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1 Metric Spaces

1.1 Metric Space.

Definition 1.1.1.

1. A metric, d on X is a function defined on X ×X such that for all x, y, z ∈ X, we
have:

(M1) d is real-valued, finite and nonnegative.

(M2) d(x, y) = 0 if and only if x = y.

(M3) d(x, y) = d(y, x). (Symmetry).

(M4) d(x, y) ≤ d(x, z) + d(z, y). (Triangle Inequality).

2. A metric subspace (Y, d̃) of (X, d) is obtained if we take a subset Y ⊂ X and
restrict d to Y × Y ; thus the metric on Y is the restriction

d̃ = d|Y×Y .

d̃ is called the metric induced on Y by d.

3. We take any set X and on it the so-called discrete metric for X, defined by

d(x, y) =

{
1 if x 6= y,

0 if x = y.

This space (X, d) is called a discrete metric space.

• Discrete metric space is often used as (extremely useful) counterexamples to
illustrate certain concepts.

1. Show that the real line is a metric space.

Solution: For any x, y ∈ X = R, the function d(x, y) = |x− y| defines a metric
on X = R. It can be easily verified that the absolute value function satisfies the
axioms of a metric.

2. Does d(x, y) = (x− y)2 define a metric on the set of all real numbers?

Solution: No, it doesn’t satisfy the triangle inequality. Choose x = 3, y = 1 and
z = 2, then

d(3, 1) = (3− 1)2 = 22 = 4

but
d(3, 2) + d(2, 1) = (3− 2)2 + (2− 1)2 = 2.
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3. Show that d(x, y) =
√
|x− y| defines a metric on the set of all real numbers.

Solution: Fix x, y, z ∈ X = R, we need to verify the axioms of a metric. (M1)
to (M3) follows easily from properties of absolute value. To verify (M4), for any
x, y, z ∈ R we have[

d(x, y)
]2

= |x− y| ≤ |x− z|+ |z − y|

≤ |x− z|+ |z − y|+ 2
√
|x− z|

√
|z − y|

= (
√
|x− z|+

√
|z − y|)2

=
[
[d(x, z) + d(z, y)

]2

.

Taking square root on both sides yields the triangle inequality.

4. Find all metrics on a set X consisting of two points. Consisting of one point only.

Solution: If X has only two points, then the triangle inequality property is a
consequence of (M1) to (M3). Thus, any functions satisfy (M1) to (M3) is a
metric on X. If X has only one point, say, x0, then the symmetry and triangle
inequality property are both trivial. However, since we require d(x0, x0) = 0, any
nonnegative function f(x, y) such that f(x0, x0) = 0 is a metric on X.

5. Let d be a metric on X. Determine all constants k such that the following is a metric
on X

(a) kd,

Solution: First, note that if X has more than one point, then the zero func-
tion cannot be a metric on X; this implies that k 6= 0. A simple calculation
shows that any positive real numbers k lead to kd being a metric on X.

(b) d+ k.

Solution: For d + k to be a metric on X, it must satisfy (M2). More
precisely, if x = y, then d(x, y) + k must equal to 0; but since d is a metric
on X, we have that d(x, y) = 0. This implies that d(x, y)+k = k = 0. Thus,
k must be 0.

6. Show that d(x, y) = sup
j∈N
|ξj − ηj| satisfies the triangle inequality for any x, y in l∞.
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Solution: Fix x = (ξj), y = (ηj) and z = (ζj) in l∞. Usual triangle inequality
on real numbers yields

|ξj − ηj| ≤ |ξj − ζj|+ |ζj − ηj|
≤ sup

j∈N
|ξj − ζj|+ sup

j∈N
|ζj − ηj|

= d(x, z) + d(z, y).

Taking supremum over j ∈ N on both sides gives the desired inequality.

7. If A is the subspace of l∞ consisting of all sequences of zeros and ones, what is the
induced metric on A?

Solution: For any distinct x, y ∈ A, d(x, y) = 1 since they are sequences of zeros
and ones. Thus, the induced metric on A is the discrete metric.

8. Show that another metric d̃ on C[a, b] is defined by

d̃(x, y) =

∫ b

a

|x(t)− y(t)| dt.

Solution: (M1) and (M3) are satisfied, as we readily see. For (M4),

d(x, y) =

∫ b

a

|x(t)− y(t)| dt ≤
∫ b

a

|x(t)− z(t)|+ |z(t)− y(t)| dt

= d(x, z) + d(z, y)

For (M2), the if statement is obvious. For the only if statement, suppose d(x, y) =
0. Then ∫ b

a

|x(t)− y(t)| dt = 0 =⇒ |x(t)− y(t)| = 0 for all t ∈ [a, b]

since the integrand |x− y| is a continuous function on [a, b].

9. Show that the discrete metric is in fact a metric.

Solution: (M1) to (M4) can be checked easily using definition of the discrete
metric.

10. (Hamming distance) Let X be the set of all ordered triples of zeros and ones.
Show that X consists of eight elements and a metric d on X is defined by d(x, y) =
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number of places where x and y have different entries. (This space and similar spaces
of n-tuples play a role in switching and automata theory and coding. d(x, y) is called
the Hamming distance between x and y.

Solution: X has 23 = 8 elements. Consider the function d defined above. (M1)
to (M3) follows easily by definition. Verifying (M4) is a little tricky, but still
doable.

• Note that (M4) is trivial if x, y, z ∈ X are not distinct, so suppose they
are distinct; this assumption together with definiton of d both imply that
d(x, y), d(x, z), d(z, y) has 1 as their mininum and 3 as their maximum.

• (M4) is trivial if d(x, y) = 1 or d(x, y) = 2, so consider the case when
d(x, y) = 3. It can then be shown that for any z 6= x, y, we have that
d(x, z) + d(z, y) = 3.

Thus, (M4) is satisfied for any x, y, z ∈ X and we conclude that d is a metric on
X.

11. Prove the generalised triangle inequality.

d(x1, xn) ≤ d(x1, x2) + d(x2, x3) + . . .+ d(xn−1, xn).

Solution: We prove the generalised triangle inequality by induction. The case
n = 3 follows from definition of a metric. Suppose the statement is true for n = k.
For n = k + 1,

d(x1, xk+1) ≤ d(x1, xk) + d(xk, xk+1)

≤ d(x1, x2) + d(x2, x3) + . . .+ d(xk−1, xk) + d(xk, xk+1)

where the last inequality follows from the induction hypothesis. Since k ≥ 3 is
arbitrary, the statement follows from induction.

12. (Triangle inequality) The triangle inequality has several useful consequences. For
instance, using the generalised triangle inequality, show that

|d(x, y)− d(z, w)| ≤ d(x, z) + d(y, w).

Solution: Suppose (X, d) is a metric space. For any x, y, z, w in X, the gener-
alised triangle inequality yields

d(x, y) ≤ d(x, z) + d(z, w) + d(w, y)

=⇒ d(x, y)− d(z, w) ≤ d(x, z) + d(w, y)
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= d(x, z) + d(y, w)
[

by (M3)
]
.

d(z, w) ≤ d(z, x) + d(x, y) + d(y, w)

=⇒ d(z, w)− d(x, y) ≤ d(z, x) + d(y, w)

= d(x, z) + d(y, w)
[

by (M3)
]
.

Combining these two inequalities yields the desired statement.

13. Using the triangle inequality, show that

|d(x, z)− d(y, z)| ≤ d(x, y).

Solution: Suppose (X, d) is a metric space. For any x, y, z in X, (M4) yields:

d(x, z) ≤ d(x, y) + d(y, z)

=⇒ d(x, z)− d(y, z) ≤ d(x, y)

d(y, z) ≤ d(y, x) + d(x, z)

=⇒ d(y, z)− d(x, z) ≤ d(y, x) = d(x, y) by (M3) .

Combining these two inequalities yields the desired statement.

14. (Axioms of a metric) (M1) to (M4) could be replaced by other axioms without
changing the definition. For instance, show that (M3) and (M4) could be obtained
from (M2) and

d(x, y) ≤ d(z, x) + d(z, y). (†)

Solution: We first prove (M3). Fix x, y ∈ X. Choose z = y, then

d(x, y)− d(y, x) ≤ d(z, x) + d(z, y)− d(y, x)

= d(y, x) + d(y, y)− d(y, x) = 0 from (M2).

Choose z = x, then

d(y, x)− d(x, y) ≤ d(z, y) + d(z, x)− d(x, y)

= d(x, y) + d(x, x)− d(x, y) = 0 from (M2).

Combining these two inequalities gives |d(x, y) − d(y, x)| ≤ 0 =⇒ d(x, y) =
d(y, x) for any x, y ∈ X.

