $x + \mathcal{N}(f) = y + \mathcal{N}(f)$ for any $x, y \in H_1$.

- For any $x \in x_0 + \mathcal{N}(f)$, there exists an $y \in \mathcal{N}(f)$ such that $x = x_0 + y$. Since f is linear, $f(x) = f(x_0 + y) = f(x_0) + f(y) = 1 \implies x \in H_1$. This shows that $x_0 + \mathcal{N}(f) \subset H_1$.
- For any $x \in H_1$, $x = x + 0 = x + x_0 x_0 = x_0 + (x x_0) \in x_0 + \mathcal{N}(f)$ since $f(x x_0) = f(x) f(x_0) = 1 1 = 0$. This shows that $H_1 \subset x_0 + \mathcal{N}(f)$.

Finally, combining the two set inequality gives $H_1 = x_0 + \mathcal{N}(f)$ and the statement follows.

13. If Y is a subspace of a vector space X and f is a linear functional on X such that f(Y) is not the whole scalar field of X, show that f(y) = 0 for all $y \in Y$.

Solution: The statement is trivial if f is the zero functional, so suppose $f \neq 0$. Suppose, by contradiction, that $f(y) \neq 0$ for all $y \in Y$, then there exists an $y_0 \in Y$ such that $f(y_0) = \alpha$ for some nonzero $\alpha \in K$. Since Y is a subspace of a vector space $X, \beta y_0 \in Y$ for all $\beta \in K$. By linearity of f,

$$f(\beta y_0) = \beta f(y_0) = \beta \alpha \in f(Y).$$

Since $\beta \in K$ is arbitrary, this implies that f(Y) = K; this is a contradiction to the assumption that $f(Y) \neq K$. Hence, by proof of contradiction, f(y) = 0 for all $y \in Y$.

14. Show that the norm ||f|| of a bounded linear functional $f \neq 0$ on a normed space X can be interpreted geometrically as the reciprocal of the distance $\tilde{d} = \inf\{||x||: f(x) = 1\}$ of the hyperplane $H_1 = \{x \in X: f(x) = 1\}$ from the origin.

Solution:

15. (Half space) Let $f \neq 0$ be a bounded linear functional on a real normed space X. Then for any scalar c we have a hyperplane $H_c = \{x \in X : f(x) = c\}$, and H_c determines the two half spaces

$$X_{c1} = \{x \in X : f(x) \le c\}$$
 and $X_{c2} = \{x \in X : f(x) \ge c\}.$

Show that the closed unit ball lies in X_{c1} , where c = ||f||, but for no $\varepsilon > 0$, the half space X_{c1} with $c = ||f|| - \varepsilon$ contains that ball.

Solution:

1.8 Linear Operators and Functionals on Finite Dimensional Spaces.

- A linear operator $T: X \longrightarrow Y$ determines a unique matrix representing T with respect to a given basis for X and a given basis for Y, where the vectors of each of the bases are assumed to be arranged in a fixed order. Conversely, any matrix with r rows and n columns determines a linear operator which it represents with respect to given bases for X and Y.
- Let us now turn to **linear functionals** on X, where dim X = n and $\{e_1, \ldots, e_n\}$ is a basis for X. For every $f \in X^*$ and every $x = \sum \xi_i e_i \in X$, we have

$$f(x) = f\left(\sum_{j=1}^{n} \xi_{j} e_{j}\right) = \sum_{j=1}^{n} \xi_{j} f(e_{j}) = \sum_{j=1}^{n} \xi_{j} \alpha_{j}.$$

where $\alpha_j = f(e_j)$ for j = 1, ..., n. We see that f is uniquely determined by its values α_j ath the n basis vectors of X. Conversely, every n-tuple of scalars $\alpha_1, ..., \alpha_n$ determines a linear functional on X.

Theorem 1.28. Let X be an n-dimensional vector space and $E = \{e_1, \ldots, e_n\}$ a basis for X. Then $F = \{f_1, \ldots, f_n\}$ given by $f_k(e_j) = \delta_{jk}$ is a basis for the algebraic dual X^* of X, and dim $X^* = \dim X = n$.