To prove (M4), we apply (†) twice. More precisely, for any x, y, z ∈ X,

d(x, y) ≤ d(z, x) + d(z, y)

≤ d(w, z) + d(w, x) + d(z, y)

(M4) follows from (M2) and choosing w = x.

Page 6



15. Show that the nonnegativity of a metric follows from (M2) to (M4).

Solution: The only inequality we have is (M4), so we start from (M4). Choose
any x ∈ X. If z = x, then for any y ∈ X,

d(x, z) ≤ d(x, y) + d(y, z)
[

from (M4)
]

=⇒ d(x, x) ≤ d(x, y) + d(y, x) = 2d(x, y)
[

from (M3)
]

=⇒ d(x, y) ≥ 0
[

from (M2)
]

Since x, y ∈ X were arbitrary, this shows the nonnegativity of a metric.
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1.2 Further Examples of Metric Spaces.

We begin by stating three important inequalities that are indispensable in various theo-
retical and practical problems.

Holder inequality :
∞∑
j=1

|ξjηj| ≤

(
∞∑
k=1

|ξk|p
) 1

p
(
∞∑

m=1

|ηm|q
) 1

q

,

where p > 1 and
1

p
+

1

q
= 1.

Cauchy-Schwarz inequality :
∞∑
j=1

|ξjηj| ≤

(
∞∑
k=1

|ξk|2
) 1

2
(
∞∑

m=1

|ηm|2
) 1

2

.

Minkowski inequality :

(
∞∑
j=1

|ξj + ηj|p
) 1

p

≤

(
∞∑
k=1

|ξk|p
) 1

p

+

(
∞∑

m=1

|ηm|p
) 1

p

,

where p > 1.

1. For x = (ξj) and y = (ηj), the function

d(x, y) =
∞∑
j=1

1

2j

|ξj − ηj|
1 + |ξj − ηj|

defines a metric on the sequence space s. Show that we can obtain another metric
by replacing 1/2j with µj > 0 such that

∑
µj converges.

Solution: The proof for triangle inequality is identical. To ensure finiteness of
d, we require that

∑
µj converges since

d(x, y) =
∞∑
j=1

µj
|ξj − ηj|

1 + |ξj − ηj|
<

∞∑
j=1

µj <∞.

2. Suppose we have that for any α, β positive numbers,

αβ ≤ αp

p
+
βq

q
.

where p, q are conjugate exponents. Show that the geometric mean of two positive
numbers does not exceed the arithmetic mean.

Solution: Choose p = q = 2, which are conjugate exponents since
1

2
+

1

2
= 1;

we then have ab ≤ a2

2
+
b2

2
. Multiplying by 2 and adding 2ab to both sides yield:

2ab+ 2ab ≤ a2 + b2 + 2ab
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4ab ≤ (a+ b)2

ab ≤
(
a+ b

2

)2

.

Since ab is a positive quantity, the desired statement follows from taking square
root of both sides.

3. Show that the Cauchy-Schwarz inequality for sums implies

(|ξ1|+ · · ·+ |ξn|)2 ≤ n(|ξ1|2 + . . .+ |ξn|2).

Solution: An equivalent formulation of the Cauchy-Schwarz inequality for
(finite) sums is (

n∑
j=1

|ξjηj|

)2

≤

(
n∑

k=1

|ξk|2
)(

n∑
m=1

|ηm|2
)
.

Choosing ηj = 1 for all j ≥ 1 yields the desired inequality.

4. (Space lp) Find a sequence which converges to 0, but is not in any space lp, where
1 ≤ p < +∞.

Solution: Consider the sequence (bj) with numbers a(k), N(k) times, where for

k ≥ 1, a(k) =
1

k
and N(k) = 2k, i.e.

(bj) =

 1, 1,︸︷︷︸
2 times

1

2
,
1

2
,
1

2
,
1

2
,︸ ︷︷ ︸

4 times

1

3
,
1

3
,
1

3
,
1

3
,
1

3
,
1

3
,
1

3
,
1

3
,︸ ︷︷ ︸

8 times

. . . . . .

 .

By construction, (bj) −→ 0 as j −→ ∞ and
∞∑
j=1

|bj|p =
∞∑
j=1

2j

(
1

j

)p

. However,

since for all p ≥ 1,
2j

jp
6−→ 0 as j −→ ∞, Divergence Test for Series implies

that the series
∞∑
j=1

|bj|p diverges for all p ≥ 1. By definition, this means that

(bj) /∈ lp for all p ≥ 1.
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5. Find a sequence x which is in lp with p > 1 but x /∈ l1.

Solution: The sequence (an) =

(
1

n

)
belongs to lp with p > 1 but not l1.

6. (Diameter, bounded set) The diameter δ(A) of a nonempty set A in a metric
space (X, d) is defined to be

δ(A) = sup
x,y∈A

d(x, y).

A is said to be bounded if δ(A) <∞. Show that A ⊂ B implies δ(A) ≤ δ(B).

Solution: This follows from property of least upper bound.

7. Show that δ(A) = 0 if and only if A consists of a single point.

Solution: Suppose δ(A) = 0, this means that d(x, y) = 0 for all x, y ∈ A; (M2)
then implies x = y, i.e. A has only one element. Conversely, suppose that A
consists of a single point, say x; (M2) implies that δ(A) = 0 since d(x, x) = 0.

8. (Distance between sets) The distance D(A,B) between two nonempty subsets A
and B of a metric space (X, d) is defined to be

D(A,B) = inf
a∈A
b∈B

d(a, b).

Show that D does not define a metric on the power set of X. (For this reason we use
another symbol, D, but one that still reminds us of d.)

Solution: Consider X = {1, 2, 3} with d being the absolute value function, and
consider its power set A = {1} and B = {1, 2}. By construction, D(A,B) = 0
but A 6= B.

9. If A ∩B 6= ∅, show that D(A,B) = 0 in Problem 8. What about the converse?

Solution: If A ∩B 6= ∅, then for any x ∈ A ∩B,

0 ≤ D(A,B) ≤ d(x, x) = 0 =⇒ D(A,B) = 0.

The converse does not hold. ConsiderX = Q, withA = {0} andB =

{
1,

1

2
,
1

3
, . . .

}
.

Then D(A,B) = lim
n→∞

d(0, 1/n) = lim
n→∞

1

n
= 0, but A ∩B = ∅.
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10. The distance D(x,B) from a point x to a non-empty subset B of (X, d) is defined to
be

D(x,B) = inf
b∈B

d(x, b)

in agreement with Problem 8. Show that for any x, y ∈ X,

|D(x,B)−D(y,B)| ≤ d(x, y).

Solution: Let x, y ∈ X. For any z ∈ B, we have

D(x,B) ≤ d(x, z) ≤ d(x, y) + d(y, z).

D(y,B) ≤ d(y, z) ≤ d(y, x) + d(x, z).

Taking infimum over all z ∈ B on the RHS of both inequalities yields

D(x,B) ≤ d(x, y) +D(y,B).

D(y,B) ≤ d(x, y) +D(x,B).

Rearranging and combining these two together gives the desired inequality.

Remark : This result says that for any nonempty set B ⊂ X, the function x 7→
D(x,B) is Lipschitz with Lipschitz constant 1.

11. If (X, d) is any metric space, show that another metric on X is defined by

d̃(x, y) =
d(x, y)

1 + d(x, y)

and X is bounded in the metric d̃.

Solution: Note that X is bounded in the metric d̃ since d̃(x, y) ≤ 1 <∞. (M1)
to (M3) are satisfied, as we readily see. To show that d̃ satisfies (M4), consider

the auxiliary function f defined on R by f(t) =
t

1 + t
. Differentiation gives

f ′(t) =
1

(1 + t)2
, which is positive for t > 0. Hence f is monotone increasing.

Consequently, d(x, y) ≤ d(x, z) + d(z, y) implies

d̃(x, y) =
d(x, y)

1 + d(x, y)
≤ d(x, z) + d(z, y)

1 + d(x, z) + d(z, y)

=
d(x, z)

1 + d(x, z) + d(z, y)
+

d(z, y)

1 + d(x, z) + d(z, y)

≤ d(x, z)

1 + d(x, z)
+

d(z, y)

1 + d(z, y)

= d̃(x, z) + d̃(z, y).
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12. Show that the union of two bounded sets A and B in a metric space is a bounded
set. (Definition in Problem 6.)

Solution: Let X = A ∪ B, we need to show δ(X) = sup
x,y∈X

d(x, y) <∞. Observe

that if x, y are both in A or B, then d(x, y) < ∞ by assumption, so WLOG it
suffices to prove that sup

x∈A,y∈B
d(x, y) <∞.