• $\{f_1, \ldots, f_n\}$ is called the **dual basis** of the basis $\{e_1, \ldots, e_n\}$ for X.

Lemma 1.29. Let X be a finite dimensional vector space. If $x_0 \in X$ has the property that $f(x_0) = 0$ for all $f \in X^*$, then $x_0 = 0$.

Theorem 1.30. A finite dimensional vector space is algebraically reflexive.

1. Determine the null space of the operator $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ represented by

$$\begin{bmatrix} 1 & 3 & 2 \\ 2 & 1 & 0 \end{bmatrix}.$$

Solution: Performing Gaussian elimination on the matrix yields

$$\begin{bmatrix} 1 & 3 & 2 & 0 \\ -2 & 1 & 0 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 3 & 2 & 0 \\ 0 & 7 & 4 & 0 \end{bmatrix}.$$

This yields a solution of the form $(\xi_1, \xi_2, \xi_3) = t(-2, -4, 7)$ where $t \in \mathbb{R}$ is a free variable. Hence, the null space of T is the span of (-2, -4, 7).

2. Let $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ be defined by $(\xi_1, \xi_2, \xi_3) \mapsto (\xi_1, \xi_2, -\xi_1 - \xi_2)$. Find $\mathcal{R}(T), \mathcal{N}(T)$ and a matrix which represents T.

Solution: Consider the standard basis for X, given by $e_1 = (1, 0, 0), e_2 = (0, 1, 0), e_3 = (0, 0, 1)$. The matrix representing T with respect to $\{e_1, e_2, e_3\}$ is

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & -1 & 0 \end{bmatrix}.$$

The range of T, $\mathcal{R}(T)$ is the plane $\xi_1 + \xi_2 + \xi_3 = 0$. The null space of T, $\mathcal{N}(T)$ is span of (0,0,1).

3. Find the dual basis of the basis $\{(1,0,0),(0,1,0),(0,0,1)\}$ for \mathbb{R}^3 .

Solution: Consider a basis $\{e_1, e_2, e_3\}$ of \mathbb{R}^3 defined by $e_j = (\xi_n^j) = \delta_{jn}$ for j = 1, 2, 3. Given any $x = (\eta_j)$ in \mathbb{R}^3 , let $f_k(x) = \sum_{j=1}^3 \alpha_j^k \eta_j$ be the dual basis of $\{e_1, e_2, e_3\}$. From the definition of a dual basis, we require that $f_k(e_j) = \delta_{jk}$. More precisely, for f_1 , we require that

$$f_1(e_1) = \alpha_1^1 = 1.$$

 $f_1(e_2) = \alpha_2^1 = 0.$
 $f_1(e_3) = \alpha_3^1 = 0.$

which implies that $f_1(x) = \eta_1$. Repeating the same computation for f_2 and f_3 , we find that $f_2(x) = \eta_2$ and $f_3(x) = \eta_3$. Hence,

$$f_1 = (1,0,0)$$
 $f_2 = (0,1,0)$ $f_3 = (0,0,1).$

4. Let $\{f_1, f_2, f_3\}$ be the dual basis of $\{e_1, e_2, e_3\}$ for \mathbb{R}^3 , where $e_1 = (1, 1, 1), e_2 = (1, 1, -1), e_3 = (1, -1, -1)$. Find $f_1(x), f_2(x), f_3(x)$, where x = (1, 0, 0).

Solution: Note that we can write x as

$$x = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + 0 \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix} = \frac{1}{2}e_1 + \frac{1}{2}e_3.$$

Thus, using the defintiion of a dual basis $f_k(e_j) = \delta_{jk}$, we have

$$f_1(x) = \frac{1}{2}f_1(e_1) + \frac{1}{2}f_1(e_3) = \frac{1}{2}.$$

$$f_2(x) = \frac{1}{2}f_2(e_1) + \frac{1}{2}f_2(e_3) = 0.$$

$$f_3(x) = \frac{1}{2}f_3(e_1) + \frac{1}{2}f_3(e_3) = \frac{1}{2}.$$

where we use linearity of f_1, f_2, f_3 .