• Consider the first case where A ∩B 6= ∅. For any fixed z ∈ A ∩B,

d(x, y) ≤ d(x, z) + d(z, y) ≤ δ(A) + δ(B) <∞.

The claim follows by taking supremum over x ∈ A, y ∈ B in both sides of
the inequality.

• Consider the second case where A ∩ B = ∅. For every ε > 0, there exists
x∗ ∈ A and y∗ ∈ B such that d(x∗, y∗) ≤ D(A,B) + ε. For any x ∈ A and
y ∈ B,

d(x, y) ≤ d(x, x∗) + d(x∗, y∗) + d(y∗, y)

≤ δ(A) +D(A,B) + ε+ δ(B).

Letting ε −→ 0, and taking supremum over x ∈ A, y ∈ B, we obtain the
desired result.

13. (Product of metric spaces) The Cartesian product X = X1 × X2 of two metric
spaces (X1, d1) and (X2, d2) can be made into a metric space (X, d) in many ways.
For instance, show that a metric d is defined by

d(x, y) = d1(x1, y1) + d2(x2, y2),

where x = (x1, x2), y = (y1, y2).

Solution:

• (M1) is satisfied since we are summing two real-valued, finite and nonneg-
ative functions.

• Suppose d(x, y) = 0, this is equivalent to d1(x1, y1) = d2(x2, y2) = 0 since
d1 and d2 are both nonnegative functions. This implies x1 = y1 and x2 = y2

or equivalently x = y. Conversely, suppose x = y, then

x1 = y1 =⇒ d1(x1, y1) = 0 and x2 = y2 =⇒ d2(x2, y2) = 0.

Consequently, d(x, y) = d1(x1, y1) + d2(x2, y2) = 0.

• (M3) is satisfied since for any x, y ∈ X1 ×X2,

d(x, y) = d1(x1, y1) + d2(x2, y2) = d1(y1, x1) + d2(y2, x2) = d(y, x).
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• (M4) follows from combining triangle inequalities of d1 and d2. More pre-
cisely, let z = (z1, z2) ∈ X1 ×X2, then we have from (M4) of d1 and d2:

d1(x1, y1) ≤ d1(x1, z1) + d1(z1, y1).

d2(x2, y2) ≤ d2(x2, z2) + d2(z2, y2).

=⇒ d(x, y) = d1(x1, y1) + d2(x2, y2)

≤ d1(x1, z1) + d1(z1, y1) + d2(x2, z2) + d2(z2, y2)

=
[
d1(x1, z1) + d2(x2, z2)

]
+
[
d1(z1, y1) + d2(z2, y2)

]
= d(x, z) + d(z, y).

14. Show that another metric on X in Problem 13 is defined by

d̃(x, y) =
√
d1(x1, y1)2 + d2(x2, y2)2.

Solution: A similar argument in Problem 13 shows that (M1) to (M3) are sat-
isfied. Let z = (z1, z2) ∈ X1 ×X2, then we have from (M4) of d1 and d2:

d1(x1, y1) ≤ d1(x1, z1) + d1(z1, y1).

d2(x2, y2) ≤ d2(x2, z2) + d2(z2, y2).

Squaring both sides yields:

d1(x1, y1)2 ≤ d1(x1, z1)2 + d1(z1, y1)2 + 2d1(x1, z1)d1(z1, y1)

d2(x2, y2)2 ≤ d2(x2, z2)2 + d2(z2, y2)2 + 2d2(x2, z2)d2(z2, y2)

Summing these two inequalities and applying definition of d̃, we obtain:

d̃(x, y)2 ≤ d̃(x, z)2 + d̃(z, y)2 + 2
[
d1(x1, z1)d1(z1, y1) + d2(x2, z2)d2(z2, y2)

]
= d̃(x, z)2 + d̃(z, y)2 + 2

2∑
j=1

dj(xj, zj)dj(zj, yj)

≤ d̃(x, z)2 + d̃(z, y)2 + 2

(
2∑

j=1

dj(xj, zj)
2

) 1
2
(

2∑
j=1

dj(zj, yj)
2

) 1
2

= d̃(x, z)2 + d̃(z, y)2 + 2d̃(x, z)d̃(z, y)

=
[
d̃(x, z) + d̃(z, y)

]2

where the inequality follows from Cauchy-Schwarz inequality for sums. (M4)
follows from taking square root of both sides.

15. Show that a third metric on X in Problem 13 is defined by

d̂(x, y) = max{d1(x1, y1), d2(x2, y2)}.

Page 13



Solution: A similar argument in Problem 13 shows that (M1) to (M3) are sat-
isfied. Let z = (z1, z2) ∈ X1 ×X2, then

d̂(x, y) = max{d1(x1, y1), d2(x2, y2)}
≤ max{d1(x1, z1) + d1(z1, y1), d2(x2, z2) + d2(z2, y2)}
≤ max{d1(x1, z1), d2(z2, z2)}+ max{d1(z1, y1), d2(z2, y2)}
= d̂(x, z) + d̂(z, y).

where we repeatedly used the fact that |a| ≤ max{|a|, |b|} for any a, b ∈ R.

(The metrics in Problem 13 to 15 are of practical importance, and other metrics on
X are possible.)
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1.3 Open Set, Closed Set, Neighbourhood.

Definition 1.3.1.

1. Given a point x0 ∈ X and a real number r > 0, we define three types of sets:

Br(x0) = {x ∈ X : d(x, x0) < r} (Open ball).

B̃r(x0) = {x ∈ X : d(x, x0) ≤ r} (Closed ball).

Sr(x0) = {x ∈ X : d(x, x0) = r} (Sphere).

In all three cases, x0 is called the center and r the radius.

2. A subset M of a metric space X is said to be open if it contains a ball about each
of its points. A subset K of X is said to be closed if its complement (in X) is
open, that is, KC = X \K is open.

3. We call x0 an interior point of a set M ⊂ X if M is a neighbourhood of x0. The
interior of M is the set of all interior points of M and may be denoted by Int(M).

• By neighbourhood of x0 we mean any subset of X which contains an ε-neighbourhood
of x0.

• Int(M) is open and is the largest open set contained in M .

Definition 1.3.2. A topological space (X, τ) is a set X together with a collection τ of
subsets of X such that τ satisfies the following properties:
(a) ∅ ∈ τ , X ∈ τ .

(b) The union of any members of τ is a member of τ .

(c) The intersection of finitely many members of τ is a member of τ .

• From this definition, we have that a metric space is a topological space.

Definition 1.3.3 (Continuous mapping). Let X = (X, d) and Y = (Y, d̃) be metric
spaces. A mapping T : X −→ Y is said to be continuous at a point x0 ∈ X if for every
ε > 0, there is a δ > 0 such that

d̃(Tx, Tx0) < ε for all x satisfying d(x, x0) < δ.

T is said to be continuous if it is continuous at every point of X.

Theorem 1.3.4 (Continuous mapping). A mapping T of a metric space X into a metric
space Y is continuous if and only if the inverse image of any open subset of Y is an open
subset of X.

Definition 1.3.5. Let M be a subset of a metric space X. A point x0 of X (which may
or may not be a point of M) is called an accumulation point of M (or limit point of
M) if every neighbourhood of x0 contains at least one point y ∈M distinct from x0. The
set consisting of the points of M and the accumulation points of M is called the closure
of M and is denoted by M̄ . It is the smallest closed set containing M .
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Definition 1.3.6 (Dense set, separable space).

1. A subset M of a metric space X is said to be dense in X if M̄ = X.

• Hence, if M is dense in X, then every ball in X, no matter how small, will
contain points of M ; in other words, in this case there is no point x ∈ X which
has a neighbourhood that does not contain points of M .

2. X is said to be separable if it has a countable dense subset of X.

1. Justify the terms “open ball” and “closed ball” by proving that

(a) any open ball is an open set.

Solution: Let (X, d) be a metric space. Consider an open ball Br(x0) with
both center x0 ∈ X and radius r > 0 fixed. For any x ∈ Br(x0), we have
d(x, x0) < r. We claim that Bε(x) with ε = r − d(x, x0) > 0 is contained in
Br(x0). Indeed, for any y ∈ Bε(x),

d(y, x0) ≤ d(y, x) + d(x, x0)

< ε+ d(x, x0)

= ε+ r − ε = r.

Since x ∈ Br(x0) was arbitrary, this shows that Br(x0) contains a ball about
each of its points, and thus is an open set in X. Since x0 ∈ X and r > 0
were arbitrary, this shows that any open ball in X is an open set in X.