5. If f is a linear functional on an n-dimensional vector space X, what dimension can the null space $\mathcal{N}(f)$ have?

Solution: The Rank-Nullity theorem states that

$$\dim (\mathcal{N}(f)) = \dim (X) - \dim (\mathcal{R}(f)) = n - \dim (\mathcal{R}(f)).$$

If f is the zero functional, then $\mathcal{N}(f) = X$ and $\mathcal{N}(f)$ has dimension n; if f is not the zero functional, then $\mathcal{R}(f) = K$ which has dimension 1, so $\mathcal{N}(f)$ has dimension n-1. Hence, $\mathcal{N}(f)$ has dimension n-1.

6. Find a basis for the null space of the functional f defined on \mathbb{R}^3 by $f(x) = \xi_1 + \xi_2 - \xi_3$, where $x = (\xi_1, \xi_2, \xi_3)$.

Solution: Let $x = (\xi_1, \xi_2, \xi_3)$ be any point in the null space of f, they must satisfy the relation $\xi_1 + \xi_2 - \xi_3 = 0$. Thus,

$$x = \begin{bmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{bmatrix} = \begin{bmatrix} \xi_1 \\ \xi_2 \\ \xi_1 + \xi_2 \end{bmatrix} = \xi_1 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + \xi_2 \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}.$$

Hence, a basis for $\mathcal{N}(f)$ is given by $\{(1,0,1),(0,1,1)\}.$

7. Same task as in Problem 6, if $f(x) = \alpha_1 \xi_1 + \alpha_2 \xi_2 + \alpha_3 \xi_3$, where $\alpha_1 \neq 0$.

Solution: Let $x = (\xi_1, \xi_2, \xi_3)$ be any point in $\mathcal{N}(f)$, they must satisfy the relation

$$\alpha_1 \xi_1 + \alpha_2 \xi_2 + \alpha_3 \xi_3 = 0 \iff \xi_1 = -\frac{\alpha_2}{\alpha_1} \xi_2 - \frac{\alpha_3}{\alpha_1} \xi_3.$$

Rewriting x using this relation yields

$$x = \begin{bmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{bmatrix} = \begin{bmatrix} -\frac{\alpha_2}{\alpha_1} \xi_2 - \frac{\alpha_3}{\alpha_1} \xi_3 \\ \xi_2 \\ \xi_3 \end{bmatrix} = \frac{\xi_2}{\alpha_1} \begin{bmatrix} -\alpha_2 \\ \alpha_1 \\ 0 \end{bmatrix} + \frac{\xi_3}{\alpha_1} \begin{bmatrix} -\alpha_3 \\ 0 \\ \alpha_1 \end{bmatrix}.$$

Hence, a basis for $\mathcal{N}(f)$ is given by $\{(-\alpha_2, \alpha_1, 0), (-\alpha_3, 0, \alpha_1)\}.$

8. If Z is an (n-1)-dimensional subspace of an n-dimensional vector space X, show that Z is the null space of a suitable linear functional f on X, which is uniquely determined to within a scalar multiple.

Solution: Let X be an n-dimensional vector space, and Z an (n-1)-dimensional subspace of X. Choose a basis $A = \{z_1, \ldots, z_{n-1}\}$ of Z, here we can obtain a basis $B = \{z_1, \ldots, z_{n-1}, z_n\}$ of X, where B is obtained by extending A using sifting method. Any $z \in Z$ can be written uniquely as $z = \alpha_1 z_1 + \ldots + \alpha_{n-1} z_{n-1}$. If we want to find $f \in X^*$ such that $\mathcal{N}(f) = Z$, using linearity of f this translates to

$$f(z) = f(\alpha_1 z_1 + \ldots + \alpha_{n-1} z_{n-1}) = \alpha_1 f(z_1) + \ldots + \alpha_{n-1} f(z_{n-1}) = 0.$$

Since this must be true for all $z \in Z$, it enforces the condition $f(z_j) = 0$ for all j = 1, ..., n - 1. A similar argument shows that $f(z_n) \neq 0$, otherwise $\mathcal{N}(f) = X \neq Z$. Thus, the functional we are looking for must satisfy the following two conditions:

- (a) $f(z_j) = 0$ for all j = 1, ..., n 1.
- (b) $f(z_n) \neq 0$.

Consider a linear functional $f: X \longrightarrow K$ defined by $f(z_j) = \delta_{jn}$ for all $j = 1, \ldots, n$. We claim that $\mathcal{N}(f) = Z$. Indeed,

• Choose any $z \in Z$, there exists a unique sequence of scalars (β_j) such that $z = \beta_1 z_1 + \ldots + \beta_{n-1} z_{n-1}$. Using linearity of f, we have

$$f(z) = f\left(\sum_{j=1}^{n-1} \beta_j z_j\right) = \sum_{j=1}^{n-1} \beta_j f(z_j) = 0.$$

This shows that $Z \subset \mathcal{N}(f)$.

• Choose any $x \in X \setminus Z$, there exists a unique sequence of scalars (γ_j) such that $x = \gamma_1 z_1 + \ldots + \gamma_n z_n$ and $\gamma_n \neq 0$. (otherwise $x \in Z$.) Using linearity of f, we have

$$f(x) = f\left(\sum_{j=1}^{n} \gamma_j z_j\right) = \sum_{j=1}^{n} \gamma_j f(z_j) = \gamma_n f(z_n) \neq 0.$$

This shows that $(X \setminus Z) \not\subset \mathcal{N}(f)$ or equivalently $\mathcal{N}(f) \subset Z$.

Hence, $Z \subset \mathcal{N}(f)$ and $\mathcal{N}(f) \subset Z$ implies $Z = \mathcal{N}(f)$.

We are left to show that f is uniquely determined up to scalar multiple. Let λ be any nonzero scalars and consider the linear functional λf . Any $x \in X$ can be written uniquely as $x = \alpha_1 z_1 + \ldots + \alpha_n z_n$. Using linearity of λf , we have

$$(\lambda f)(x) = \lambda f(x) = \lambda f\left(\sum_{j=1}^{n} \alpha_j z_j\right) = \lambda \left(\sum_{j=1}^{n} \alpha_j f(z_j)\right) = \lambda \alpha_n f(z_n).$$

If $\alpha_n = 0$, then $x \in Z$ and $(\lambda f)(x) = 0$; if $\alpha_n \neq 0$, then $x \in X \setminus Z$ and $(\lambda f)(x) = \lambda \alpha_n \neq 0$.

9. Let X be the vector space of all real polynomials of a real variable and of degree less than a given n, together with the polynomial x = 0 (whose degree is left undefined in the usual discussion of degree). Let $f(x) = x^{(k)}(a)$, the value of the kth derivative (k fixed) of $x \in X$ at a fixed $a \in \mathbb{R}$. Show that f is a linear functional on X.

Solution: This follows from the algebra rules of differentiation. More precisely, for any $x, y \in X$ and scalars α, β ,

$$f(\alpha x + \beta y) = (\alpha x + \beta y)^{(k)}(a) = \alpha x^{(k)}(a) + \beta y^{(k)}(a) = \alpha f(x) + \beta f(y).$$

10. Let Z be a proper subspace of an n-dimensional vector space X, and let $x_0 \in X \setminus Z$. Show that there is a linear functional f on X such that $f(x_0) = 1$ and f(x) = 0 for all $x \in Z$.