(b) any closed ball is a closed set.

Solution: Let (X, d) be a metric space. Consider a closed ball B̃r(x0) with
both center x0 ∈ X and radius r > 0 fixed. To show that it is closed in X, we
need to show that B̃r(x0)C = X \ B̃r(x0) is open in X. For any x ∈ B̃r(x0)C ,
we have d(x, x0) > r. We claim that Bε(x) with ε = d(x, x0) − r > 0 is
contained in B̃r(x0)C . Indeed, for any y ∈ Bε(x), triangle inequality of a
metric gives:

d(x, x0) ≤ d(x, y) + d(y, x0)

=⇒ d(y, x0) ≥ d(x, x0)− d(x, y)

= d(x, x0)− d(y, x)

> d(x, x0)− ε = r.

Since x ∈ B̃r(x0)C was arbitrary, this shows that B̃r(x0)C contains a ball
about each of its points, and thus is an open set in X or equivalently B̃r(x0)
is a closed set in X. Since x0 ∈ X and r > 0 were arbitrary, this shows that
any closed ball in X is a closed set in X.

2. What is an open ball B1(x0) in R? In C? In C[a, b]?
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Solution:

• An open ball B1(x0) in R is the open interval (x0 − 1, x0 + 1).

• An open ball B1(x0) in C is the open disk D = {z ∈ C : |z − x0| < 1}.

• Given x0 ∈ C[a, b], an open ball B1(x0) in C[a, b] is any continuous function
x ∈ C[a, b] satisfying sup

t∈[a,b]

|x(t)− x0(t)| < 1.

3. Consider C[0, 2π] and determine the smallest r such that y ∈ B̃(x; r), where x(t) =
sin(t) and y(t) = cos(t).

Solution: We want to maximise y(t) − x(t) over t ∈ [0, 2π]. Consider z(t) =
cos(t) − sin(t), differentiating gives z′(t) = − sin(t) − cos(t), which is equal to 0
if and only if sin(t) + cos(t) = 0, or

tan(t) = −1 =⇒ tc =
3π

4
,
7π

4
.

Evaluating z(t) at tc gives z(tc) = ±
√

2. Thus, the smallest r > 0 such that
y ∈ B̃r(x) is r =

√
2.

4. Show that any nonempty set A ⊂ (X, d) is open if and only if it is a union of open
balls.

Solution: Suppose A is a nonempty open subset of X. For any x ∈ A, there

exists εx > 0 such that Bεx(x) ⊂ A. We claim that
⋃
x∈A

Bεx(x) = A. It is clear

that A ⊂
⋃
x∈A

Bεx(x). Suppose x0 ∈
⋃
x∈A

Bεx(x), then x0 ∈ Bεx0
(x0) ⊂ A =⇒⋃

x∈A

Bεx(x) ⊂ A. Consequently, A is a union of open balls.

Conversely, suppose A ⊂ (X, d) is a union of open balls, which is also a union
of open sets since open balls are open in X. Let Λ be an indexing set (which

might be uncountable), we can write A as A =
⋃
n∈Λ

Un, where Un is open. Fix any

x ∈ A, there exists an j ∈ Λ such that x ∈ Uj. Since Uj is open, there exists an
ε > 0 such that

x ∈ Bε(x) ⊂ Uj ⊂
⋃
n>0

Un = A.

Since x ∈ A is arbitrary, A ⊂ (X, d) is open.

5. It is important to realise that certain sets may be open and closed at the same time.
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(a) Show that this is always the case for X and ∅.

Solution: ∅ is open since ∅ contains no elements. For any x ∈ X, choose
ε = 1 > 0, then Bε(x) ⊂ X by definition. This immediately implies that ∅
and X are both closed since ∅C = X and XC = ∅ are both open.

(b) Show that in a discrete metric space X, every subset is open and closed.

Solution: Consider any subset A in X. For any x ∈ A, there exists an open
ball around x that is contained in A by the structure of the discrete metric.
Indeed, with 0 < ε < 1, Bε(x) = {x} ⊂ A. Similarly, A is closed by the same
argument. Indeed, for any y ∈ AC , with 0 < ε < 1, Bε(y) = {y} ⊂ AC .

6. If x0 is an accumulation point of a set A ⊂ (X, d), show that any neighbourhood of
x0 contains infinitely many points of A.

Solution: Denote by N a neighbourhood of x0, by definition it contains an ε-
neighbourhood of x0. Observe that for εj = ε/2j, {Bεj(x0)}∞j=0 are also neigh-
bourhoods of x0. Since x0 is an accumulation point of a set A ⊂ (X, d), by
definition each Bεj(x0) contains at least one point yj ∈ A distinct from x0. By

construction, {yj}∞j=0 ⊂
∞⋃
j=0

Bεj(x0) = Bε(x0) ⊂ N . Since N was an arbitrary

neighbourhood of x0, the statement follows.

7. Describe the closure of each of the following subsets.

(a) The integers on R,

(b) the rational numbers on R,

(c) the complex numbers with rational real and imaginary parts in C,

(d) the disk {z | |z| < 1} ⊂ C.

Solution: (a) Z (b) R (c) C (d) The closed unit disk D = {z ∈ C : |z| ≤ 1}.
Note that (b) and (c) follows from the fact that Q are dense in R.

8. Show that the closure B(x0; r) of an open ball B(x0; r) in a metric space can differ
from the closed ball B̃(x0; r).

Solution: Consider a discrete metric space (X, d), and an open ball B1(x) = {x}
with x ∈ X. Then B1(x) = {x} but B̃1(x) = X.
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9. Show that

(a) A ⊂ Ā,

Solution: This follows immediately from definition of Ā.

(b) ¯̄A = Ā,

Solution: It is clear from definition of closure that Ā ⊂ ¯̄A. Now suppose
x ∈ ¯̄A. Either x ∈ Ā or x is an accumulation point of Ā, but accumulation
points of Ā are precisely those of A. Thus in both cases x ∈ Ā and ¯̄A ⊂ Ā.
Combining these two set inequalities yields the desired set equality.

(c) A ∪B = Ā ∪ B̄,

Solution: Suppose x ∈ A ∪B. Either x ∈ A ∪B, and either

• x ∈ A ⊂ Ā ⊂ Ā ∪ B̄, or

• x ∈ B ⊂ B̄ ⊂ Ā ∪ B̄, or

• x ∈ A∩B ⊂ Ā∩B̄ ⊂ Ā∪B̄, since A ⊂ Ā & B ⊂ B̄ =⇒ A∩B ⊂ Ā∩B̄.

or x is an accumulation point of A ∪B, but it is contained in Ā ∪ B̄ by the
same reasoning as above. Thus, A ∪B ⊂ Ā ∪ B̄.

Now suppose x ∈ Ā ∪ B̄. Either

• x ∈ Ā ⊂ A ∪B, since A ⊂ A ∪B, or

• x ∈ B̄ ⊂ A ∪B, since B ⊂ A ∪B, or

• x ∈ Ā ∩ B̄ ⊂ A ∪B, since A ∩B ⊂ A ∪B.

Thus, Ā∪B̄ ⊂ A ∪B. Combining these two set inequalities yields the desired
set equality.

(d) A ∩B ⊂ Ā ∩ B̄.

Solution: Suppose x ∈ A ∩B. Either x ∈ A ∩ B =⇒ x ∈ A ⊂ Ā and x ∈
B ⊂ B̄ =⇒ x ∈ Ā∩ B̄, or x is an accumulation point of A∩B. This means
that x is an accumulation point of both A and B or equivalently x ∈ Ā∩ B̄.
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10. A point x not belonging to a closed set M ⊂ (X, d) always has a nonzero distance
from M . To prove this, show that x ∈ Ā if and only if D(x,A) = 0; here A is any
nonempty subset of X.

Solution: If x ∈ A ⊂ Ā, then D(x,A) = 0 since inf
y∈A

d(x, y) is attained at y = x,

so suppose x ∈ Ā \ A. By definition x is an accumulation point, so each neigh-
bourhood Bε(x) of x contains at least one point yε ∈ A distinct from x, with
d(yε, x) < ε. Taking ε −→ 0 gives D(x,A) = 0.

Conversely, suppose D(x,A) = inf
y∈A

d(x, y) = 0. If this infimum is attained, then

x ∈ A ⊂ Ā, so suppose not. One property of infimum states that for every ε > 0,
there exists an yε ∈ A such that d(yε, x) < 0 + ε = ε. But this implies that x is
an accumulation point of A.

11. (Boundary) A boundary point x of a set A ⊂ (X, d) is a point of X (which may or
may not belong to A) such that every neighbourhood of x contains points of A as
well as points not belonging to A; and the boundary (or frontier) of A is the set of
all boundary points of A. Describe the boundary of

(a) the intervals (-1,1), [-1,1), [-1,1] on R;

(b) the set of all rational numbers Q on R;

(c) the disks {z ∈ C : |z| < 1} ⊂ C and {z ∈ C : |z| ≤ 1} ⊂ C.

Solution: (a) {−1, 1}. (c) The unit circle on the complex plane C, {z ∈ C : |z| =
1}. (b) Note that the interior of Q ⊂ R is empty since for any ε > 0, the open
ball Bε(x) with x ∈ Q is not contained in Q; indeed, Bε(x) contains at least one
irrational number. Since the closure of Q in (R, | · |) is R, it follows that the
boundary of Q on R is R.

12. (Space B[a, b]) Show that B[a, b], a < b, is not separable.

Solution: Motivated by the proof of non-separability for the space l∞, consider
a subset A of B[a, b] consisting of functions that are defined as follows: for every
c ∈ [a, b], define fc as

fc(t) =

{
1 if t = c,

0 if t 6= c.

It is clear that A is uncountable. Moreover, the metric on B[a, b] shows that any
distinct f, g ∈ A must be of distance 1 apart. If we let each of these functions

f ∈ A be the center of a small ball, say, of radius
1

3
, these balls do not intersect

and we have uncountably many of them. If M is any dense set in B[a, b], each
of these nonintersecting balls must contain an element of M . Hence M cannot
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be countable. Since M was an arbitrary dense subset of B[a, b], this conclude
that B[a, b] cannot have countable dense subsets. Consequently, B[a, b] is not
separable by definition.

Remark : A general approach to show non-separability is to construct an uncount-
able family of pairwise disjoint open balls.

13. Show that a metric space X is separable if and only if X has a countable subset Y
with the following property: For every ε > 0 and every x ∈ X there is a y ∈ Y such
that d(x, y) < ε.

Solution: Suppose X is separable, by definition X has a countable dense subset
Y , with Ȳ = X. Let ε > 0 and fix an x ∈ X = Ȳ . Definition of Ȳ says that any ε-
neighbourhood of x contains at least one y ∈ Y distinct from x, with d(y, x) < ε.
Since x ∈ X was arbitrary, the statement follows.

Conversely, suppose X has a countable subset Y with the property given above.
Then any x ∈ X with that given property is either a point of Y (since then
d(x, x) = 0 < ε) or an accumulation point of Y . Hence, Ȳ = X and since Y is
countable, X is separable by definition.

14. (Continuous mapping) Show that a mapping T : X −→ Y is continuous if and
only if the inverse image of any closed set M ⊂ Y is a closed set in X.

Solution: The statement is a simple application of Theorem 1.5. It is useful to
observe that if M is any subset of Y , and M0 is the preimage (inverse image) of
M under T , then the preimage of Y \M is precisely X \M0. More precisely,

M0 = {x ∈ X : f(x) ∈M}.
X \M0 = MC

0 = {x ∈ X : f(x) /∈M} = {x ∈ X : f(x) ∈ Y \M}.

Suppose T is continuous. Let M ⊂ Y be closed and M0 be the preimage of M
under T . Since Y \M is open in Y , theorem above implies that its preimage
X \M0 is open in X, or equivalently M0 is closed in X. Conversely, suppose the
preimage of any closed set M ⊂ U is a closed set in X. This is equivalent to
saying that the preimage of any open set N ⊂ U is an open set in X (refer to
observation above). Thus, theorem above implies that T is continuous.

15. Show that the image of an open set under a continuous mapping need not be open.

Solution: Consider x(t) = sin(t), then x maps (0, 2π) to [−1, 1].
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1.4 Convergence, Cauchy Sequence, Completeness.

Definition 1.4.1. A sequence (xn) in a metric space X = (X, d) is said to converge or
to be convergent if there exists an x ∈ X such that

lim
n→∞

d(xn, x) = 0.

x is called the limit of (xn).

Lemma 1.4.2 (Boundedness, limit). Let X = (X, d) be a metric space.
(a) A convergent sequence in X is bounded and its limit is unique.

(b) If xn −→ x and yn −→ y in X, then d(xn, yn) −→ d(x, y).

Definition 1.4.3 (Cauchy sequence, completeness). A sequence (xn) in a metric space
X = (X, d) is said to be Cauchy if for every ε > 0, there is an N = N(ε) such that

d(xm, xn) < ε for every m,n > N.

The space X is said to be complete if every Cauchy sequence in X converges, that is,
has a limit which is an element of X.

Theorem 1.4.4. Every convergent sequence in a metric space is a Cauchy sequence.

Theorem 1.4.5 (Closure, closed set). Let M be a non-empty subset of a metric space
(X, d) and M̄ its closure.
(a) x ∈ M̄ if and only if there is a sequence (xn) in M such that xn −→ x.

(b) M is closed if and only if the situation xn ∈M , xn −→ x implies that x ∈M .

Theorem 1.4.6 (Complete subspace). A subspace M of a complete metric space X is
itself complete if and only if the set M is closed in X.

Theorem 1.4.7 (Continuous mapping). A mapping T : X −→ Y of a metric space (X, d)
into a metric space (Y, d̃) is continuous at a point x0 ∈ X if and only if

xn −→ x0 =⇒ Txn −→ Tx0.

• The only if direction is proved using ε-δ definition of continuity, whereas the if di-
rection is a proof by contradiction.
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1. (Subsequence) If a sequence (xn) in a metric space X is convergent and has limit
x, show that every subsequence (xnk

) of (xn) is convergent and has the same limit x.

Solution: Suppose we have a convergent sequence (xn) in a metric space (X, d),
with limit x ∈ X. By definition, for any given ε > 0, there exists an N1 = N1(ε)
such that d(xn, x) < ε for all n > N1. For any subsequence (xnk

) ⊂ (xn) choose
N = N1, then for all k > N (which implies that nk ≥ k > N by definition of a
subsequence), we have d(xnk

, x) < ε. The statement follows.

2. If (xn) is Cauchy and has a convergent subsequence, say, xnk
−→ x, show that (xn)

is convergent with the limit x.

Solution: Chhose any ε > 0. Since (xn) is Cauchy, there exists an N1 such that

d(xm, xn) <
ε

2
for all m,n > N1. Since (xn) has a convergent subsequence (xnk

)

(with limit x ∈ X), there exists an N2 such that d(xnk
, x) <

ε

2
for all k > N2.

Choose N = max{N1, N2}, then for all n > N we have (by triangle inequality)

d(xn, x) ≤ d(xn, xnk
) + d(xnk

, x) <
ε

2
+
ε

2
= ε

where we implicitly use the fact that nk ≥ m > N1 for the first bound and
nk ≥ k > N2 for the second bound. Since ε > 0 was arbitrary, this shows that
(xn) is convergent with the limit x ∈ X.

3. Show that xn −→ x if and only if for every neighbourhood V of x there is an integer
n0 such that xn ∈ V for all n > n0.

Solution: Suppose xn −→ x, then lim
n→∞

d(xn, x) = lim
n→∞

an = 0, where (an) is a

sequence of real numbers. Thus, given any ε > 0, there exists an N ∈ N such that
|an − 0| = d(xn, x) < ε for all n > N . In particular, we have that xn ∈ Bε(x) for
all n > N . Since ε > 0 was arbitrary, the statement follows by setting V = Bε(x)
and n0 = N = N(ε). Conversely, suppose (xn) is a sequence with the given
property in the problem. For a fixed ε > 0, if we set V = Bε(x), there exists an
n0 ∈ N such that xn ∈ V for all n > n0. In particular, we have that d(xn, x) < ε
for all n > n0. This shows that xn −→ x since ε > 0 was arbitrary.

4. (Boundedness) Show that a Cauchy sequence is bounded.

Solution: Choose any Cauchy sequence (xn) in a metric space (X, d). Given
any ε > 0, there exists an N such that d(xm, xn) < ε for all m,n > N . Choose
ε = 1 > 0, there exists Nε such that d(xm, xn) < 1 for all m,n > Nε. Let
α = max

j,k=1,...,Nε

d(xj, xk), and choose A = max{α, 1}. We see that d(xm, xn) < A

for all m,n ≥ 1. This shows that (xn) is bounded.
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5. Is boundedness of a sequence in a metric space sufficient for the sequence to be
Cauchy? Convergent?

Solution: It turns out that boundedness of a sequence in a metric space does
not imply Cauchy or convergent. Consider the sequence (xn), where xn = (−1)n;
it is clear that (xn) is bounded in (R, d), where d(xm, xn) = |xm − xn|.

• (xn) is not Cauchy in R since if we pick ε =
1

2
> 0, then for all N , there

exists m,n > N (we could choose m = N + 1, n = N + 2 for example) such

that d(xm, xn) = d(xN+1, xN+2) = 1 >
1

2
.

• (xn) is not convergent in R since it is not Cauchy.

6. If (xn) and (yn) are Cauchy sequences in a metric space (X, d), show that (an), where
an = d(xn, yn), converges. Give illustrative examples.

Solution: Let (xn) and (yn) be Cauchy sequences in a metric space (X, d) and
fix an ε > 0. By definition, there exists N1, N2 such that

d(xm, xn) <
ε

2
for all m,n > N1.

d(ym, yn) <
ε

2
for all m,n > N2.

Define a sequence (an), with an = d(xn, yn); observe that (an) is a sequence in R.
Thus to show that (an) converges, an alternative way is to show that (an) is a
Cauchy sequence. First, generalised triangle inequality of d yields the following
two inequalities:

am = d(xm, ym) ≤ d(xm, xn) + d(xn, yn) + d(yn, ym)

= d(xm, xn) + an + d(ym, yn)

=⇒ am − an ≤ d(xm, xn) + d(ym, yn).

an = d(xn, yn) ≤ d(xn, xm) + d(xm, ym) + d(ym, yn)

= d(xm, xn) + am + d(ym, yn)

=⇒ an − am ≤ d(xm, xn) + d(ym, yn).

Choose N = max{N1, N2}. Combining these inequalities yields:

|am − an| ≤ d(xm, xn) + d(ym, yn)

<
ε

2
+
ε

2
= ε for all m,n > N.

Since ε > 0 was arbitrary, this shows that the sequence (an) is Cauchy in R.
Consequently, (an) must converge.
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7. Give an indirect proof of Lemma 1.4-2(b).

Solution: We want to prove that if xn −→ x and yn −→ y in a metric space
(X, d), then d(xn, yn) −→ d(x, y). Choose any ε > 0. By definition, there exists
N1, N2 such that

d(xn, x) <
ε

2
for all n > N1.

d(yn, x) <
ε

2
for all n > N2.

Generalised triangle inequality of d yields the following two inequalities:

d(xn, yn) ≤ d(xn, x) + d(x, y) + d(y, yn)

=⇒ d(xn, yn)− d(x, y) ≤ d(xn, x) + d(yn, y).

d(x, y) ≤ d(x, xn) + d(xn, yn) + d(yn, y)

=⇒ d(x, y)− d(xn, yn) ≤ d(xn, x) + d(yn, y).

Now choose N = max{N1, N2}. Combining these inequalities yields:

|d(xn, yn)− d(x, y)| ≤ d(xn, x) + d(yn, y)

<
ε

2
+
ε

2
= ε for all n > N.

This proves the statement since ε > 0 was arbitrary.

8. If d1 and d2 are metrics on the same set X and there are positive numbers a and b
such that for all x, y ∈ X,

ad1(x, y) ≤ d2(x, y) ≤ bd1(x, y), (†)

show that the Cauchy sequences in (X, d1) and (X, d2) are the same.

Solution: Suppose (xn) is any Cauchy sequence in (X, d1). Given ε > 0, there

exists an N1 such that d(xm, xn) <
ε

b
for all m,n > N1. Using the second

inequality in (†),

d2(xm, xn) ≤ bd1(xm, xn) < ��b
(ε
��b

)
= ε for all m,n > N1.

Thus, (xn) is also a Cauchy sequence in (X, d2).

Now suppose (yn) is any Cauchy sequence in (X, d2). Given ε > 0, there exists
an N2 ∈ N such that d(ym, yn) < aε for all m,n > N2. Using the first inequality
in (†),

d1(ym, yn) ≤ 1

a
d1(ym, yn) <

1

�a
(�aε) = ε for all m,n > N2.

Thus, (yn) is also a Cauchy sequence in (X, d1).
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9. The Cartesian product X = X1 ×X2 of two metric spaces (X1, d1) and (X2, d2) can
be made into a metric space (X, d) in many ways. For instance, for x = (x1, x2) and
y = (y1, y2), we proved previously that the following are metrics for X.

da(x, y) = d1(x1, y1) + d2(x2, y2).

db(x, y) =
√
d1(x1, y1)2 + d2(x2, y2)2.

dc(x, y) = max{d1(x1, y1), d2(x2, y2)}.

Using Problem 8, show that (X, da), (X, db) and (X, dc) all have the same Cauchy
sequences.

Solution: We simply need to establish a few related inequalities.

da = d1 + d2 ≤ 2 max{d1, d2} = 2dc =⇒ da ≤ 2dc.

dc = max{d1, d2} ≤ d1 + d2 = da =⇒ dc ≤ da.

d2
b = d2

1 + d2
2 ≤ d2

1 + d2
2 + 2d1d2 = (d1 + d2)2 = d2

a =⇒ db ≤ da.

dc = max{d1, d2} = max{
√
d2

1,
√
d2

2} ≤
√
d2

1 + d2
2 = db =⇒ dc ≤ db.

da ≤ 2dc ≤ 2db =⇒ da ≤ 2db.

db ≤ da ≤ 2dc =⇒ db ≤ 2dc.

Consequently, we have the following inequality:

da ≤ 2dc ≤ 2db ≤ 2da.

10. Using the completeness of R, prove completeness of C.

Solution: Let (zn) be any Cauchy sequence in C, where zn = xn + iyn. For any
ε > 0, there exists an N ∈ N such that for all m,n > N ,

dC(zm, zn) = |zm − zn| =
√

(xm − xn)2 + (ym − yn)2 ≤ ε

=⇒ (xm − xn)2 + (ym − yn)2 ≤ ε2.

The last inequality implies that for all m,n > N ,

(xm − xn)2 ≤ ε2 =⇒ |xm − xn| ≤ ε.

(ym − yn)2 ≤ ε2 =⇒ |ym − yn| ≤ ε.

Thus, both sequences (xn) and (yn) are Cauchy in R, which converges to, say, x
and y respectively as n −→∞ by completeness of R. Define z = x+ iy ∈ C, then
convergence of (xn) and (yn) implies that dR(xn, x) and dR(yn, y) both converge
to 0 as n −→∞. Expanding the definition of dC(zn, z) gives

dC(zn, z) = |zn − z| =
√

(xn − x)2 + (yn − y)2

=
√
dR(xn, x)2 + dR(yn, y)2 −→ 0 as n −→∞.

This shows that z ∈ C is the limit of (zn). Since (zn) was an arbitrary Cauchy
sequence in C, this proves completeness of C.
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1.5 Examples. Completeness Proofs.

To prove completeness, we take an arbitrary Cauchy sequence (xn) in X and show that it
converges in X. For different spaces, such proofs may vary in complexity, but they have
approximately the same general pattern:

1. Construct an element x (to be used as a limit).

2. Prove that x is an element of the space considered.

3. Prove convergence xn −→ x (in the sense of the metric).

1. Let a, b ∈ R and a < b. Show that the open interval (a, b) is an incomplete subspace
of R , whereas the closed interval [a, b] is complete.

Solution: Consider a sequence (xn) in the metric space
(

(a, b), | · |
)

, where xn =

a +
1

n
. Given any ε > 0, choose N ∈ N such that N >

2

ε
, then for any m,n >

N >
2

ε
,

d(xm, xn) =

∣∣∣∣ 1

m
− 1

n

∣∣∣∣ ≤ ∣∣∣∣ 1

m

∣∣∣∣+

∣∣∣∣ 1n
∣∣∣∣

<
ε

2
+
ε

2
= ε.

This shows that (xn) is a Cauchy sequence in (a, b). However, (xn) −→ a /∈ (a, b)
as n −→ ∞. This shows that (a, b) is an incomplete subspace of R. Since [a, b]
is a closed (metric) subspace of R (which is a complete metric space), it follows
that the closed interval [a, b] is complete.

2. Let X be the space of all ordered n-tuples x = (ξ1, . . . , ξn) of real numbers and
d(x, y) = maxj |ξj − ηj|, where y = (ηj). Show that (X, d) is complete.

Solution: Consider any Cauchy sequence (xm) in Rn, where xm =
(
ξ

(m)
1 , . . . , ξ

(m)
n

)
.

Since (xm) is Cauchy, given any ε > 0, there exists an N such that for all
m, r > N ,

d(xm, xr) = max
j=1,...,n

|ξ(m)
j − ξ(r)

j | < ε

In particular, for every fixed j = 1, . . . , n,

|ξ(m)
j − ξ(r)

j | < ε for all m, r > N. (†)

Hence, for every fixed j, the sequence (ξ
(1)
j , ξ

(2)
j , . . .) is a Cauchy sequence of real

numbers. It converges by completeness of R, say, ξ
(m)
j −→ ξj as m −→ ∞.
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Using these n limits, we define x = (ξ1, . . . , ξn). Clearly, x ∈ Rn. From (†), with
r −→∞,

|ξ(m)
j − ξj| < ε for all m > N.

Since the RHS is independent of j, taking maximum over j = 1, . . . , n in both
sides yields

d(xm, x) = max
j=1,...,n

|ξ(m)
j − ξj| < ε for all m > N.

This shows that xm −→ x. Since (xm) was an arbitrary Cauchy sequence, Rn

with the metric d(x, y) = max |ξj − ηj| is complete.

3. Let M ⊂ l∞ be the subpace consisting of all sequences x = (ξj) with at most finitely
many nonzero terms. Find a Cauchy sequence in M which does not converge in M ,
so that M is not complete.

Solution: Let (xn) be a sequence in M ⊂ l∞, where

ξ
(n)
j =


1

j
if j ≤ n,

0 if j > n.

i.e. xn =

(
1,

1

2
,
1

3
, . . . ,

1

n
, 0, 0, . . . . . .

)
. Given any ε > 0, choose N such that

N + 1 >
1

ε
, then for any m > n > N ,

d(xm, xn) = sup
j∈N

∣∣∣ξ(m)
j − ξ(n)

j

∣∣∣ =
1

n+ 1
≤ 1

N + 1
< ε.

This shows that (xn) is Cauchy in M . However, it is clear that xn −→ x =

(
1

n

)
as n −→∞, but since x /∈M , (xn) does not converge in M .

4. Show that M in Problem 3 is not complete by applying Theorem 1.4-7.

Solution: It is easy to see that M is a subspace of l∞. The sequence in Problem
3 shows that xn −→ x in l∞ since

d(xn, x) =
1

n+ 1
−→ 0 as n −→∞.

However, x doesn’t belong to M since it has infinitely many nonzero terms. This
shows that M is not a closed subspace of l∞, and therefore not complete.
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5. Show that the set X of all integers with metric d defined by d(m,n) = |m − n| is a
complete metric space.

Solution: Observe that for any two distinct integers m,n, d(m,n) ≥ 1. This
implies that the only Cauchy sequences in X are either constant sequences or
sequences that are eventually constant. This shows that the set X of all integers
with the given metric is complete.

6. Show that the set of all real numbers constitutes an incomplete metric space if we
choose d(x, y) = | arctanx− arctan y|.

Solution: Consider the sequence (xn), where xn = n. We claim that (xn) is
Cauchy but not convergent in R.

• Since arctann −→ π

2
as n −→ ∞, given any ε > 0, there exists an N such

that
∣∣∣arctan(n)− π

2

∣∣∣ < ε

2
for all n > N . Thus, for all m,n > N ,

d(xm, xn) = | arctan(m)− arctan(n)| ≤
∣∣∣arctan(m)− π

2

∣∣∣+
∣∣∣π
2
− arctan(n)

∣∣∣
<
ε

2
+
ε

2
= ε.

• Suppose, for contradiction, that (xn) converges in R with the given metric.
By definition, there exists an x ∈ R such that

lim
n→∞

d(xn, x) = lim
n→∞

| arctan(n)− arctan(x)| = 0.

which then implies that arctan(x) must equal to
π

2
, by uniqueness of limits.

This contradicts the assumption that x ∈ R, since arctan(x) <
π

2
for any

x ∈ R.

7. Let X be the set of all positive integers and d(m,n) = |m−1−n−1|. Show that (X, d)
is not complete.

Solution: Consider a sequence (xn) ∈ X, where xn = n. With the given metric,

d(xm, xn) =

∣∣∣∣ 1

m
− 1

n

∣∣∣∣
and similar argument in Problem 1 shows that (xn) is a Cauchy sequence. If (xn)
were to converge to some positive integer x, then it must satisfy

d(xn, x) =

∣∣∣∣ 1n − 1

x

∣∣∣∣ −→ 0 as n −→∞.
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Clearly,
1

x
must be 0, which is a contradiction since no positive integers x gives

1

x
= 0.

8. (Space C[a, b]) Show that the subspace Y ⊂ C[a, b] consisting of all x ∈ C[a, b]
such that x(a) = x(b) is complete.

Solution: Consider Y ⊂ C[a, b] defined by Y = {x ∈ C[a, b] : x(a) = x(b)}. It
suffices to show that Y is closed in C[a, b], so that completeness follows from
Theorem 1.4.7. Consider any f ∈ Ȳ , the closure of Y . There exists a sequence of
functions (fn) ∈ Y such that fn −→ f in C[a, b]. By definition, given any ε > 0,
there exists an N ∈ N such that for all n > N , we have

d(fn, f) = max
t∈[a,b]

|fn(t)− f(t)| < ε.

In particular, for every t ∈ [a, b], |fn(t)−f(t)| < ε for all n > N . This shows that
(fn(t)) converges to f(t) uniformly on [a, b]. Since the f ′ns are continuous function
on [a, b] and the convergence is uniform, the limit function f is continuous on [a, b].
We are left with showing f(a) = f(b) to conclude that f ∈ Y . Indeed, triangle
inequality for real numbers gives:

|f(a)− f(b)| ≤ |f(a)− fn(a)|+ |fn(a)− fn(b)|+ |fn(b)− f(b)|
= |f(a)− fn(a)|+ |fn(b)− f(b)|
≤ 2 max

t∈[a,b]
|fn(t)− f(t)|

= 2d(fn, f) −→ 0 as n −→∞.

9. In 1.5-5 we referred to the following theorem of calculus. If a sequence (xm) of a
continuous functions on [a, b] converges on [a, b] and the convergence is uniform on
[a, b], then the limit function x is continuous on [a, b]. Prove this theorem.

Solution: The proof employs the so called ε/3 proof, which is widely used in
proofs concerning uniform continuity. Choose any t0 ∈ [a, b] and ε > 0.

• Since (fn) converges to f uniformly, there exists an N ∈ N such that for all

t ∈ [a, b] and for all n > N , we have |fn(t)− f(t)| < ε

3
.

• Since fN+1 is continuous at t0 ∈ [a, b], there exists an δ > 0 such that

|fN+1(t)− fN+1(t0)| < ε

3
for all t ∈ [a, b] satisfying |t− t0| < δ.

• Thus, if |t− t0| < δ, triangle inequality gives:

|f(t)− f(t0)| ≤ |f(t)− fN+1(t)|+ |fN+1(t)− fN+1(t0)|+ |fN+1(t0)− f(t0)|
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<
ε

3
+
ε

3
+
ε

3
= ε

This shows that f is continuous at t0.

Since t0 ∈ [a, b] was arbitrary, f is continuous on [a, b] or f ∈ C[a, b].

10. (Discrete metric) Show that a discrete metric space is complete.

Solution: Let (X, d) be a discrete metric space, for any two distinct x, y ∈ X,
d(x, y) = 1. This implies that the only Cauchy sequences in X are either constant
sequences or sequences that are eventually constant. This shows that a discrete
metric space is complete.

11. (Space s) Show that in the space s, we have xn −→ x if and only if ξ
(n)
j −→ ξj for

all j = 1, 2, . . . , where xn =
(
ξ

(n)
j

)
and x = (ξj).

Solution: The sequence space s consists of the set of all (bounded or unbounded)
sequences of complex numbers and the metric d defined by

d(x, y) =
∞∑
j=1

1

2j

|ξj − ηj|
1 + |ξj − ηj|

.

where x = (ξj) and y = (ηj).

Suppose xn −→ x in s, where xn =
(
ξ

(n)
j

)
. For every j ≥ 1, given any ε > 0,

there exists an N such that for all n > N we have:

1

2j

∣∣∣ξ(n)
j − ξj

∣∣∣
1 +

∣∣∣ξ(n)
j − ξj

∣∣∣ ≤ d(xn, x) <
1

2j

ε

1 + ε∣∣∣ξ(n)
j − ξj

∣∣∣
1 +

∣∣∣ξ(n)
j − ξj

∣∣∣ < ε

1 + ε∣∣∣ξ(n)
j − ξj

∣∣∣ (1 + ε) < ε
[
1 +

∣∣∣ξ(n)
j − ξj

∣∣∣ ]∣∣∣ξ(n)
j − ξj

∣∣∣ < ε

This shows that ξ
(n)
j −→ ξj as n −→ ∞. Since j ≥ 1 was arbitrary, the result

follows.
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Conversely, suppose ξ
(n)
j −→ ξj for all j ≥ 1, where xn =

(
ξ

(n)
j

)
and x = (ξj).

This implies that for every fixed j ≥ 1,

1

2j

∣∣∣ξ(n)
j − ξj

∣∣∣
1 +

∣∣∣ξ(n)
j − ξj

∣∣∣ −→ 0 as n −→∞.

This shows that d(xn, x) −→ 0 as n −→∞.

12. Using Problem 11, show that the sequence space s is complete.

Solution: Consider any Cauchy sequence (xn) in s, where xn =
(
ξ

(n)
j

)
. Since

(xn) is Cauchy, for every j ≥ 1, given any ε > 0, there exists an N such that for
all m,n > N we have

1

2j

∣∣∣ξ(m)
j − ξ(n)

j

∣∣∣
1 +

∣∣∣ξ(m)
j − ξ(n)

j

∣∣∣ ≤ d(xm, xn) <
1

2j

ε

1 + ε
.

In particular, for every j ≥ 1,
∣∣∣ξ(m)

j − ξ(n)
j

∣∣∣ < ε for all m,n > N . Hence, for

every j ≥ 1, the sequence
(
ξ

(1)
j , ξ

(2)
j , . . .

)
is a Cauchy sequence of real numbers.

It converges by completeness of R, say, ξ
(n)
j −→ ξj as n −→ ∞. Since j ≥ 1

was arbitrary, this shows that ξ
(n)
j −→ ξj as n −→ ∞ for all j ≥ 1. Identifying

x = (ξj), we have xn −→ x as n −→ ∞ from Problem 11. Since (xn) was an
arbitrary Cauchy sequence in s, this proves completeness of s.

13. Let X be the set of all continuous real-valued functions on J = [0, 1], and let

d(x, y) =

∫ 1

0

|x(t)− y(t)| dt.

Show that the sequence (xn) is Cauchy in X, where

xn(t) =


n if 0 ≤ t ≤ 1

n2
,

1√
t

if
1

n2
≤ t ≤ 1.

Solution: WLOG, take m > n. Sketching out |xm(t)− xn(t)|, we deduce that

d(xm, xn) =

∫ 1
m2

0

(m− n) dt+

∫ 1
n2

1
m2

(
1√
t
− n

)
dt
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= (m− n)
1

m2
+ 2

(
1

n
− 1

m

)
− n

(
1

n2
− 1

m2

)
=

1

n
− 1

m
.

Similar argument in Problem 1 shows that (xn) is a Cauchy sequence in C[0, 1].

14. Show that the Cauchy sequence in Problem 13 does not converge.

Solution: For every x ∈ C[0, 1],

d(xn, x) =

∫ 1

0

|xn(t)− x(t)| dt

=

∫ 1
n2

0

|n− x(t)| dt+

∫ 1

1
n2

∣∣∣∣ 1√
t
− x(t)

∣∣∣∣ dt
Since the integrands are nonnegative, so is each integral on the right. Hence,
d(xn, x) −→ 0 would imply that each integral approaches zero and, since x is

continuous, we should have x(t) =
1√
t

if t ∈ (0, 1]. But this is impossible for a

continuous function, otherwise we would have discontinuity at t = 0. Hence, (xn)
does not converge, that is, does not have a limit in C[0, 1].

15. Let X be the metric space of all real sequences x = (ξj) each of which has only
finitely many nonzero terms, and d(x, y) =

∑
|ξj − ηj|, where y = (ηj). Note that

this is a finite sum but the number of terms depends on x and y. Show that (xn)

with xn =
(
ξ

(n)
j

)
,

ξ
(n)
j =


1

j2
for j = 1, . . . , n,

0 for j > n.

is Cauchy but does not converge.

Solution: Since
∞∑
j=1

1

j2
is convergent and it is a sum of positive terms, given any

ε > 0, there exists an N1 such that
∞∑
j=n

1

j2
< ε for all n > N1. Choose N = N1,

then for all m > n > N ,

d(xm, xn) =
m∑

j=n+1

1

j2
≤

∞∑
j=n+1

1

j2
≤

∞∑
j=N+1

1

j2
< ε.

This shows that (xn) is a Cauchy sequence. For every x = (ξj) ∈ X, there exists
an N = Nx such that ξj = 0 for all j > N . Then for all n > N ,

d(xn, x) = |1− ξ1|+
∣∣∣∣14 − ξ2

∣∣∣∣+ . . .+

∣∣∣∣ 1

N2
− ξN

∣∣∣∣+
1

(N + 1)2
+ . . .+

1

n2
.
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We can clearly see that, even if ξj =
1

j2
for all j ≤ N , d(xn, x) does not converge

to 0 as n −→∞.
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1.6 Completion of Metric Spaces.

1. Show that if a subspace Y of a metric space consists of finitely many points, then Y
is complete.

Solution:

2. What is the completion of (X, d), where X is the set of all rational numbers Q and
d(x, y) = |x− y|?

Solution:

3. What is the completion of a discrete metric space X?

Solution:

4. If X1 and X2 are isometric and X1 is complete, show that X2 is complete.

Solution:

5. (Homeomorphism) A homeomorphism is a continuous bijective mapping T : X −→
Y whose inverse is continuous; the metric spaces X and Y are then said to be home-
omorphic.

(a) Show that if X and Y are isometric, they are homeomorphic.

Solution:

(b) Illustrate with an example that a complete and an incomplete metric space may
be homeomorphic.

Solution:

6. Show that C[0, 1] and C[a, b] are isometric.

Solution: Consider the mapping T defined by

T : C[0, 1] −→ C[a, b] : f 7→ g(s) = f

(
s− a
b− 1

)
.
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(a) T is an isometry. Indeed, for any f1, f2 ∈ C[0, 1] we have

d(Tf1, T f2) = max
t∈[a,b]

|Tf1(t)− Tf2(t)|

= max
t∈[a,b]

∣∣∣∣f1

(
t− a
b− a

)
− f2

(
t− a
b− 1

)∣∣∣∣
= max

s∈[0,1]
|f1(s)− f2(s)|

= d(f1, f2).

(b) T is injective. Indeed, suppose Tf1 = Tf2, then 0 = d(Tf1, T f2) = d(f1, f2)
since T is an isometry. This implies that d(f1, f2) = 0 =⇒ f1 = f2.

(c) T is surjective by construction. Indeed, for any g ∈ C[a, b], define f such

that g(s) = f

(
s− a
b− a

)
. Note that f ∈ C[0, 1] since

s− a
b− a

∈ [0, 1] for all

s ∈ [a, b], and g is continuous on [a, b].

7. If (X, d) is complete, show that (X, d̃), where d̃ =
d

1 + d
, is complete.

Solution:

8. Show that in Problem 7, completeness of (X, d̃) implies completeness of (X, d).

Solution:

9. If (xn) and (x′n) in (X, d) are such that lim
n→∞

d(xn, x
′
n) = 0 holds and xn −→ l, show

that (x′n) converges and has the limit l.

Solution:

10. If (xn) and (x′n) are convergent sequences in a metric space (X, d) and have the same
limit l, show that they satisfy lim

n→∞
d(xn, x

′
n) = 0.

Solution:

11. Show that lim
n→∞

d(xn, x
′
n) = 0 defines an equivalence relation on the set of all Cauchy

sequences of elements of X.
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Solution:

12. If (xn) is Cauchy in (X, d) and (x′n) in X satisfies lim
n→∞

d(xn, x
′
n) = 0, show that (x′n)

is Cauchy in X.

Solution:

13. (Pseudometric) A finite pseudometric on a set X is a function d : X × X −→ R
satisfying (M1), (M3), (M4) and

d(x, x) = 0. (M2∗)

What is the difference between a metric and a pseudometric? Show that d(x, y) =
|ξ1− η1| defines a pseudometric on the set of all ordered pairs of real numbers, where
x = (ξ1, ξ2) and y = (η1, η2). (We mention that some authors use the term semimetric
instead of pseudometric.)

Solution:

14. Does

d(x, y) =

∫ b

a

|x(t)− y(t)| dt

define a metric or pseudometric on X if X is

(a) the set of all real-valued continuous function on [a, b],

Solution:

(b) the set of all real-valued Riemann integrable functions on [a, b]?

Solution:

15. If (X, d) is a pseudometric space, we call a set

Br(x0) = {x ∈ X : d(x, x0) < r}

an open ball in X with center x0 ∈ X and radius r > 0. What are open balls of
radius 1 in Problem 13?

Solution:
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