Solution: Fix an nonzero $x_0 \in X \setminus Z$, note that $x_0 = \mathbf{0}$ then such a functional doesn't exist since $f(x_0) = 0$. Let X be an n-dimensional vector space, and Z be an m-dimensional subspace of X, with m < n. Choose a basis $A = \{z_1, \ldots, z_m\}$ of Z, here we can obtain a basis $B = \{z_1, \ldots, z_m, z_{m+1}, \ldots, z_n\}$ of X with $z_{m+1} = x_0$, where B is obtained by extending A using sifting method. Any $x \in X$ can be written uniquely as

$$x = \alpha_1 z_1 + \ldots + \alpha_m z_m + \alpha_{m+1} x_0 + \alpha_{m+2} z_{m+2} + \ldots + \alpha_n z_n.$$

Consider the linear functional $f: X \longrightarrow K$ defined by $f(x) = \alpha_{m+1} + \ldots + \alpha_n$, where α_j is the j-th scalar of x with respect to the basis B for all $j = m+1, \ldots, n$. We claim that $f(x_0) = 1$ and f(Z) = 0. Indeed,

- If $x = x_0$, then $\alpha_{m+1} = 1$ and $\alpha_j = 0$ for all $j \neq m+1$.
- If $x \in \mathbb{Z}$, then $\alpha_j = 0$ for all $j = m + 1, \dots, n$.
- If $x \in X \setminus Z$, at least one of $\{\alpha_{m+1}, \ldots, \alpha_n\}$ is non-zero.

<u>Remark</u>: The functional f we constructed here is more tight, in the sense that $\mathcal{N}(f) = Z$. If we only require that $Z \subset \mathcal{N}(f)$, then $f(x) = \alpha_{m+1}$ will do the job.

11. If x and y are different vectors in a finite dimensional vector space X, show that there is a linear functional f on X such that $f(x) \neq f(y)$.

Solution: Let X be an n-dimensional vector space and $\{e_1, \ldots, e_n\}$ a basis of X. Any $x, y \in X$ can be written uniquely as

$$x = \sum_{j=1}^{n} \alpha_j e_j$$
 and $y = \sum_{j=1}^{n} \beta_j e_j$.

Since $x \neq y$, there exists at least one $j_0 \in \{1, \ldots, n\}$ such that $\alpha_{j_0} \neq \beta_{j_0}$. Consider the linear functional $f: X \longrightarrow K$ defined by $f(e_j) = \delta_{jj_0}$. Using linearity of f,

$$f(x) = f\left(\sum_{j=1}^{n} \alpha_j e_j\right) = \sum_{j=1}^{n} \alpha_j f(e_j) = \alpha_{j_0}.$$
$$f(y) = f\left(\sum_{j=1}^{n} \beta_j e_j\right) = \sum_{j=1}^{n} \beta_j f(e_j) = \beta_{j_0}.$$

Clearly, $f(x) \neq f(y)$.

12. If f_1, \ldots, f_p are linear functionals on an n-dimensional vector space X, where p < n, show that there is a vector $x \neq 0$ in X such that $f_1(x) = 0, \ldots, f_p(x) = 0$. What consequences does this result have with respect to linear equations?

Solution:

13. (Linear extension) Let Z be a proper subspace of an n-dimensional vector space X, and let f be a linear functional on Z. Show that f can be extended linearly to X, that is, there is a a linear functional \tilde{f} on X such that $\tilde{f}|_{Z} = f$.

Solution:

14. Let the functional f on \mathbb{R}^2 be defined by $f(x) = 4\xi_1 - 3\xi_2$, where $x = (\xi_1, \xi_2)$. Regard \mathbb{R}^2 as the subspace of \mathbb{R}^3 given by $\xi_3 = 0$. Determine all linear extensions \tilde{f} of f from \mathbb{R}^2 to \mathbb{R}^3 .

Solution:

15. Let $Z \subset \mathbb{R}^3$ be the subspace represented by $\xi_2 = 0$ and let f on Z be defined by $f(x) = \frac{\xi_1 - \xi_3}{2}$. Find a linear extension \tilde{f} of f to \mathbb{R}^3 such that $\tilde{f}(x_0) = k$ (a given constant), where $x_0 = (1, 1, 1)$. Is \tilde{f} unique?

Solution: