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CHAPTER I

INTRODUCTION

Characteristic p methods provide some extremely useful tools for the study of
commutative Noetherian rings. The power of the Frobenius morphism for a ring of
characteristic p > 0 was illustrated by C. Peskine and L. Szpiro in their proof of the
local homological conjectures, [PS1, PS2]. They were also able to develop methods
of reduction to characteristic p to prove these conjectures for certain rings containing
the rational numbers. This was followed by M. Hochster’s proof of the existence of
big Cohen—Macaulay modules, which used the method of reduction to characteristic
p. More recently, M. Hochster and C. Huneke developed the theory of tight closure
which beautifully brings together and simplifies many characteristic p arguments. To
quote from a recent article by W. Bruns, [Br|, “‘tight closure’ can now be regarded
as a synonym for ‘characteristic p methods in commutative algebra.””

The theory of tight closure provides stronger formulations of several existing
results, and brings together many seemingly unrelated issues. The theory furnishes,
for instance, a proof of the Briancon—Skoda theorem on the integral closure of ideals
in regular rings. The original work of Briangon and Skoda was motivated by a
question of J. Mather about the ring of convergent complex power series in several

variables, and made use of deep analytic results. Tight closure theory gives a simpler



proof of a much stronger statement. It also yields a theorem generalizing the result
[HR1] that the ring of invariants of a linearly reductive group acting on a regular
ring is Cohen—Macaulay, and offers improvements on the various local homological
theorems. Techniques developed during the study of tight closure have lead to certain
strong uniform Artin-Rees theorems, [Hul|, and a proof that the absolute integral
closure of a characteristic p domain is a big Cohen—Macaulay algebra, [HH3|.

The tight closure of an ideal I is a possibly larger ideal, denoted by I*, which is
always contained in the integral closure of I and is frequently much smaller. Hochster
and Huneke observed that for large classes of rings, the geometric notion of rational
singularities is analogous to a certain property which could be formulated in terms
of tight closure, namely the property that parameter ideals are tightly closed. These
rings were eventually named F-rational rings by R. Fedder and K.-i. Watanabe.
K. E. Smith proved that F-rational rings have rational singularities and the converse,
in characteristic zero, is a theorem of N. Hara, see [Sm4, Ha]. Making use of Smith’s
result, A. Conca and J. Herzog showed that ladder determinantal varieties have
rational singularities, [CH].

The theory of tight closure also draws attention to rings in which all ideals are
tightly closed, called weakly F-regular rings. (The term F-regular is reserved for
rings all of whose localizations are weakly F-regular.) These properties turn out to
be of significant importance, for instance the Hochster-Roberts theorem that direct
summands of polynomial rings are Cohen—Macaulay can actually be proved for the
much larger class of weakly F-regular rings. A related notion is that of F—pure rings,
i.e., rings R for which the Frobenius morphism remains injective on tensoring with
any R-module. A study of the these properties, namely F-regularity, F-rationality

and F—purity constitute the major part of this thesis. Chapter II provides a review



of tight closure and related notions and includes some results that we will use later
in our study.

Although tight closure is primarily a notion for rings of characteristic p, it has
strong connections with the study of the singularities of algebraic varieties over fields
of characteristic zero. We have already mentioned the connection between F—rational
rings and rational singularities. For Q-Gorenstein rings (i.e., rings for which the
canonical module is a torsion element of the divisor class group) essentially of finite
type over a field of characteristic zero, we have some more remarkable connections:
F-regular type is equivalent to log—terminal singularities and F—pure type implies

(and is conjectured to be equivalent to) log—canonical singularities, see [Sm6, Wa5|.

Deformation of F-regularity

A natural question that arose with the development of the theory of tight closure
was whether the property of F-regularity deforms, i.e., if (R, m, K) is a local ring
such that R/tR is F-regular for some nonzerodivisor t € m, must R be F-regular?
Hochster and Huneke showed that this is indeed true if the ring R is Gorenstein, and
there have been several attempts at extending this result. In Chapter III we show that
the property of F-regularity does not deform, and thereby settle this longstanding
open question. Specifically, we construct a three dimensional domain R which is not
F-regular (or even F-pure), but has a quotient R/tR which is F-regular. Similar
examples are also constructed over fields of characteristic zero.

In their proof that F-regularity deforms for Gorenstein rings, Hochster and
Huneke show that the properties of F-regularity and F-rationality coincide for
Gorenstein rings, and that F-rationality deforms. For Q-Gorenstein rings essen-

tially of finite type over a field of characteristic zero, Smith showed that the prop-



erty of F-regular type does deform, see [Sm7]. The crucial point is that in this
setting F-regular type is equivalent to log-terminal singularities, and log—terminal
singularities deform by Kollar’s result on “inversion of adjunction”, see [Ko]. For
Q-Gorenstein rings of characteristic p, a purely algebraic proof that F-regularity
deforms was provided by I. Aberbach, M. Katzman, and B. MacCrimmon in [AKM].

A notion closely related to (and frequently the same as) F-regularity is that of
strong F-regularity. In Chapter III we shall also investigate the deformation of strong
F-regularity using the idea of passing to an anti-canonical cover S = @;>ol @)X
where [ represents the inverse of the canonical module in the divisor class group,
CI(R). Strong F-regularity is shown to deform in the case that the symbolic powers

I satisfy the Serre condition S; for all 4 > 0, and the ring S is Noetherian.
Failure of F—purity and F-regularity in certain rings of invariants

A subgroup G of the general linear group GL,(F,) has a natural action on the
polynomial ring R = K[Xy,...,X,] (where K is a field containing F,) by degree
preserving ring automorphisms. D. Glassbrenner has shown that when G acts by
permuting the variables X;, then the ring of invariants is F-pure. In Chapter IV we
construct examples to demonstrate that the ring of invariants in general need not
be F-pure. In these examples G is the symplectic group over a finite field, and the
invariant subrings are always complete intersections by the work of D. Carlisle and
P. Kropholler [CK]. These examples are of special interest from the point of view
of studying the Frobenius closures and tight closures of ideals as contractions from
certain extension rings: they provide instances when the socle element modulo an
ideal generated by a system of parameters is forced into the expansion of the ideal to

a module-finite extension ring which is a separable (in fact, Galois) extension. This



element is also forced into the expanded ideal in a linearly disjoint purely inseparable
extension since it is in the Frobenius closure of the ideal. It is noteworthy that the
element can be forced into expanded ideals in two such different ways.

For the natural action of the alternating group A, on the polynomial ring R =
K[Xy,...,X,], where the characteristic p of K is an odd prime, Glassbrenner shows
that the invariant subring R4~ is not F-regular when p divides n or n— 1, [G11]. We
extend this result by showing that R4» is F-regular if and only if p does not divide

the order of the group A,.
F-rationality and F-regularity of Veronese subrings

While the property of F-rationality provides an algebraic analogue of the notion
of rational singularities, F-regularity is not so well understood geometrically. One
approach is to study the variety X = Proj R for a graded F-regular ring R. The
Veronese subrings of R are also homogeneous coordinate rings for X, and so it is
interesting to determine when graded rings have F-rational or F-regular Veronese
subrings. We investigate this question in Chapter V. (By a graded ring, we mean
here a ring R = @®,>0R,, which is finitely generated over a field Ry = K. For
simplicity, assume that K is algebraically closed.)

The question regarding F-rational Veronese subrings is easily answered: let
(R,m, K) be a Cohen-Macaulay graded domain of dimension d, with an isolated
singularity at m. Then there exists a positive integer n such that the Veronese
subring R™ is F-rational if and only if [H%(R)]o = 0. With regard to F-regular
Veronese subrings, if R is a normal ring generated by degree one elements over a
field, then either R is F-regular, or else no Veronese subring of R is F-regular. This

leads to the question: if (R,m, K) is a normal graded ring, generated by degree



one elements, with an isolated singularity at m, then under what conditions is R an
F-regular ring? It is easily seen that F-regularity forces the a—invariant, a(R), to
be negative. For rings of dimension two (although not in higher dimensions) this is
also a sufficient condition for F-regularity. We construct rings R of dimension d > 3
with a(R) = 2 — d which are not F-regular, while if a(R) < 2 —d, Smith has pointed
out that Proj R is a variety of minimal degree, and the ring R is indeed F-regular,
[Smb, Remark 4.3.1].

The results obtained during the course of this work provide various examples
of F-rational rings which are not F-regular, and give a better understanding of
F-regularity. Our techniques include Demazure’s representation of normal graded
rings in terms of Weil divisors with rational coefficients, [De|, and related results of
Watanabe, [Wal].

In the last section of Chapter V, we construct a rich family of F-rational rings
of characteristic zero, with isolated singularities, which have no F-regular Veronese

subrings. We believe these examples will also be of independent interest.

Tight closure in non—equidimensional rings

In Chapter VI we examine issues relating to the tight closure of parameter ideals
in non—equidimensional rings. An equidimensional local ring is F-rational if and only
if one ideal generated by a full system of parameters is tightly closed. (It then follows
that every ideal generated by part of a system of parameters is tightly closed.) The
question of whether a non-equidimensional local ring can have a tightly closed ideal
generated by a system of parameters was a longstanding open problem and for certain
classes of non—equidimensional rings, we can prove that this is not possible. A closely

related issue is that tight closure has a “colon capturing” property in equidimensional



rings that it does not have in non-equidimensional rings. A study of these issues
leads us to define a new closure operation, one that rectifies the absence of the colon
capturing property of tight closure in non—equidimensional rings and agrees with
tight closure when the ring is equidimensional. We prove that the F-rationality of a
local ring is equivalent to a single system of parameters being closed with respect to

this new closure operation.
Computations in diagonal hypersurfaces

Consider the ring R = K[X,Y, Z]/(X?® + Y?® + Z3) where K is a field of prime
characteristic p # 3. M. McDermott computed the tight closure of various irreducible
ideals in R, and showed that zyz € (22,42, 2?)* when p < 200, [Mc]. (Lower case
letters denote the images of the corresponding variables.) The general case however
existed as a classic example of the difficulties involved in tight closure computations,
see also [Hu2, Example 1.2]. In Chapter VII we show that zyz € (%92 2%)* in
arbitrary prime characteristic p, a computation which was largely inspired by [Ro].
We furthermore show that zyz € (2%, y?, 2?)¥ whenever R is not F-pure, i.e., when
p = 2 (mod 3). These results are then generalized to the diagonal hypersurfaces
R=K[Xy,...,X.]/(XT+---+ X]).

These issues relate to the question whether the tight closure 7* of an ideal I agrees
with its plus closure, I™ = ITRTNR, where R is a domain over a field of characteristic
p and R7 is the integral closure of R in an algebraic closure of its fraction field. In
this setting, we may think of the Frobenius closure of I as I*" = ITR®NR where R™ is
the extension of R obtained by adjoining p® th roots of all nonzero elements of R for
e € N. Tt is not difficult to see that It C I*, and equality in general is a formidable

open question. It should be mentioned that in the case when I is an ideal generated



by part of a system of parameters, the equality is a result of Smith, see [Sm2]. In the

above ring R = K[X,Y, Z]/(X®+ Y3+ Z3) where K is a field of prime characteristic

p = 2 (mod 3), if one could show that I* = I for an ideal I, a consequence of

this would be I C It C I* = I¥, by which I* = I*. McDermott does show that
F

I* = I for large families of irreducible ideals and our result zyz € (22,92, 2%)F, we

believe, fills in an interesting remaining case.



CHAPTER II

TIGHT CLOSURE

We provide a brief review of tight closure and related notions, as well as summarize
some results we shall find useful in our study. Since one of our main interests is the
case of graded rings, we discuss these and, in particular, normal graded rings. Using
a result of Demazure, normal graded rings can be interpreted as arising from rational
coefficient Weil divisors on projective varieties, and such techniques are turning out

to be extremely useful in providing a better understanding of tight closure.

2.1 Notation and conventions

Let R be a Noetherian ring of characteristic p > 0. We shall always use the
letter e to denote a variable nonnegative integer, and ¢ to denote the eth power of
p, i.e., ¢ = p®. We shall denote by F', the Frobenius endomorphism of R, and by
Fe, its eth iteration, i.e., F'¢(r) = r%. For an ideal I = (zy,...,z,) C R, we let
I = (29,...,29). Note that F¢(I)R = I'%, where ¢ = p°, as always. The Peskine—
Szpiro functor F€ is crucial to characteristic p methods. Let S denote the ring R
viewed as an R-algebra via F°. Then S ®p _is a covariant functor from R-modules
to S—modules, and so is a covariant functor from R-modules to R—modules! If we
consider a map of free modules R* — R™ given by the matrix (r;;), applying F** we

get a map R" — R™ given by the matrix (rfj) For an R—-module M, note that the
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R-module structure on F¢(M) is r'(r @ m) = r'r @ m, and ' @ rm = r'r? ® m. For
R-modules N C M, we use N][\Z,] to denote Im(F¢(N) — F¢(M)).

For a reduced ring R of characteristic p > 0, RY/? shall denote the ring obtained
by adjoining all g th roots of elements of R. The ring R is said to be F-finite if R'/?
is module-finite over R. Note that a finitely generated algebra R over a field K is
F-finite if and only if K'/? is a finite field extension of K.

We shall denote by R° the complement of the union of the minimal primes of R.
We say I = (z1,...,2,) C R is a parameter ideal if the images of z,,...,z, form

part of a system of parameters in Rp, for every prime ideal P containing I.

2.2 Frobenius closure and tight closure

Definition 2.2.1. Let R be a ring of characteristic p, and I an ideal of R. An
element z of R, is said to be in I¥, the Frobenius closure of I, if there exists some
g = p° such that 29 € J9,

For R-modules N C M and u € M, we say that v € Ny, the tight closure of N
in M, if there exists ¢ € R° such that cu? € N][g[} for all ¢ = p°® > 0.

It is worth recording this when M = R, and N = [ is an ideal of R. An element
x of R is said to be in I*, the tight closure of I, if there exists ¢ € R° such that

cx? € I9 for all ¢ = p® > 0. If I = I* we say that the ideal I is tightly closed.

It is easily verified that I C I¥ C I*. Furthermore I* is always contained in the

integral closure of I, [HH2, Theorem 5.2], and is frequently much smaller.

Definition 2.2.2. A ring R is said to be F-pure if for all R—modules M, the
homomorphism F': M — F(M) is injective.
A ring R is weakly F-regular if every ideal of R is tightly closed, and is F-regular

if every localization is weakly F-regular. An F-finite ring R is strongly F-regular



11

if for every ¢ € R°, there exists ¢ = p® such that the R-linear inclusion R — R'/¢
sending 1 to ¢'/? splits as a map of R-modules. Lastly, R is said to be F-rational if

every parameter ideal of R is tightly closed.

It follows easily from the definitions that a weakly F-regular ring is F-rational

as well as F—pure. We next record some useful results.

Theorem 2.2.3.

(1)  Regular rings are F-reqular and F-finite reqular rings are strongly F-regular.

Strongly F-reqular rings are F-regular.

(2) Let S be a strongly (weakly) F-reqular ring. If R is a subring of S which is a

direct summand of S as an R—module, then R is strongly (weakly) F-regular.

(3) An F-rational ring R is normal. If, in addition, R is the homomorphic image

of a Cohen—Macaulay ring, then it is Cohen—Macaulay.

(4)  An F-rational Gorenstein ring is F-regular. If it is F-finite, then it is also

strongly F-reqular.

(5) A local ring (R, m) which is the homomorphic image of a Cohen—Macaulay ring
1s F—rational if and only if it is equidimensional and the ideal generated by one system

of parameters is tightly closed.

(6) Let R be a reduced excellent local ring of dimension d and characteristic p > 0.
If c € R° is an element such that R, is F-rational, then there exists a positive integer

N such that ¢~ (034 ) = 0.

(7) Let Py,..., P, be the minimal primes of a ring R. For an ideal I C R and an
element x € R, x is in the tight closure of I if and only if for 1 <1 <n, its image x

is in (IR/P;)*, the tight closure here being computed in the domain R/ P;.
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(8) The notions of weak F-regularity and F-regularity agree for N-graded rings.

For F—finite N—graded rings, these are also equivalent to strong F—reqularity.

(9) Let (R, m) be an F—finite local ring with a canonical module which, as an element
of the divisor class group, is locally of finite order on the punctured spectrum of R.

Then R is weakly F-reqular if and only if it is strongly F-reqular.

Proof. For assertions (1)—(5), see [HH1, Theorem 3.1] and [HH4, Theorem 4.2].
Part (6) is a result of Velez [Ve], and (7) is observed in [HH2, Proposition 6.25 (a)].
For (8), see the recent work of Lyubeznik and Smith, [LS, Corollaries 4.3 and 4.4].

Part (9) is the main result of [Ma], see also [Wi. O

Remark 2.2.4. The equivalence in general of weak F-regularity, F-regularity, and
strong F-regularity is a formidable open question. However in the light of results (8)

and (9) above, we frequently have no reason to distinguish amongst these notions.

2.3 Graded rings

By an N-graded ring (R, m, K), we shall always mean a ring R = @®,>¢R,, finitely
generated over a field Ry = K. We shall denote by m = R,, the homogeneous
maximal ideal of R. The punctured spectrum of R refers to the set Spec R—{m}. By
a system of parameters for R, we shall mean a sequence of homogeneous elements of
R whose images form a system of parameters for R,,. In specific examples involving
homomorphic images of polynomial rings, lower case letters shall denote the images
of the corresponding variables, the variables being denoted by upper case letters.

For conventions regarding graded modules and homomorphisms, we follow [GW].
For a graded R-module M, we shall denote by [M];, the i-th graded piece of M. For

graded R-modules M and N, we may define the graded R-module Hom (M, N),
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where [Hom (M, N)]; is the abelian group consisting of all graded R-linear homomor-
phisms from M to N (i) where the convention for the grading shift is [N (2)]; = [V]i4;
for j € Z.. This gives Homg (M, N) a natural structure as a graded R—module. The
injective hull of K in the category of graded R-modules is Ex(K) = Homy (R, K).
Consequently for graded R-modules M, we have Hom (M, E5(K)) = Homy (M, K).

We shall denote by ®, the graded tensor product.

Definition 2.3.1. Let R = ®;>¢R; be an N-graded ring, and n be a positive integer.
We shall denote by R™), the Veronese subring of R spanned by all elements of R

which have degree a multiple of n, i.e., R™ = Di>oLin-

Note that the ring R™ is a direct summand of R as an R™-module and that R
is integral over R™. Hence whenever R is Cohen-Macaulay or normal, so is R™.

We record the following result, see [EGA, Lemme 2.1.6] or [Mum, page 282].

Lemma 2.3.2. Let R be an N—graded ring. Then there exists a positive integer n

such that the Veronese subring R™ is generated over K by forms of equal degree.

Recall that the highest local cohomology module H¢ (R) of R, where dim R = d,
may be identified with hﬂR/(xtD ..., 24) where x1, ..., x4 is a system of parameters
for R and the maps are induced by multiplication by z;---z4. If R is Cohen—
Macaulay, these maps are injective. The R-module H% (R) carries a natural graded
structure, namely deg[r + (z%,...,z%)] = degr — thzl x;, where r and z; are ho-

mogeneous elements of R.

Definition 2.3.3. In the above setting, Goto and Watanabe define the a—invariant

of R as the highest integer a(R) = a such that [H2 (R)], is nonzero.

When R is a ring of characteristic p, the Frobenius homomorphism of R gives a
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natural Frobenius action on H¢ (R) where
F:lr+ ... a)] [P+ @, ...,27)], see [FW] or [Sm2].

For a graded R-module M, define M™ = @;cz[M];,. With this notation, it follows

from [GW, Theorem 3.1.1] that

Hy, . (R™) 2 (Hy (R)™.

Mp(n)
The following theorem, [HH5, Theorem 7.12], indicates the importance of the

a—invariant in the study of graded F-rational rings.

Theorem 2.3.4. An N-graded Cohen—Macaulay normal ring R over a field of prime
characteristic p is F-rational if and only if a(R) < 0 and the ideal generated by some

homogeneous system of parameters for R is Frobenius closed.

2.4 Rational coefficient Weil divisors

In this section, we review some notation and results from [De], [Wal] and [Wa3]

as well as make a few observations which we shall find useful later in our study.

Definition 2.4.1. By a rational coefficient Weil divisor (or a Q-divisor) on a normal
projective variety X, we mean a Q-linear combination of codimension one irreducible
subvarieties of X. For D = Y n;V; with n; € Q, we set [D] = > [n;]V;, where [n]
denotes the greatest integer less than or equal to n, and define Ox (D) = Ox([D]).
Let D = (p;/q;)V; where the integers p; and ¢; are relatively prime and ¢; > 0.
We define D' = > ((¢; — 1)/¢;)V; to be the fractional part of D. Note that with this

definition of D’ we have —[—nD] = [nD + D’| for any integer n.

Given an ample Q-divisor D (i.e., such that ND is an ample Cartier divisor for

some N € N), we construct the generalized section ring:

R = R(X,D) = ®,50H(X, Ox(nD))T" C K(X)[T].
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With this notation, Demazure’s result ([De, 3.5]) is:
Theorem 2.4.2. Let R = ®,>0R, be an N-graded normal ring. Then there exists
an ample Q—divisor D on X = Proj R such that
R~ @,50H(X,0x(nD))T" C K(X)[T],

where T is a homogeneous element of degree one in the quotient field of R.
Example 2.4.3. Take the Q-divisor D = (—=1/2)V(S)+(1/3)V(T)+(1/5)V(S+T)
on P! = Proj K[S,T] where V (S), e.g., denotes the irreducible subvariety defined by
the vanishing of S. Fix T" as the degree one element. Then

R = ®,50H(P', Op1(nD))T" = K[X,Y, Z)/(X* + Y + Z°)
where X = (S8T10) /(S +T)3%,Y = (S°T")/(S+ T)?, and Z = (=S3T*)/(S+ T).
Remark 2.4.4. We record a few simple observations. Let R = R(X, D) be as above.
Then the Veronese subring R™ is given by R™ = R(X,nD). For a rational function
f € K(X) we have an isomorphism R(X, D) = R(X,div(f) + D). If R is generated
over K by its elements of degree one, we have R = R(X,[D]). Note that [D] is a

Weil divisor, i.e., has integer coefficients.

Let X be a smooth projective variety of dimension d with canonical divisor Ky,
and let D be an ample Q-divisor on X. If w denotes the canonical module of

R = R(X, D), we have the following identifications (see [Wal, Wa3]):
[w(l)]n = HO(X7 OX(Z(KX + DI) + TLD)),
[HE (W), = HY(X, Ox (i(Kx + D') + nD)).

The action of the Frobenius on the nth graded piece of Eg(K), the injective hull of

K, can be identified with

HYX,0x(Kx + D' +nD)) = HY(X, Ox (p(Kx + D' +nD))).
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If the ring R is F—pure, this Frobnius action must be injective and so, in particular,

HYX,Ox(p(Kx + D'))) is nonzero.

2.5 The case of characteristic zero

Hochster and Huneke have also defined notions of tight closure for rings essentially
of finite type over a field of characteristic zero, see [HH2, HH6]. However we can
also define notions corresponding to F-regularity, F—purity, and F-rationality in
characteristic zero, without using a closure operation.

Consider the ring R = K[X1,..., X,]/I where K is a field of characteristic zero.
Choose a finitely generated Z-algebra A such that Ry = A[Xy,...,X,]/I4 is a
free A-algebra, with R = R4 ®4 K. Note that the fibers of the homomorphism
A — R4 over maximal ideals of A are finitely generated algebras over fields of prime

characteristic.

Definition 2.5.1. Let R be a ring finitely generated over a field of characteristic
zero. Then R is said to be of F-reqular type if there exists a finitely generated Z-—
algebra A C K and a finitely generated A-algebra R4 such that R = Ry ®4 K, and
for all maximal ideals p in a Zariski dense subset of Spec A, the fiber rings Ra®4 A/ 11
are F-regular.

Similarly, R is said to be of F—pure type if for all maximal ideals p in a Zariski

dense subset of Spec A, the fiber rings R4 ® 4 A/ are F—pure.

Remark 2.5.2. Some authors use the term F—pure type (F-regular type) to mean
that R4 ®4 A/p is F—pure (F-regular) for all maximal ideals p in a Zariski dense

open subset of Spec A.



CHAPTER III

DEFORMATION OF F-REGULARITY

A natural question that arose with the development of the theory of tight closure
was whether the property of F-regularity deforms, i.e., if (R, m, K) is a local or N-
graded domain such that R/tR is F-regular for some (homogeneous) element t € m,
must R be F-regular? (See the Epilogue of [Ho].) Hochster and Huneke showed
this to be true if the ring R is Gorenstein, [HH4, Theorem 4.2], and their work
has been followed by various attempts at extending this result, see [AKM, Si, Sm7].
We show that F-regularity does not deform by constructing a three dimensional
domain R which is not F-regular (or even F-pure), but has a quotient R/tR which
is F-regular. We then construct similar examples over fields of characteristic zero.

We also study the deformation of strong F-regularity using the idea of passing
to an anti—canonical cover and show that under some rather restrictive assumptions,

the property of strong F-regularity does deform.

3.1 F-regularity does not deform

We shall throughout be considering N-graded rings, but local examples can be
obtained in all cases by localizing at the homogeneous maximal ideals. The main

result of this section is:

17
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Theorem 3.1.1. There exists an N-graded ring R of dimension three (over a field
Ry = K of characteristic p > 2) which is not F-pure, but has an F-regular quotient
R/tR where t € m is a homogeneous nonzerodivisor.

Specifically, for positive integers m and n with m — m/n > 2, consider the ring

R =K[A,B,C,D,T]/I where I is generated by the size two minors of the matrix
A2+ T™ B D
C A2 B"—D
Then the ring R/tR is F-reqular, while R fails to be F-reqular, and is not even

F—pure if p and m are relatively prime.

The ring R is graded by setting the weights of a, b, ¢, d, and t to be m, 2m,
2m, 2mn, and 2 respectively. This ring is the specialization of a Cohen-Macaulay
ring, and so is itself Cohen-Macaulay. The elements ¢, ¢ and d form a homogeneous
system of parameters for R, and so the element ¢ € m is indeed a nonzerodivisor.

We next record the following crucial lemma.

Lemma 3.1.2. Let m and n be positive integers satisfying m —m/n > 2. Consider
the ring R = K[A, B,C, D, T]/I where I is generated by the size two minors of the

matriz My, .. If k is a positive integer such that k(m —m/n —2) > 1, we have

(bntm71)2mk+1 c (a2mk+1 d2mk+1)'

Proof. Let 7 = A2 4+T™, and o = A2. Tt suffices to working in the polynomial ring

K|[r,a, B,C, D], and show

Bn(?mk+1)(7_ _ Of)2lc(mfl) e (amk—kl’ D2mk—|—1) +a
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where a is the ideal generated by the size two minors of the matrix

T B D

C o B*"-D

2k(m—1)

Taking the binomial expansion of (7 — «) , it suffices to show

Bn(ka—l—l)(T’ a)?k(m—l) c (amk—i-l’ Dka—H) +a.

This would follow if we show that for 0 < i < mk + 1, we have

Bn(2mk+1)amk+lfz7_mlc72k+zfl c (amk-i—l’ D2mk+1) +a,

and so it is enough to show that Br@mk+llzmk=2k+i-1 ¢ (qi  p2mk+l) 4 g Since
aD — B(B™ — D) € a, it suffices to establish
B’n(2mk+1)7_mk72k—|—ifl c (B’L(Bn . D)’L’ D2mk+1, B — D(C+7'))

Now work modulo the element B*(B™ — D)?, and reduce B"®™+1 +to a polynomial
in B and D such that the highest power of B that occurs is less than i(n + 1).

Consequently it suffices to show

Bn(2mk+1—j)7_mk—2k+i—1Dj c (D2mk—|—1’ B"r — D(C+T))
where n(2mk +1 — j) < i(n + 1), i.e.,, j > 2mk + (1 —4)(1 + 1/n). With this
simplification, we now need to show

Bn(ka—l—l—j),,_mk—Zk—l—i—l € (Dka—f-l—j’ B"r — D(C+T))

We now only need to verify that mk — 2k +4¢ — 1 > 2mk + 1 — j since, working
modulo B"r — D(C + 7), we can then express B™?mk+1=i)rmk=2k+i—1 55 3 multiple

of D?™+1=J  Finally, note that

(mk—2k+i—1)—(2mk+1—j)=j—mk—2k+z’—22k(m—%—2)—120.

O
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Proposition 3.1.3. Let S = K[A, B,C, D|/J where the characteristic of the field
K is a prime p > 2, and J is the ideal generated by the size two minors of the matrix
A’ B D
C A2 B"-D

Then S is an F-reqular ring.

Proof. There are various ways to establish this. We may identify S with the ring

®i>oH° (P!, Op1(iD)) X* where P! = Proj K[X,Y], and D is the Q-divisor
D= sV(X)+ 2V(Y) + = V(X +Y)
S 2 2 2n '

Under this identification,

3 X3n+1

X
A— X, B—» —, OC—» XY, D~ ———F———.
=X, B4, O XY, HY"(X+Y)

One may now appeal to Watanabe’s classification in [Wa3] to conclude that S is
F-regular.
2n+1)

For an alternate proof, it is easily verified that S is the Veronese subring H'

of the hypersurface
H=K[A X,Y]/(A? = XY (X" —Y))

where the variables A, X and Y have weights 2n + 1, 2 and 2n respectively. Here
B =XY? C=XX"-Y)?and D = Y?"'. Since the characteristic of K is
greater than 2, a routine computation shows that the hypersurface H is F-regular,
and consequently its direct summand S is also F-regular. (This hypersurface is the

cyclic cover H =S ®w®w® @--- @ w®) where w the canonical module of S.) O

Proposition 3.1.4. Let K be a field of characteristic p > 2 and consider the ring

R =R, = K[A,B,C,D,T|/I where I is generated by the size two minors of the



21

matric My, . If m —m/n > 2, then R is not F-regular. If in addition p and m are

relatively prime, then R is not F-pure.

Proof. First note that b"d™ ! ¢ (a,d). To establish that R is not F-regular we shall
show that 0"t™~! € (a,d)*.

For a suitably large arbitrary positive integer e, let ¢ = p® = 2mk + § where k
and ¢ are integers such that k(m —m/n —2) > 1 and —m+2 < § < 1. To see that
b"t™t € (a,d)*, it suffices to show that (b"t™~1)4tm=1 € (g4, d9) for all ¢ = p®. Since

g+m—1=2mk+0+m—12>2mk+1 and g < 2mk + 1, it suffices to see that

(bntm—l)ka—l—l c (ank_H, d2mk—|—1)

bl

but this is precisely the assertion of Lemma 3.1.2.

For the second assertion, note that since p > 2, the integers p and 2m are relatively
prime and we may choose a positive integer e such that ¢ = p® = 2mk + 1 for
some k£ > 0. Taking a higher power of p, if necessary, we may also assume that
k(m —m/n —2) > 1. But now (b"t™ 1)¢ € (a?,d?) by Lemma 3.1.2, and so we have

b"t™~1 € (a,d)¥, which shows that R is not F—pure. 0O

Proof of Theorem 3.1.1. We have already noted that the element ¢ € m is indeed a
nonzerodivisor, and Proposition 3.1.3 establishes that the ring R/tR is F-regular.
Since m —m/n > 2, Proposition 3.1.4 shows that R fails to be F-regular, and is not

F-pure if p and m are relatively prime. O

The examples constructed above also show that the property F-regular type does

not, deform:

Theorem 3.1.5. For positive integers m and n satisfying m — m/n > 2, consider

the ring R = Q[A, B,C, D, T|/I where I is generated by the size two minors of the
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matric My, , of Theorem 3.1.1. Then R is not of F-pure type, whereas R/tR is of

F—reqular type.

Proof. If p is a prime which does not divide 2m, the fiber of Z — Ry over p is
not F—pure by Proposition 3.1.4. Consequently the ring R is not of F-regular type.
Proposition 3.1.3 shows that R/t R is of F-regular type since the fiber of Z — (R/tR)z

over p is F-regular for all primes p > 2. O

Remark 3.1.6. R. Fedder first constructed examples to show that F—purity does
not deform, see [Fel]. However Fedder pointed out that his examples were less than
satisfactory in two ways: firstly the rings were not integral domains, and secondly
his arguments did not work in the characteristic zero setting, i.e., did not comment
on the deformation of the property F-pure type. In [Si] the author constructed
various examples which overcame both these shortcomings, but left at least one
issue unresolved — although the rings R were domains (which were not F—pure), the
F-pure quotient rings R/tR were not domains. The examples we have constructed

here also settle this remaining issue.
3.2 Conditions on fibers
The examples constructed in the previous section are also relevant from the point

of view of the behavior of F-regularity under base change. We first recall a theorem

of Hochster and Huneke, [HH4, Theorem 7.24].

Theorem 3.2.1. Let (A,m,K) — (R,n, L) be a flat local homomorphism of local
rings of characteristic p such that A is weakly F-reqular, R is excellent, and the

generic and closed fibers are reqular. Then R is weakly F-regular.

It is a natural question to ask what properties are inherited by an excellent ring
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R if, as above, (A,m,K) — (R,n, L) is a flat local homomorphism, the ring A is
F-regular and the generic and closed fibers are F-regular. Our examples can be used
to show that even if (4, m, K) is a discrete valuation ring and the generic and closed
fibers of (4, m, K) — (R, n, L) are F-regular, then R need not be F-regular.

Once again, we construct N-graded examples, and examples with local rings can
be obtained by the obvious localizations at the homogeneous maximal ideals. Let
A = K|[T] be a polynomial ring in one variable, and R = K[A, B,C, D, T]/I where
I is generated by the size two minors of the matrix 9, ,,. As before, K is a field of
characteristic p > 2, and m and n are positive integers such that m —m/n > 2.

The generic fiber of the inclusion A — R is (a localization of) R;, whereas the
fiber over the homogeneous maximal ideal of A is R/tR. We have earlier established
that R/tR is F-regular, and only need to show that the ring R, is F-regular. In the
following proposition we show that the ring R is, in fact, locally F-regular on the

punctured spectrum.

Proposition 3.2.2. Let K be a field of characteristic p > 2. For positive integers m
and n consider the ring R = Ry, ,, = K[A, B,C, D, T]/I where I is generated by the
size two minors of the matrix My, ,. Then the ring Rp is F-regular for all primes

P in the punctured spectrum Spec R — {m}.

Proof. A routine verification shows that the singular locus of R is V(J) where the
defining ideal is J = (a, b, c¢(c+t™), d). Consequently we need to show that the two
local rings Rp and R are F-regular where P = (a, b, ¢, d) and Q = (a, b, c+t™, d).

When we localize at the prime P, we have d = b"(a?+1™)/(c+a?+t™) and so Rp
is a localization of K[T, A, B,C]/(A%*(A? + T™) — BC) at the prime ideal (a, b, c).
Since a? 4+ #™ is a unit, the hypersurface Rp is easily seen to be F-regular.

Localizing at the prime @, we have b = a*(a®+t™)/c and so R is a localization of
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KT, A,C,D]/(C"D(C+A*+T™)— A*(A>+T™)"*!) at the prime ideal (a, c+t™, d).

Again we have a hypersurface which, it can be easily verified, is F-regular. O

3.3 Anti—canonical covers

Let (R, m, K) be a local or an N-graded normal ring. The anti—canonical cover
of R is the symbolic Rees ring S = @;50/@X? C R[X] where I is an ideal of pure
height one which is the inverse of w in the divisor class group CI(R). The ring S
need not be Noetherian in general but when it Noetherian, we have the following

useful theorem of Watanabe, [Wa4, Theorem 0.1].

Theorem 3.3.1. Let (R, m, K) be a normal ring for which the anti—canonical cover
S = @iZOI(i)Xi is Noetherian. Then R is strongly F-reqular (F-pure) if and only if

S is strongly F-reqular (F-pure).

Note that if the ring S above is Noetherian and Cohen—Macaulay, then it is also
Gorenstein. This can be inferred from a local cohomology calculation in [Wad4], or
from [GHNV, Theorem 4.8].

We use these ideas to obtain a positive result regarding the deformation of strong
F-regularity. It is known that F-rationality deforms, [HH4, Theorem 4.2 (h)], and

our work makes use of this in an essential way.

Theorem 3.3.2. Let (R, m, K) be a normal local ring for which the anti—canonical
cover S = @®;>oID X" is Noetherian, and the symbolic powers I®) satisfy the Serre
condition Sy for alli > 0. Then if R/tR is strongly F-regular for some nonzerodivisor

t € m, the ring R 1s also strongly F-regular.

Proof. We may replace I, if necessary, to ensure that {R is not one of its minimal

primes. Since we have assumed that I is S5, the natural maps give us isomorphisms
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(I/tD)® 22 1O /t1() for 4 > 0. Hence the ring
S/tS= R/tRe (I/tI) & (I/tH? & - - -

is an anti-canonical cover for R/tR. Theorem 3.3.1 now shows that S/tS is strongly
F-regular, and so is also Cohen—Macaulay. Hence S is Cohen—Macaulay and therefore
Gorenstein. As F-rationality deforms and S/tS is strongly F-regular, we get that
S is F-rational. However S is Gorenstein, and so is actually strongly F-regular.

Finally, R is a direct summand of S and so is strongly F-regular. O



CHAPTER IV

FAILURE OF F-PURITY AND F-REGULARITY IN
CERTAIN RINGS OF INVARIANTS

Let I, be a finite field of characteristic p, K a field containing it, and take a poly-
nomial ring in n variables, R = K[Xj,...,X,]. The general linear group GL,(F,)
has a natural action on R by degree preserving ring automorphisms. L. E. Dickson
showed that the subring of elements which are fixed by this group action is a poly-
nomial ring, [Di], though for an arbitrary subgroup G of GL,(F,), the structure of
the ring of invariants R“ may be rather mysterious. If the order of the group |G| is
relatively prime to the characteristic p of the field, there is an R“~linear retraction
p: R — RY the Reynolds operator. This retraction makes R® a direct summand
of R as an R% module, and so RY is F-regular. However when the characteristic p
divides |G|, this method no longer applies, and the ring of invariants R® need not
even be Cohen—Macaulay. M.-J. Bertin showed that when R is a polynomial ring in
four variables and G is the cyclic group with four elements which acts by permuting
the variables in cyclic order, then the ring of invariants R is a unique factorization
domain which is not Cohen-Macaulay, providing the first example of such a ring,
[Ber]. More recently D. Glassbrenner studied the invariant subrings of the action of
the alternating group A, on a polynomial ring in n variables over a field of charac-

teristic p, constructing examples of F—pure rings which are not F-regular, [G11, G12].

26
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Both these families of examples study rings of invariants of K[X7,..., X,] under the
action of a subgroup G of the symmetric group on n elements, i.e., an action which
permutes the variables, and Glassbrenner shows that for such a group the ring of
invariants is F-pure, see [Gl1, Proposition 0.6.7].

We shall construct examples which demonstrate that the ring of invariants for
the natural action of a subgroup G of GL,(F,) need not be F-pure. We shall obtain
such examples with the group G being the symplectic group over a finite field. These
non F-pure invariant subrings are always complete intersections, and are actually
hypersurfaces in the case of G = Sps(F,) < GL4(FF,) acting on the polynomial ring
R = K[X1, Xo, X3, X4]. These examples are particularly interesting if one is attempt-
ing to interpret the Frobenius closures and tight closures of ideals as contractions
from certain extension rings, since we have an ideal generated by a system of parame-
ters and the socle element modulo this ideal is being forced into the expansion of the
ideal to a module-finite extension ring which is a separable (in fact Galois) extension
and is also forced into the expanded ideal in a linearly disjoint purely inseparable
extension (being in the Frobenius closure of the ideal). It is noteworthy that the
element can be forced into expanded ideals in two such different ways.

Our results depend on the work of D. Carlisle and P. Kropholler where they show
that the ring of invariants under the natural action of the symplectic group on a
polynomial ring is a complete intersection, [CK|. We obtain the precise equations
defining these complete intersections in some examples using the program Macaulay,
and in some other cases collect enough information to display that the invariant
subrings are not F—pure.

The last section of this chapter deals with the alternating group A,, acting on the

polynomial ring R = K[Xi,...,X,| by permuting the variables. We shall assume
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that the characteristic p of K is an odd prime, and denote by R4», the invariant
subring of this action. Since R4? is a polynomial ring we shall always assume n > 3.
If the order of the group |A,| = %(n') is relatively prime to the characteristic p of the
field, the Reynolds operator makes R4 a direct summand of R as an R4»—module,
and in the language of tight closure, the existence of a retraction is equivalent to
the ring R4 being F-regular, see Lemma 4.3.1. When p divides either n or n — 1,
Glassbrenner has shown that the invariant subring R4» is no longer F-regular, see
[G11, Proposition 1.2.5]. We shall extend this result by showing that R4 is F-regular

if and only if p does not divide |A,|.

4.1 Symplectic invariants

We shall summarize in this section the results of Carlisle and Kropholler as pre-
sented in [Ben|. Let F, be a finite field of characteristic p, and K an infinite field
containing it. L. E. Dickson showed that the ring of invariant forms under the natural
action of GL,(F,) on the polynomial ring R = K[Xy,...,X,] is a graded polyno-
mial algebra on the algebraically independent generators c,;, where the c,; are the

coefficients in the equation

H (T - U) =T — cn,nfqunil + Cn,n72an72 -t (_1)ncn,0T'
vEF [X1,....Xn]

When working with a fixed polynomial ring R = K[Xy, ..., X,], we shall drop the
first index, and write the generators of R¢L»(Fa) as ¢y, ..., ca_1, the Dickson invari-
ants. It is clear that for any subgroup G of GL,(F,), the ring of invariants RC is a
module-finite extension of the polynomial ring R¢L) = Klcy, ..., ca_i].

Let V' be a vector space of dimension 2n over the field IF,, with a basis e1, . .., ean,

and let B be the non—degenerate alternating bilinear form given by

B(Z a;€;, ijej) = a1by — asby + - -+ + agn_1b2n — A2nb2,_1.
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The symplectic group G = Spa,,(F,) is the subgroup of G Lo, (IF,) consisting of the ele-
ments which preserve B. We consider the natural action of G on R = K[X7, ..., Xa,].

In addition to the Dickson invariants, it is easily seen that R“ must contain

= X1 XS = XoXT 4+ Xop 1 X8, — Xou XE,_ .

Carlisle and Kropholler show that the Dickson invariants cy, . . ., c2,—1 along with the
above &,..., &, form a generating set for R“, and that there are 2n relations, i.e.,
that R® is a complete intersection. One may eliminate cg,...,c,—; and &, using

n + 1 of these relations, after which the remaining n — 1 relations are

[y

2n

(~1)7€el o= Y (~1)Yel ¢

j=i+1

1—

Il
)

J
where 1 < i <n —1 and ¢y, = 1. They furthermore show that cq € K[&, ..., & 1]

which is, in fact, a polynomial ring.

4.2 Rings of invariants which are not F-pure

We shall first show that the ring of invariants of G = Sp4(F,) acting on the
polynomial ring R = K[X;, Xy, X3, X4 is not F-pure when ¢ = 2 or 3. Note that
Spa(IFy) is the same as SLy(F,), and so the ring of invariants in that case is a

polynomial ring.

Example 4.2.1. Let R = K[X;, Xy, X3, Xy] and G = Sps(F,) be the symplectic
group with its natural action on R. In the notation of the previous section, the ring

of invariants is R® = K|cy, c3, &1, &2, &3], where the only relation is

Ei1co = Eley — EJes + &4

We need to determine c¢q as an element of K[&1,&,&3]. When ¢ = 2, it can be
verified that co = &) + & + &&7, and s0 &5 = €8 + 6,63 + 385 + Elcy + E2¢3, by which

& € ((&1,&)RE)Y. Since & ¢ (&1,&)RC, the ring RY is not F-—pure.
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In the case ¢ = 3, ¢y can be expressed as an element of K &1, &, &3] by the equation
Co = &+ Eab L+ €063+ €194 — €136, +£2°. Once again we see that & € (61, &)RE)T,
and so RY is not F-pure.

Computations with Macaulay helped us determine the precise equations in these

examples.

Theorem 4.2.2. Let F, be a finite field of characteristic p, and K an infinite field
containing it. Let G = Spon(F,) be the symplectic group with its natural action on
the polynomial ring R = K[X1,..., Xon]. If n > 2 and q > 4n — 4, then the ring of

invariants RS is not F-pure.

Proof. In the notation of the previous section, R¢ = Klc,,...,Com 1,15 -+, Em 1],
where there are exactly n — 1 relations, as stated before. Using the relation with

1 =1, we see that
§gn_1 € (6?5"'a§gn—256160)}%G,

whereas o, 1 & (&1, ..., &m_2)RC. If R® isindeed F—pure, &, | ¢ (¢1,...,& ,)RC,
and so the expression of ¢y as an element of K[y, ..., &, 1] must have a monomial
of the form &£1&£5%--- &7, with a; < ¢ — 2 and ag,...,a0,_1 < ¢ — 1. Equating

degrees, we have

degco=¢" —1=ai(¢+1) +as(q’ + 1)+ + az1(¢™ " +1)

2n—1

Examining this modulo ¢, we get that ) .| a; = A¢ — 1, where the bounds on

a; show that 1 < A < 2n — 2 < ¢. Substituting this, we get ¢** = Ag + .77 " aiq’.

Working modulo ¢2, we see that a; = ¢ — A, and continuing this way we get that
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Gg,...,09, 1 = q— 1. Hence
¢"=1=(=-Na+1)+@=-1)(+1)++ (- 1)@ " +1),

which simplifies to give A(¢ + 1) = 2nq — 2n — ¢ + 3. Since A < 2n — 2, this implies
that ¢ < 4n — 5, a contradiction.
Hence R® is not F—pure. In particular &, 1 € ((&1, ..., &mn 2)RE)T, the Frobenius

closure. n

Corollary 4.2.3. The ring of invariants R® of the symplectic group G = Spy(F,)

acting on the polynomial ring R = K[X,, Xo, X3, X4] is not F—pure.

Proof. We have, in the examples above, treated the case where ¢ = 2 or 3. When

q > 4, the result follows from the previous theorem. O

4.3 Rings of invariants of the alternating group

The invariant subring under the natural action of A4, is R4 = Kley, ..., e,, A]
where e; is the elementary symmetric function of degree ¢ in Xy,..., X, and A =
[1is;(Xi — X;). The element A is easily seen to be fixed by all even permutations
of Xi,...,X,, though not by odd permutations. However its square, A2, is fixed by
all permutations, and so is a polynomial in the algebraically independent elements
ei,...,e,. Consequently the invariant subring R4 is a hypersurface, in particular
it is Gorenstein. The elements ey, ..., e, are an obvious choice as a homogeneous
system of parameters for R4», and the one-dimensional socle modulo this system of

parameters is generated by A.

Lemma 4.3.1. With the above notation, the following are equivalent:

(1) R = Kley,...,en, A] is F-regular.
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(2) R is a direct summand of R = K[Xy,...,X,] as an R4 -module.
(3) Ag(er....e)R

Proof. (1) = (2) By [HH5, Theorem 5.25], an F-regular ring is a direct summand
of any module—finite extension ring.

(2) = (3) Since R4 is a direct summand of R, we have (ei,...,e,) RN R4 =
(e1,...,en)RAn.

(3) = (1) The elements ey, ..., e, form a system of parameters for the Goren-
stein ring R4 and A is the socle generator modulo this system of parameters. If A
is in the tight closure of (e, ...,e,)R4", then A € (e1,...,e,)R* = (e1,...,en)R.
Hence A cannot be in the tight closure of (ei,...,e,)R*", by which R is F-

regular. O

Consequently our aim is to establish that A € (e, ..., e,)R, whenever p divides

|A,,|. We shall henceforth denote this ideal by I = (ey,...,e,)R.

Lemma 4.3.2. Let T; denote the sum of all monomials of degree ¢ in Xj, ..., X,.

Then T; € I whenever ¢ > j > 1. In particular, TzZ el foralll <1 <n.

Proof. Observe that T]? = T;_l — Xj_lT;':ll. Given T]Z with 7 > j > 1, we may use
this formula to rewrite T} as a sum of terms which are multiples of T}. Since 77 is
the sum of all the monomials of degree ¢ in X7,..., X, it is certainly an element of

I,andsoTjEI. O

Lemma 4.3.3. The ideal I = (ey, ..., e,)R contains the elements: X", X 1X""|

n—1vyn—2yn—2
Xn Xn—lX

n—2m *

n—1yn—2 i—1 yi—1 n—1yn—2
Xn Xn—l "'.Xi XZ*l’ ceey Xn Xn—l "'X2X1.

Proof. We shall use the fact that 7} € I for 1 <4 < n, Lemma 4.3.2. This already

says that X! = T" € I, and since [ is symmetric in the X;, we also have X]_, € I.
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Next, X" T | € I, but examining this using X | € I we see that X» ' X" | € I.
We proceed by induction.
Since T/~ € I, we know X~ *X"~2... X!"'T/~! € I, but using the inductive

hypothesis, this gives X271 X" 2.. -Xi"’le:ll el O
Lemma 4.3.4. In the above notation, A = (n) X1 X" 7... X, (mod I).

Proof. Let 6, = (X, — X1)(X;, — Xo)--- (X, — X, 1). Then A = 6,6, 1---95. We
shall show that 6, = r X7 ' (mod I + (X,41,...,X,)R) for 2 < r < n. Note that
for r = n, this says §, = nX""! (mod I).
Fix r, where 2 < r < n. Let f; be the elementary symmetric function of degree
i in the variables Xi,..., X, 1. Then f; = (—=X,)fi1 (mod I + (X,11,...,Xy))R,
and using this repeatedly, we see that f; = (—X,)" (mod I + (X,;1,...,X,))R.
Consequently
o = (X — X0)(X; — Xo) - (Xo — X;1)
=X XX e X))+ (D)X X
=X =X fi 4o+ (1) fomr (mod I+ (Xpya, ..., Xn)R)
=X - X =X) 4+ (D)X (mod T+ (X, ..., X)) R)
=rX""' (mod I + (X,y1,---, Xn)R).
Since X' € I, when evaluating the term 0,0,_1 (mod I), it is enough to con-
sider 6,_; (mod I + X,R), and so we get 6,0,_1 = n(n — 1) X' X"~2 (mod I).

Proceeding in this manner, one obtains from the above calculations that
A=60p1-0=MHX" X" 2...X, (modI).
The point is that since

6nlp1---0p=nn—1)---(NX X "2... X! (mod I),
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we have 6,0, 1---0,(X,,...,X,) C I by Lemma 4.3.3 and so when evaluating

0n0n—1---6,—1 (mod I), we need only consider §,_; (mod I + (X,,...,X,)R). O
We are now ready to prove the main result of this section.

Theorem 4.3.5. Let R = K[X},...,X,] be a polynomial ring in n variables over a
field k of characteristic p, an odd prime, and let the alternating group A,, act on R by
permuting the variables. Then the invariant subring R is F-regular (equivalently,
RA» s a direct summand of R) if and only if the order of the group |A,| = %(n') is

relatively prime to p.

Proof. As we noted, it suffices to show that A € I = (ey,...,e,)R. By Lemma 4.3.4,

A= )X 1X"2... X, (mod I), and so the result follows. O

Remark 4.3.6. It follows from Glassbrenner’s result, [G11, Proposition 0.6.7], that
R4 is always F-pure. Consequently when the characteristic p of the field K is an

odd prime dividing |4, |, R4* is an F-pure ring which is not F-regular.



CHAPTER V

F-RATIONALITY AND F-REGULARITY OF
VERONESE SUBRINGS

Our objective is to determine when an N-graded ring R has Veronese subrings
which are F-rational or F-regular. Our discussion is motivated by the fact that if R is
a Cohen—Macaulay ring with an isolated singularity and a negative a—invariant, then
for all large positive integers n, the Veronese subring R™ is F-rational, Proposition
5.1.1 below. The existence of F-regular Veronese subrings turns out to be more
subtle. Using a result of Watanabe, we show that if R is a normal N-graded ring
generated by degree one elements over a field, then either R is F-regular, or else
no Veronese subring of R is F-regular. Consequently the problem is reduced to
studying when a ring R generated by degree one elements over a field is F-regular;
we may assume here that R is F-rational. It is easily seen that the F-rationality
of R implies a(R) < 0, and for rings of dimension two this also turns out to be a
sufficient condition for the F-regularity of R. This is false in higher dimensions, and
we construct examples (in prime characteristic, as well as in characteristic zero) of

rings generated by degree one elements which are F-rational but not F-regular.

35
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5.1 F-rational Veronese subrings

Proposition 5.1.1. Let R be an N-graded Cohen—Macaulay domain of dimension d,
which is locally F-rational on the punctured spectrum Spec R —m. (This is satisfied,
in particular, if R has an isolated singularity.) Then [H2 (R)]o = 0 if and only if the
Veronese subring R™ is F-rational for all integers n > 0. In particular if a(R) < 0,

then R™ is F-rational for all integers n > 0.

Proof. Note that we have [HZ(R)]o C 0%,

(R)’ since for z € [H%(R)]o we get ¢z =0

for all ¢ = p°, when ¢ € m is of a sufficiently large degree. Consequently if R™ is
F-rational for some n, we must have a(R™) < 0, but then [H(R)]o = 0.
For the converse first note that since R is F—rational on the punctured spectrum,

Theorem 2.2.3 (6) says that 0%,

(r) TOUSt be killed by a power of the maximal ideal m,

and so is of finite length. As [HZ(R)], = 0, for large positive integers n we see that
He,(R™) = (H(R))™ contains no nonzero element of 0% (ry Where m' denotes the

 then u € 0y 4 N Hy, (R™)

homogeneous maximal ideal of R™. If u € Ok, (rew

and so u = 0. Hence R™ is F-rational for n > 0. O

Example 5.1.2. Let R = K[X,Y,Z]/(X%?+ Y3+ Z°) where K is a field of prime
characteristic p. We make this a graded ring by setting the weights of z, y and z to be
15, 10 and 6 respectively. We determine the positive integers n for which the Veronese
subring R™ is F-rational. This shall, of course, depend on the characteristic p of R.

First note that a(R) = —1 with this grading. If p > 7, it is easy to verify that the
ring R is F-regular, for an interesting proof, see [Fe2, Example 2.9]. Consequently
every Veronese subring of R, being a direct summand of R, is also F-regular. For
p=2 3o0rb a? € (y?,2P), and so R is not F-rational. It is also easily checked

that the action of the Frobenius on HZ(R) is injective in degree < —2 with the one
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exception of p = 2 where elements in degree —7 are mapped to zero under the action
of the Frobenius, specifically F(zy 'z ?) = 0 in H2/(R). Recall that anR(n) (R™)
is generated by elements of H2 (R) whose degree is a multiple of n. Consequently
for n > 2 the action of the Frobenius on HTQ”R(M (R™) is injective, with the one

exception. Using the arguments in the proof of the above theorem, we see that R™

is F-rational for all n > 2, excluding the case when p =2 and n =T7.

5.2 Results in dimension two

Theorem 5.2.1. Let R be an N—graded normal ring of dimension two, which is
generated by degree one elements over an algebraically closed field. Then the following

statements are equivalent.

(1) R is isomorphic to a Veronese subring of a polynomial ring in two variables.
(2) R is F-regular.

(3) R is F-rational.

(4) R has a negative a—invariant.

Proof. The implications (1) = (2) = (3) = (4) follow easily. For (4) = (1) note
that X = Proj R is a nonsingular projective curve. Since [H2(R)]; = 0, we have
H'(X,0x) = 0 and so X is of genus zero, i.e., P!. Consequently R = R(P!, D)

where D is a Weil divisor on P'. Hence D is linearly equivalent to O(m) for some

m € Nand R R(P',O(m)) = (K[X,, X,])™. .

Theorem 5.2.2. Let R be an N—graded domain of dimension two, with an isolated
singularity, which is finitely generated over an algebraically closed field. If a(R) < 0,

there exists a positive integer n such that R™ is isomorphic to a Veronese subring
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of a polynomial ring in two variables over K. In particular, some Veronese subring

of R is F-reqular.

Proof. Note that R is excellent and so R’, the integral closure R in its fraction field,
is module—finite over R. Since R has an isolated singularity, the conductor (i.e., the
largest common ideal of R and R') is primary to the maximal ideal of R', by which
R; = R for all i > 0. We may therefore choose a positive integer k such that R is
normal, and then choose an appropriate multiple n of £, by Lemma 2.3.2, such that
R™ is generated by elements of equal degree. We are now in a position to apply
the above theorem to conclude that R™ is isomorphic to a Veronese subring of a

polynomial ring in two variables. O

Example 5.2.3. Let S = K[X,Y, Z]/(X?®-Y Z(Y + Z)) where K is a field of prime
characteristic p =1 (mod 3). Let R = K[X,Y?3 Y?Z, YZ% 73 /(X3 - Y Z(Y + Z))
be subring of S. It is proved in [HH5] that R is F-rational but not F-regular, see also
[Wa3]. Since R® is generated by elements of equal degree, it must be isomorphic to

a Veronese subring of a polynomial ring by Theorem 5.2.1. Indeed,
R® = K[X®, Y3, Y?Z YZ2 Z%/(X*-YZ(Y + 2)) 2 K|Y?3, Y*Z, Y72, 7%

Example 5.2.4. Let R = K|t,t'z,t*z™",t*(x + 1)7'] where K is a field of prime
characteristic p. This is one of the examples in [Wa2] of rings which are F-rational
but not F-pure; for a different proof see [HH5|. By mapping a polynomial ring onto

it, we may write R as
R=KI[T, U, V, W]/(T®-UV, T"V = W) = VW, UV — W) — T*W).

This is graded by setting the weights of ¢, u, v and w to be 1, 4, 4 and 4 respectively.
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Note that

RY = K[T*, U, V, W]/(T® = UV, T*(V = W) = VW, U(V = W) - T*W)

=K[S, U, V, W|/(S2=UV, S(V-=W) VW, UV — W) — SW)

where we relabel 7% as S. Then R® is generated by elements of equal degree,
and is isomorphic to K[X?3, X?Y, XY? Y?] by setting S = XY (X - Y), U = XY?,

V=X(X-Y)?and W=Y(X - V)2

By Theorem 5.2.2 we know that a graded normal ring R of dimension two over
an algebraically closed field has a Veronese subring R™ which is F-regular. We
next show that if R is a hypersurface, there exists n such that R™ is actually an

F-regular hypersurface.

Theorem 5.2.5. Let R be an N—graded normal hypersurface of dimension two with
a(R) < 0. Then there erists a positive integer n such that the Veronese subring R™

1s an F-reqular hypersurface.

Proof. Let R = K[X,Y, Z]/(f) where z, y and z have weights m, n and r respectively.
We may assume without any loss of generality that m, n and r have no common
factor. If d = ged(m,n), then by our assumption d and r are relatively prime.
Therefore f must be a polynomial in z, y and 2%. Consequently R™ is again a
hypersurface, and satisfies all the initial hypotheses, and so we may assume that R
satisfies the extra hypothesis that m, n and r are pairwise relatively prime. Assume
further that m > n > r. We need to consider the two cases a) n =1and r = 1,
and b) m > n > r. Note that it suffices to show that R is F-rational, since it is
indeed a hypersurface.

We first eliminate the case (#) when f is of the form XH (Y, Z) + G(Y, Z). We

may take a system of parameters of R of the form z, ¢t where ¢ is the image in R of
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a polynomial 7' € K[X,Y, 7] involving only Y and Z. If R is not F-rational, then
since a(R) < 0, (z,t) cannot be F-pure. Hence for some g = p°, we have s? € (29, t9)
while s ¢ (z,t). Again, we may assume that s is the image in R of a polynomial
S € K[X,Y, 7] involving only Y and Z. This means that in K[X,Y, 7], we have
S € (X9, T, XH + G) but then S? € (T9,G?) and so S € (T,G) in K[X,Y, Z],
giving us the contradiction s € (z,t).

a) We have a(R) = degf — (m+n+r) < 0, and so deg f < m + 2 since
n =r = 1. This forces f to be of the form (#).

b) Since a(R) =degf — (m+n+r) <0, we have deg f < m+n+1r < 3m.
Hence up to a scalar multiple, f is of the form XH(Y, Z)+G(Y, Z) or X*+G(Y, Z).
Note that the first case has already been handled.

Now suppose f = X2 + G(Y,Z). Then degf = 2m < m+n+r and so 3 <
m < n + r, consequently G cannot involve a term of the form Y2Z! where | > 2.
If G has a term Y*, then 2m = kn and so n = 1 or 2. Since n > r, we can only
have n = 2 and r = 1, but this too is impossible. Hence f can only be of the form
f=X24+aZF+bY Z' +cY?Z where a, b and c are scalars. R is normal, and so ¢ must
be non—zero since [ > 2 and k > 2. It follows that 2m = 2n + r. If a is non—zero,
2m = rk and since r is even, we can only have »r = 2. But then m =n+ 1, and so r
divides either m or n, a contradiction. Hence @ =0, and so f = X2 +bY Z! +cY2Z.
If b were non-zero, then we would have n+rl = 2n+r, i.e., n = r({—1), which forces
r = 1. However we know 7 to be even, and so b = 0. We are left with f = X?+cY?Z

but this is ruled out since R is normal. O

5.3 F-regular Veronese subrings

We begin by recalling a theorem of Watanabe, [Wa3, Theorem 3.4]:
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Theorem 5.3.1. Let Dy and Dy be ample Q-divisors on a normal projective variety
X. If the fractional parts D} and D) are equal, then the ring R(X, D;) is F-reqular

(F-pure) if and only if the ring R(X, Ds) is F-reqular (F-pure).
Watanabe’s theorem gives us the following corollary:

Corollary 5.3.2. Let R be an N-graded normal ring which is generated by degree
one elements over a field. Then either R is F-regqular (F-pure), or else no Veronese

subring of R is F-regular (F-pure).

Proof. Since R is generated by its elements of degree one, we have R = R(X, D),
where D is a Weil divisor, i.e., has D' = 0. Also, (nD)" = 0 where n is any positive
integer. By the above Theorem, R = R(X, D) is F-regular (F—pure) if and only if

R™ =~ R(X,nD) is F-regular (F-pure). O

As an application of this result, we now construct a family of rings with negative
a—invariants, which have no F-pure Veronese subrings. This shows that a result

corresponding to Theorem 5.2.2 is no longer true in higher dimensions.

Example 5.3.3. Let R = K[X,,..., Xy]/(X3+---+ X3) with d > 3, where K is a
field of characteristic 2. Then 22 € (21, ...,4)*, since 2§ € (21, ..., 24)!?. Hence Ris
not F-pure, and since it is generated by elements of degree one, Corollary 5.3.2 shows
that R has no F-regular or F—pure Veronese subrings. Note that a(R) =2 —d < 0.

We can also see that R™ is not F-pure (for any n > 0) by showing that the

element zd(z;---z4)" ! is in the Frobenius closure of the ideal
] = ($d_2 n,n-1_ n—1 d—2,n, n-1 n—1 d—2,n, n—1 n—l)R(n)’

0 TTH e TyTy, Ty TyTy o Ty, .., Ty Tgx] Ty

although not in the ideal I itself.
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For all n > 2, the ring R™ is an example of a graded ring generated by degree one
elements (with an isolated singularity and a negative a—invariant) which is F-rational

but not F—pure.

Remark 5.3.4. The examples above are not completely satisfactory as they are not
valid in the characteristic zero setting. Characteristic zero examples turn out to be

much more subtle, and we construct these in the next section.

We again return to the ring R = K[X,Y,Z]/(X? + Y?® + Z5), and this time

determine its F-regular and F—pure Veronese subrings.

Example 5.3.5. Let R = K[X,Y,Z]/(X*+Y? + Z°) where K is a field of prime
characteristic p, and the grading is as before. We have noted that when p > 7, the
ring R is F-regular, and therefore so is any Veronese subring R™. We now determine
when R(™ is F-regular assuming p is either 2, 3 or 5.

Note that the Veronese subrings R®, R®) and R®) are in fact polynomial rings.
Therefore when n is divisible by one of 2, 3 or 5, R™ is a direct summand of a
polynomial ring, and so is F-regular. We show that these are the only instances
when R™ is F-regular, or even F—pure.

Recall from Example 2.4.3 that R = R(X,D) where X = Proj K[S,T] and
D = (—-1/2)V(S) + (1/3)V(T) + (1/5)V(S + T). If n is relatively prime to 30, the
Q-divisor nD has the same fractional part as D, and so R™ = R(X,nD) is not
F-pure or F-regular by Theorem 5.3.1.

We can also construct explicit instances of Frobenius closure to illustrate why
R™ is not F-pure when n is relatively prime to 30. Since n is relatively prime to
the weight of y, the ring R™ has a unique monomial of the form zy' with 0 < I < n.

Similarly there is a unique integer m with 0 < m < n such that y**'2™ € R™ and



43

a unique integer r with 0 < r < n such that 2"z € R™. We claim that

mr—l—lyrH—lZd e (mryrl+l+1zm’xrzd+l)F’ and

gl g (gL o dtL),
The second statement is true in R and so also in R, while the first follows from
(@l 4P € (2 P, (72 )P) for p =2, 3 or 5.
This completes our study of the Veronese subrings of R = K[X,Y, Z]/(X?+Y?3+ 7).

Example 5.3.6. We saw that the F-purity and F-regularity of a ring R = R(X, D)
depend only on the fractional part D’ of the Q-divisor D. This is by no means true
of F-rationality and F—injectivity (i.e., the injectivity of the Frobenius action on the
highest local cohomology module). As an example of this, consider the Q-divisor
E = (1/2)V(S) 4+ (1/3)V(T) + (1/5)V (S + T) on Proj K[S,T] which has the same

fractional part as D = (—1/2)V(S) + (1/3)V(T) + (1/5)V(S + T). Then
S = @,50H (X, Ox (nE))T" = K[A, B,C, T)/I

where I = (AB — T%, BC + CT? — BT, AC + CT? — ABT?) and A = T3/S,
B = ST? and C = ST®/(S + T). If the characteristic of K is 2, 3 or 5, the ring
R=R(X,D)=K[X,Y,Z]/(X?+ Y3+ Z°) is not F-rational (or F-injective) as we
saw in Example 5.1.2. We claim that the ring S is however F-rational. To see this
note that a(S) < 0, and so it suffices by Theorem 2.3.4 to verify that the ideal I
generated by the homogeneous system of parameters t, a'® + b'° + % is Frobenius
closed. However this is easily verified: the ring S/tS = K[A, B,C]/(AB, BC,CA)
is F—pure since the ideal (AB, BC,CA) is generated by square free monomials, see

[HR2, Proposition 5.38].
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Remark 5.3.7. Let R be a Cohen-Macaulay ring with an isolated singularity, which
is generated by degree one elements over an algebraically closed field. For a two
dimensional ring R, a negative a—invariant forces R to be F-regular, although for
rings of higher dimensions this is no longer true: in Example 5.3.3 we constructed
rings R of dimension d > 3, with a(R) = 2 — d, which were not F-regular. Smith has
pointed out that if R satisfies the stronger condition that a(R) < 1—d, then Proj R is
a variety of minimal degree. These are completely classified (see, for example, [EH])

and it is easily verified that in this case R is F-regular, see [Smb, Remark 4.3.1].

5.4 Examples in characteristic zero

All our positive results towards the existence of F-rational and F-regular Veronese
subrings in prime characteristic do have corresponding statements in the character-
istic zero situation. However we have so far not exhibited a normal Cohen—Macaulay
ring, generated by degree one elements over a field of characteristic zero, which has an
isolated singularity and a negative a—invariant but is not of F-regular type. N. Hara
has pointed out to us a geometric argument for the existence of such rings using a
blow—up of P? at nine points. In this section, we construct a large family of explicit

examples of such rings of dimension d > 3.

Example 5.4.1. Take two relatively prime homogeneous polynomials F' and G of
degree d in the ring Z[X1,..., Xi], where k > 3, such that G is monic in X} and
the monomial X{ does not occur in F. Using F and G, construct the hypersurface
S=Q[S,T,X1,...,Xk]/(SF —TG) and let R be the subring of S generated by the
elements sz, ..., sxy, try, ..., txy.

For suitably general choices of the polynomials F' and G of degree d = k the

ring R has only isolated singularities, and we show that it is Cohen-Macaulay with
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a(R) = —1, and is not of F-regular type. For an explicit example, take k = 3,
F=XX,X;and G =X} + X5+ X3,

We shall prove that R is Cohen—-Macaulay whenever d < k. We first show that
the Hilbert polynomial multiplicity of R is d(k — 1) + 1, and then construct a system
of parameters such that the ring obtained by killing this system of parameters has
length d(k — 1) + 1.

We construct a basis for the vector space generated by the monomials of degree
n >0, Sit"’ixil :Egz - -aci’“, where the j, are nonnegative integers which add up to n.
The relations permit us to express ¢x¢ in terms of other monomials. Let [uy, . .., uy]’
denote the set S of monomials of degree 7 in uq, ..., uy,, and for two such sets, let
S - T denote the product of all possible pairs from & and 7. In this notation, for

n > 0, the following monomials constitute a basis for R,,:

[s,t]" - [T, 2K 1]",

[5,8]" - [@1, ..., 2p—1]™ ' - (2],
[5,8]" - [@1, ..., Tp—1 ] 4 - [2p]4,
[S]n . [.Tl, Ce ,xk]"*d - [,’Ek]d.

Consequently for large n we have

k-2 —d+14+Fk—2 —d+k—1
dimRn=(n+1){<n—£_2 >+---+<" ;:_; )}+<" kfl )

As a polynomial in n, the leading term of this expression is

nk—2 nk—2 nk-1 nfFHd(k — 1)+ 1)
”{(k—2)1+"'+(k—z)!}+(k—1) T

and so the Hilbert polynomial multiplicity of R is d(k — 1) + 1.
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The sequence of elements sz, sxy —txy, sx3 —txe, ..., ST —tx)_1 is a system
of parameters for R. Since we have already verified that the Hilbert polynomial
multiplicity of R is d(k — 1) + 1, to prove that R is Cohen—-Macaulay when d < k,
it suffices to show that the length of the ring 7" obtained by killing this system of
parameters is at most d(k — 1) + 1.

Relabel the generators of T' as as = sxy, a3 = sx3, ..., G = STk, Agy1 = LTk.

Note that the relations amongst the a; include the size two minors of the matrix
0 ay ... ar—1 ag

a2 ag ... (477 Ap+1

Consequently a generating set for [T] .4 is given by

deg 0 01,
deg 1 109, O3, ..., Qi1
. 2
deg 2 D 020k41, A30k41, - -y Gyt
. 2 2 3
deg 3 D020y, G35 1, -y Oyt
e d—2 d—2 d—1
deg d —1:agay 7, aza, 3, -, a3 ;-

In degree d the ring 1" has d additional independent relations coming from the equa-
tions sitd1f — si~1td=i*+1g for 1 < i < d. Consequently we need k — d generators
for the degree d piece of T', and one can check that there are no nonzero elements in
degree d + 1. Hence the length of 7" is bounded by d(k — 1) + 1, and this completes
the proof that R is Cohen—Macaulay.

It only remains to show that R is not of F-regular type when £ < d. Consider
the fiber A of the map Z — Ry over an arbitrary closed point pZ. Then A is a

finitely generated algebra over the finite field Z/pZ, and it suffices to show that A
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is not F-regular. Take the ideal I = (szy, sza, ..., STk 1,t21,txs, ..., txx 1)A. It is
easily verified that (tz)¢ ! ¢ I, and we show that (tz;)? ! € I*.
To see (tzy)4~t € I* it suffices to check that o, = (tzy) @1+ € [l Using the

relation t%¢g — t4-!

sf where 1 <14 < d, we may rewrite o, with lower powers of xy
occurring in the expressions involved. We can proceed in this manner till we are left

with terms which involve powers of z; not greater then d — 1. Hence oy is a sum of

terms which are multiples of

k—1
si@D=ighigle g2kl where i < g(d — 1), and er =q(d-1).
r=1
Ifa,¢1 [4] then j, < q for 1 < r < k — 1. However on summing these inequalities
we get g(d — 1) < ¢(k — 1), a contradiction.

Remark 5.4.2. Consider the polynomial ring K[X;,..., X;] where £ > 3. It is

worth noting that the ring R, as above, is isomorphic to a subring of K[Xj, ..., Xk],
R=K[X F, XoF, ..., XxF, X1G, XoG, ..., X;G|.

We can show that R is Cohen—Macaulay precisely when the degree d of F' and G is
less than or equal to k. It would certainly be interesting to explore generalizations

of this construction.



CHAPTER VI

TIGHT CLOSURE IN NON-EQUIDIMENSIONAL RINGS

We begin by recalling a result of Hochster and Huneke, Theorem 2.2.3 (5), which
states that a local ring (R, m) which is a homomorphic image of a Cohen—Macaulay
ring is F-rational if and only if it is equidimensional and has a system of parameters
which generates a tightly closed ideal. This leads to the question of whether a local
ring in which a single system of parameters generates a tightly closed ideal must
be equidimensional (and hence F-rational), #19 of Hochster’s “Twenty Questions”
in [Ho]. Rephrased, can a non-equidimensional ring have a system of parameters
which generates a tightly closed ideal — we show it cannot for some classes of non—
equidimensional rings.

A key point is that in equidimensional rings, tight closure has the so—called “colon
capturing” property. This property does not hold in non-equidimensional rings. A
study of these issues leads to a new closure operation, that we call NE closure. This
closure does possess the colon capturing property even in non—equidimensional rings,
and agrees with tight closure when the ring is equidimensional. We shall show that
an excellent local ring R is F-rational if and only if it has a system of parameters

which generates an NE—closed ideal.

48
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6.1 Main results

Lemma 6.1.1. Let Py,..., P, be the minimal primes of the ring R. Then for a

tightly closed ideal I, we have I = (,_,(I + P;).

Proof. One containment is trivial, and for the other note that if z € (_,(I + P;),

then T € (IR/P;)* for 1 <i <n. By Theorem 2.2.3 (7), we get that x € I* =1. O

The following theorem, although it has some rather strong hypotheses, does show
that no ideal generated by a system of parameters is tightly closed in the non-—

equidimensional rings
R=K[X1,..., Xp, Y1,.. .,V ]l/ (X1, ..., Xp) N (Y4,..., Y0)

where m,n > 1 and m # n.

Theorem 6.1.2. Let (R, m) be a non—equidimensional local ring, with the minimal
primes partitioned into the sets {P;} and {Q;}, such that dimR = dimR/P; >
dim R/Q);, for alli and j. Let P and Q be the intersections, P = (| P; and Q =) Q;.
If I C P+ @ is an ideal of R which is generated by a system of parameters, then I
cannot be tightly closed. In particular, if P+ (Q = m, then no ideal of R generated

by a system of parameters is tightly closed.

Proof. Suppose not, let I = (p1+qi,--.,Pn+qn) be a tightly closed ideal of R, where

P1+ qi,---,Pn+ qn is a system of parameters with p; € P and ¢; € (). Note that
I+P)Nn(I+Q)C(NUI+PR)NNUI+Qy) =1

where the equality follows from Lemma 6.1.1. Consequently (I + P)N (I + Q) C I,
and so p;,¢; € I. In particular, p; = r1(p1+q1) + - - -+ 70 (Pn + gn)- We first note that

ifr; ¢ mthen g, € (p1+aq1,-..,Pic1+9i—1,Di; Pit1+Git1, - - -, Pn+qn), but then p; € P
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is a parameter, which is impossible since dim R = dim R/P. Hence r; € m, and so
1—r; is a unit. This shows that p; € (p1+q1,- .-, Pic1+i—1, G, Pit1+it1s - - - s Putqn),
and so I = (p1 +qu,- - Pi 1 + Qi 1, Pit1 + Qi1 -+ > P+ Gn)-

Proceeding this way, we see that I = (qq,...,¢,), i-e., I C Q). Consequently each

Q; = m, a contradiction. 0

Remark 6.1.3. We would next like to discuss briefly the case where the non—
equidimensional local ring (R, m) is of the form R = S/(PNQ) where S is a regular
local ring with primes P and @ of different height. Then R has minimal primes P and
@ where, without loss of generality, dim R = dim R/P > dim R/Q. If I is an ideal of
S whose image I in R is a tightly closed ideal, we see that I+(PNQ) = (I+P)N(I+Q)
by Lemma 6.1.1, and so it would certainly be enough to show that this cannot hold
when T is generated by a system of parameters for R. One can indeed prove this
in the case S/P is Cohen-Macaulay, and S/Q is a discrete valuation ring, Theorem
6.1.6 below. However if we drop the hypothesis that S/P be Cohen-Macaulay, this

is no longer true: see Example 6.1.7.

Lemma 6.1.4. If I, P, and Q are ideals of S, with I+ (PNQ) = (I+P)N(I+Q),
then IN(P+Q)=INP)+(INQ).

Proof. Let i =p+q € IN(P+Q), where p € Pand ¢ € Q. Then i —p =¢q €
I+P)N(I+Q)=I+(PNQ)andsoi—p=g=1i-+r wherei € I and r € PNQ.
Finally note that 4 = (i — 1) +i € (INP)+ (INQ),sincei —i=p-+r € INP and
i=q—relnQ. O
Lemma 6.1.5. Let M be an S—module and N, be a submodule of M. If x+,...,x,

are elements of S which form a regular sequence on M/N, then

(1, xy) M NN = (21,...,2,)N.
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In particular, if I and J are ideals of S and I is generated by elements which

form a regular sequence on S/J, then INJ =1J.

Proof. We proceed by induction on n, the number of elements. If n = 1, the result
is simple. For the inductive step, if v = zymy + -+ + xpgmy € (21,...,2)M NN
with m; € M, then since zj, is not a zero divisor on M/((z1,...,zx 1)M + N), we

see that my € (z1,...,25-1)M + N. Consequently, u € (z1,...,z5-1)M +xxN. O

Theorem 6.1.6. Let S = K[[Xq,...,X,, Y]] with ideal Q = (X1,...,X,)S, and
ideal P satisfying the condition that S/P is Cohen—Macaulay. Then if R = S/(PNQ)
s a non—equidimensional ring, no ideal of R generated by a system of parameters

can be tightly closed.

Proof. Let I be an ideal of S generated by elements which map to a system of
parameters in R. If the image of I is a tightly closed ideal in R, by Lemma 6.1.1
we have (I + P)N (I + Q) =1+ (PNQ). Any element of the maximal ideal of
S, up to multiplication by units, is either in @, or is of the form Y” + ¢, where
g € Q. Since I cannot be contained in @, one of its generators has the form Y" + ¢.
Choosing the generator amongst these which has the least such positive value of
h, and subtracting suitable multiples of this generator, we may assume that the
other generators are in Q. We then have I = (Y" + q1,qs,...,44)S, where ¢; € Q,
h > 0, and d = dimR = dim S/P. By a similar argument we may write P as
P = (Y'+7r,r,...,7%)S, where r; € Q. Since we are assuming that the image of I
is a tightly closed ideal in R, Theorem 6.1.2 shows that I is not contained in P + @),
and so we conclude h < t.

We then have V! + Y'~"¢; € I N (P + Q), and so by Lemma 6.1.4

Yi+Yihg e (INP)+(INQ).
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By Lemma 6.1.5, I N P = I P and consequently
YieIP+Q=Y'+r)Y"+q)+Q=Y""1+Q.
However this is impossible since h > 0. O

Example 6.1.7. Let S = K[[T,X,Y, Z]], and consider the primes @ = (7, X,Y)
and P = (TY — XZ,T?°X — 72, TX?> - YZ,X® —Y?). Then S/Q is a discrete

valuation ring, although S/P is not Cohen—Macaulay. To see this, observe that
S/p= K[U? U UT,T|] C K[[T,U]|

Under this isomorphism, z +— U?, y — U3, 2 — UT and t — T. (Lower case letters
denote the images of the corresponding variables.)

R = S/(PNQ) is a non-equidimensional ring and the image of I = (Z,X — T)
in R is I = (2,2 —t) which is generated by a system of parameters for R. We shall
see that I+ (PNQ)= I+ P)N(I+ Q).

Since I +Q = (T, X, Y, Z) is just the maximal ideal of S, we see that
I+P)N(I+Q)=1+P=(Z,X-T,XY,X*Y?).
It can be verified (using Macaulay, or even otherwise) that
PNQ=(TY —-XZTX*-YZ X*-Y*TX —TZ?%,

and so

I+(PNQ)=(Z,X-T,XY,X3 Y =(I+P)n{I+Q).

For the ring R, although it does not follow from any of the earlier results, we can

show that no system of parameters generates a tightly closed ideal.

We can actually prove the graded analogue of Theorem 6.1.6 without the require-

ment that S/P is Cohen—Macaulay.
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Theorem 6.1.8. Let S = K[X1,...,X,, Y] with ideal @Q = (X1,...,X,)S, and P
a homogeneous unmized ideal with dim S/P > 2. Then no homogeneous system of

parameters of the ring R = S/(P N Q) generates a tightly closed ideal.

Proof. Let I be an ideal of S generated by homogeneous elements which map to a
system of parameters in R, and assume that the image of I is a tightly closed ideal
of R. As in the proof of Theorem 6.1.6, there is no loss of generality in taking as
homogeneous generators for I, the elements Y" + q;, ¢o,...,qq where ¢; € @, and
h > 0, and for P the elements Y* + 7y, 7o,...,75, where r; € ). Since we are
assuming that the image of I is a tightly closed ideal in R, Theorem 6.1.2 (or rather,
its graded analogue) shows that [ is not contained in P + @), and so we conclude

h < t. The assumption implies that
Vitrie(I+P)N{I+Q)=I1+PNQ)=1I1+(ro,...,mx) + (Y"+711)Q
and so Y'+7r; € I + (ry,...,7;). Hence
I+(PNQ)=1+P =1+ (ry...,7%).

If S/P is Cohen—Macaulay, the proof is identical to that of Theorem 6.1.6, and
so we may assume S/P is not Cohen—Macaulay. Consequently (IS/P)* is strictly
bigger that IS/P. Let F € S be a homogeneous element such that its image is in
(IS/P)* but not in IS/P. Note that if F € I+@Q, then F € (IR)*,andso F € [+ P,
a contradiction. Hence F' ¢ I +Q = (Y" X1,...,X,) and so F = Y* + G where
1< hand G € Q.

Next note that YA 'F = Y* + GY" i e I+ (PNQ) =1+ (ry,...,7), and so

GYhii —q € (Q21 <y qdy T2, - - ’Tk)' We then have

F € (IS/P)* = ((Yh +GYh_i7q27' . 7qd)S/P)* = (Yh_iquZr . 7Qd)S/P)*
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By a degree argument, we can conclude that F € ((go, ..., qq)S/P)*. However this
means that F is in the radical of the ideal (gg,...,qq)S/P, which contradicts the
fact that (FY"™ ¢,,... q4) = IS/P is primary to the homogeneous maximal ideal

of the ring S/P.

6.2 NE closure

For Noetherian rings of characteristic p we shall define a new closure opera-
tion on ideals, the NE closure, which will agree with tight closure when the ring is
equidimensional. In non—equidimensional local rings, tight closure no longer has the
so—called colon—capturing property, and the main point of NE closure is to recover
this property. This often forces the NE closure of an ideal to be larger than its tight
closure and at times even larger than its radical, see Example 6.3.5. More precisely
let (R,m) be an excellent local ring with a system of parameters zi,...,x,. Then
(x1,...,2Tk) : Tgy1 C (21,...,2,)* when R is equidimensional, but this does not hold
in general. The NE closure (denoted by I* for an ideal I C R) will have the property

that (SEl,. . .,.Z'k) P Tg41 g (.’El,...,.Tk)*.

Definition 6.2.1. We shall say that a minimal prime ideal P of a ring R is absolutely
minimal if dim R/P = dim R. When Spec R is connected, R* shall denote the
complement in R of the union of all the absolutely minimal primes. If R = [[ R;, we
define R® = [[ R;. The NE closure I'* of an ideal I is given by

I* = {z € R : there exists ¢ € R* with czl9 € Il9 for all sufficiently large ¢}.

The following proposition and its proof are somewhat similar to the corresponding

statements for tight closure in equidimensional rings, see [HH4, Theorem 4.3].
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Proposition 6.2.2. Let R be a complete local ring of characteristic p, with a system

of parameters x,...,x,. Then

(1) (z1,...,7%) : Thy1 C (1, ..., 7).

(2) (z1,...,26)% : Ty = (21, .., 28)%.

(3) If (w1,...,7p01)* = (21,...,Ths1), then (z1,...,2)% = (21,..., 7).

(4) If (x1,...,2)* = (x1,. ., %) 07 (T1,.. ., Tpn_1)* = (T1,.--,Tn_1), then R is

Cohen—Macaulay.

Proof. (1) We may represent R as a module-finite extension of a regular subring A
of the form A = K|[[xy,...,z,]] where K is a field. Let ¢ be the torsion free rank
of R as an A-module, and consider A®* C R. Then R/A! is a torsion A-module and
there exists ¢ € A, nonzero, such that cR C A* C R. We note that ¢ cannot be in
any absolutely minimal prime P of R, since for any such P, R/P is of dimension n
and is module-finite over A/AN P, and so ANP = 0. Now if u € (z1,...,%k) : Tkt
then for some r; € R, uxygy1 = Zle r;x;. Taking gth powers, and multiplying by ¢

k .
we get culz), =Y 7 criz!. But now cu? and each of crf are in A* and z{ form a

1=
regular sequence on A’. Hence cu? € (¢1,...,z}) and so u € (z1,...,zx)*.

(2) Ifuzgyr € (z1,...,7%)* then for some ¢y € R®, co(uzgi1)? € (z9, ..., z}) for
all sufficiently large ¢, i.e., cou?z} , = Zle rixd for ¢ > 0. Multiplying this by our
earlier choice of ¢, we again have a relation on z!’s with coefficients in A’, namely
ceoulzy,, = Zle crixz] for ¢ > 0, and so ccou? € (z9,...,2}) for ¢ > 0. Since
cco € R® we get u € (x1,...,2)%.

(3) Let J = (1,...,2). Then J* C (z1,...,7441) and so J* C J + x4, R.

Ifu € J¥ u=j+mzpr for j € J and r € R. This means r € J* : z3,; which

equals J* by (2). Hence we get J* = J + x;1J*. Now by Nakayama’s lemma we
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get JX = J.
(4) This follows from (2) and (3) since, under either of the hypotheses, the

system of parameters z1,...,x, is a regular sequence. O

The above proposition, coupled with results on F-rationality, gives us the follow-

ing theorem:

Theorem 6.2.3. Let R be a complete local ring of characteristic p, with a system

of parameters which generates an NE—closed ideal. Then R is F-rational.

Proof. From the previous proposition the ring is Cohen-Macaulay and in particular,
equidimensional. For equidimensional rings, tight closure agrees with NE closure,

and the result follows from Theorem 2.2.3 (5). O

We shall extend this result to excellent local rings once we develop the theory of
test elements for NE closure. The following proposition lists some properties of NE
closure.

Proposition 6.2.4. Let R be a ring of characteristic p, and I an ideal of R.

(1) 0% is the intersection of the absolutely minimal prime ideals of R.

(2) If I =1 then for any ideal J, (I : J)* =1:J.

(3) IfR=][R; and I =] 1I;, then I* =[] I*.

(4) Ifh:R— S is a ring homomorphism with h(R®*) C S°®, then h(I*) C (1S5)*.

(5) x € I* if and only if T € (IR/P)* for every absolutely minimal prime P of R.

Proof. (1), (2), (3) and (4) follow easily from the definitions. For (5) note that if P is

absolutely minimal, h : R — R/P meets the condition of (4), so z € I'’* implies that
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its image is in the NE closure of TR/P. For the converse, fix for every absolutely
minimal P;, d; ¢ P; but in every other minimal prime of R. If T € (IR/P;)* for
every absolutely minimal P, then there exist elements ¢ with ¢;z7 € (IR/P;).
We can lift each ¢ to ¢; € R with ¢; ¢ Pi. Then ¢;z? € I9 + P; for all 4, for
sufficiently large q. Multiplying each of these equations with the corresponding d;,
we get c;d;z? € I'9 + M, since d;P; is a subset of every minimal prime ideal and
so is in the nilradical, M. If M7 = 0, taking ¢’ powers of these equations gives us
(c;d;)? 29 € I for all 4, for sufficiently large ¢. Set ¢ = > (cid;)?. By our choice of
¢i’s and d;’s, ¢ € R*, and the above equations put together give us cz? € I'9 for all

sufficiently large q. O

We note that NE closure need not be preserved once we localize, i.e., it is
quite possible that z € I*, but x ¢ (IRp)*. Examples of this abound in non—
equidimensional rings, but there are some positive results about NE closure being

preserved under certain maps which we examine in the next few propositions.

Proposition 6.2.5. If h : (R,m) — (S,n) is a faithfully flat homomorphism of
local rings then for an ideal I of R, if x € I*, then its image h(z) is in (IS)*.

In particular ifR denotes the completion of R at its mazimal ideal, x € I* implies

A

re (IR)*.

Proof. By Proposition 6.2.4 (4), it suffices to check that A(R®) C S°®. This is equiv-
alent to the assertion that the contraction of every absolutely minimal prime of S
is an absolutely minimal prime of R. Now let P be an absolutely minimal prime
of S, and p denote its contraction to R. Then since R — S is faithfully flat, by a
change of base, so is R/p — S/pS. This gives dim S/pS = dim R/p + dim S/mS.

Also, faithful flatness of h implies that dim S = dim R + dim S/mS. But P was
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an absolutely minimal prime of S, so dim S = dim S/P = dim S/pS, since pS C P.
Putting these equations together, we get dim R/p = dim R, and so p is an absolutely

minimal prime of R. O

Proposition 6.2.6. Let R and S be Noetherian rings of characteristic p, and R — S
a homomorphism such that for every absolutely minimal prime Q of S, its contraction

to R, Q°, contains an absolutely minimal prime of R. Assume one of the following

holds:
(1) R is finitely generated over an excellent local ring, or is F-finite, or
(2) R is locally excellent and S has a locally stable test element, (or S is local), or

(3) S has a completely stable test element (or S is a complete local ring).

Then if x € T* for I an ideal of R, the image of z in S is in (IS)*.

Proof. Tt suffices to check x € (IS/Q)* for every absolutely minimal primes @ of S,
by Proposition 6.2.4 (5). But (IS/Q)* = (IS/Q)* since S/Q is equidimensional. If
P C Q¢ is an absolutely minimal prime of R, then x € I'’* implies 7 € (IR/P)* =
(IR/P)*. The result now follows by applying [HH4, Theorem 6.24] to the map

R/P — 5/Q. O

6.3 NE—test elements

Definition 6.3.1. We shall say ¢ € R® is a ¢'~weak NE-test element for R if for all
ideals I of R and z € I*, cz? € Il9 for all ¢ > ¢’. We may often use the phrase weak
NE-test element and suppress the ¢'.

For a local ring (R, m), ¢ € R® is a weak completion stable NE-test element for

R if it is a weak NE—test element for R, the completion of R at its maximal ideal.

Our definition of a completion stable weak NE—-test element is different from the
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notion of a completely stable weak test element for tight closure, where it is required
that the element serve as a weak test element in the completion of every local ring
of R. The reason for this, of course, is that localization is no longer freely available
to us, since R* often does not map into (Rp)°.

Note also that since R is faithfully flat over R, a weak completion stable NE—test

element for R is also a weak NE—test element for R.

Proposition 6.3.2. If for every absolutely minimal prime P of R, R/P has a weak

test element, then R has a weak NE-test element.

Proof. Fix for every absolutely minimal prime P; an element d; not in P; but in
every other minimal prime of R. Let 9 denote the nilradical of R and fix ¢’ such
that M1 = 0. If ¢ is a weak test element for R/P;, we may pick ¢; ¢ P; which
maps to it under R — R/P. We claim ¢ = 3 (cid;)? is a weak NE-test element for
R. If z € T*, then T € (IR/P;)* for all P; absolutely minimal. Since ¢; is a weak
test element for R/P;, we have c;z? € (IR/P;)1 for all i, for sufficiently large g, i.e.,
ciz? € I'Y + P;. Multiplying this by d;, summing over all ¢ and taking the ¢’ power
as in the proof of Proposition 6.2.4 (5), we get that cz? € I'9. Tt is easy to see that

¢ € R® and so is a weak NE—test element. O

Proposition 6.3.3. Every excellent local ring of characteristic p has a weak com-

pletion stable NE—-test element.

Proof. If R is an excellent local domain, it has a completely stable weak test element,
see [HH4, Theorem 6.1]. Hence each R/ P, for P; absolutely minimal, has a completely
stable weak test element, say ¢;. Let ¢;, d;, ¢’ and ¢ be as in the proof of the previous
proposition. If z € (IR)*, we have Z € (IR/P;R)*. Since R/P, is equidimensional

and excellent, its completion R/ P,R is also equidimensional. (We use here the fact
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that the completion of a universally catenary equidimensional local ring is again
equidimensional, [HIO, Page 142]). Hence NE closure agrees with tight closure in
R/P,R, and we get T € (IR/P,R)*. This gives ¢z € (IR/P,R)4 for all i, for
sufficiently large ¢. As in the previous proof, we then get that cz? € (I R)[q}, and so

is a weak completion stable NE-test element. O

We can now extend Theorem 6.2.3 to the case where R is excellent local, without

requiring it to be complete.

Theorem 6.3.4. Let (R,m) be an excellent local ring of characteristic p with a

system of parameters x1,...,x,. Then

(1) (z1,---,7%) s Tpy1 C (z1,. .., 1)*.

(2) (z1,...,26)% : g1 = (21, .., 2%) %,

(3) If (w1,...,p01)* = (21,...,Ths1), then (z1,...,2)% = (21,...,74).

(4) If (z1,...,20-1)* = (x1,...,Tn_1) then R is Cohen-Macaulay .

(5) If (z1,...,2,)* = (x1,...,2y) then R is F-rational.

Proof. Since R has a weak completion stable NE—test element, if there is a coun-
terexample to any of the above claims, we can preserve this while mapping to R.
But all of the above are true for complete local rings as follows from Proposition

6.2.2 and Theorem 6.2.3. O

Example 6.3.5. Let R = K[[X,Y, Z]]/(X)N (Y,Z). Then y,z — z is a system of
parameters for R and 0 :g (y) = (x). That tight closure fails here to “capture colons”
is seen from the fact that z ¢ 0* = 0. However 0* = (z), and we certainly have

0:r (y) C 0>



CHAPTER VII

COMPUTATIONS IN DIAGONAL HYPERSURFACES

We settle a question about the tight closure of the ideal (z%,y?,2?) in the ring
R = K[X,Y,Z]/(X®+ Y3+ Z?) where K is a field of prime characteristic p # 3.
M. McDermott has studied the tight closure of various irreducible ideals in R, and has
established that zyz € (z?,y?, 22)* when p < 200, see [Mc|. The general case however
existed as a classic example of the difficulty involved in tight closure computations,
see also [Hu2, Example 1.2]. We show that xzyz € (2?,9% 2%)* in arbitrary prime
characteristic p, and furthermore establish that ryz € (z2,9? 2?)"" whenever R is
not F-pure, i.e., when p =2 (mod 3). We move on to generalize these results to the
diagonal hypersurfaces R = K[X,..., X,]/(XT +---+ X]).

These issues relate to the question whether the tight closure 7* of an ideal I agrees
with its plus closure, I™ = ITRTNR, where R is a domain over a field of characteristic
p and R* is the integral closure of R in an algebraic closure of its fraction field. In
this setting, we may think of the Frobenius closure of I as I = ITR®NR where R™ is
the extension of R obtained by adjoining p® th roots of all nonzero elements of R for
e € N. Tt is not difficult to see that It C I'*, and equality in general is a formidable
open question. It should be mentioned that in the case when I is an ideal generated

by part of a system of parameters, the equality is a result of K. Smith, see [Sm2]. In

61
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the above ring R = K[X,Y, Z]/(X?® + Y?® + Z3) where K is a field of characteristic
p = 2 (mod 3), if one could show that I* = I¥ for an ideal I, a consequence of
this would be I C It C I* = I¥, by which I* = I'*. McDermott does show that
I* = I" for large families of irreducible ideals and our result zyz € (22,32, 2%)", we

believe, fills in an interesting remaining case.
7.1 Preliminary calculations

We record some determinant computations we shall find useful. Note that for

integers n and m where m > 1, we shall use the notation:

() - i

Lemma 7.1.1.

(a—tk) (a—|—::b—|—1) e (a—ka)
(a—l—Z—l) (aj—k) e (a—l—gc—l) n n+1 n+k
det _ (a—Hc) (a-Hc) o (a-Hc) '
------------------------------ (Ziz) (a_!l__l::—_ll_l) . (aa_|__|—2k1:;)
@ GH) ey
Proof. This is evaluated in [Mui, page 682] as well as [Ro]. O

Lemma 7.1.2. Let F(n,a, k) denote the determinant of the matrix

M(n,a, k) =

\(o) () () )
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Then for k > 1 we have

F(n,a,k) _(n EE s(s+2a—n)
F(n+2,a+2,k—1)_(a)HH(a+T)(n—a+r)'

Hence

(@) Go) - Gae) G G - )

(VS ) a0

F(n,a,k) =

Proof. We shall perform row operations on M (n,a, k) in order to get zero entries in
the first column from the second row onwards, starting with the last row and moving
up. More precisely, from the (r + 1) th row, subtract the rth row multiplied by
(’;ﬁ?)/(rﬁ"[:f) starting with 7 = &, and continuing until » = 2. The (r+1,s+1) th

entry of the new matrix, for » > 1, is

n+2r\ (Zﬁ«r) n+2r—21Y\  s(s+2a-n) n+ 2r
a+r+s (2 \at+r—1+s (a+r)(n—a+r)\a+r+s)

We have only one nonzero entry in the first column, namely (Z) and so we examine the
matrix obtained by deleting the first row and column. Factoring out s(s+2a—n) from
each column for s =1,...,k and 1/(a+7)(n —a+r) from each row for r =1,... &,

we see that

k

s+2a—n)
M M 2 2,k —1).
det M(n,a, k) = (a)HH Gt m—atr) det M(n+2,a+2,k—1)

s=1r=1

The required result immediately follows. O

Lemma 7.1.3. Consider the polynomial ring T = K[As, ..., Ap] where I ; denotes

the ideal I.; = (A%, ..., A\)T forr < m. Then

(Ap - A ) (A1 + -+ 4,01)° € L tpy + (AL + -+ Ay)*T
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for positive integers o, 3, and v implies

(Ap - A)* A+ -4+ A7 € Lgyy+ (AL +---+ 4,)*T.

Proof. Consider the binomial expansion of (4; - - - A,;)*(A;+- - -+ A,)?*~! into terms
of the form (A;--+A,_1)*(A; + -+ + A,_1)PT7 17742+, Such an element is clearly

in I, o+~ whenever j > v, and so assume y > j. Now
(A Ay )2AH (A + - 4 A, )P0
€ I?",oc—{—’y + A,?.H—](Al + -+ ATfl)a+27717jT
C Iy + (A1 4+ Ay, AP0 T

C Ipapy + (A1 + -+ A,)* DT,

7.2 A computation of tight closure

We now prove the main theorem.

Theorem 7.2.1. Let R = K[Xq,..., X,]/(X]"+ -+ X]) wheren >3 and K is a

field of prime characteristic p where p{n. Then

Note that there are infinitely many e € N such that p° = ¢ = 1 (mod n). By
[HH2, Lemma 8.16], it suffices to work with powers of p of this form, and show that

for all such ¢ we have
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Letting ¢ = nk + 1, it suffices to show

(ml ‘e xn)(n_Q)nk c (mgn_l)nk m(n—l)nk).

gy

Let Ay = z7,..., A, = z}! and note that A; 4+ --- 4+ A, = 0. In this notation, we
aim to show

(A= Ay) 2k e (AP DR Al DRy
Working in the polynomial ring K[A1,..., A,—1] = K[A1,..., A,)/(A1 + -+ + A),

we need to show
(A A (Ao A )02 € Lyt (A4 oo+ Ay )0
By repeated use of Lemma 7.1.3, it suffices to show

(A1dg)™ PF(Ar + A9)* € (AT, APTVE, (44 4 Ag)m0R).

Y

We have now reduced our problem to a statement about a polynomial ring in two

variables. The required result follows from the next lemma.

Lemma 7.2.2. Let K[A, B] be a polynomial ring over a field K of characteristic
p > 0 and e be a positive integer such that ¢ = p* =1 (mod n). If ¢ =nk +1, we
have

(A,B)(Qn—?’)k cClI= (A(n—l)k’ B(n—l)k’ (A+ B)(n—mc)_
In particular, (AB)"2%(A+ B)* € I.

Proof. Note that I contains the following elements: (A + B)™~Dk Ak B(n=3)k
(A+ B)(n=Dk gk=1 pn=3)k+1 " (A4 B)(r~DkB(-2)k W take the binomial expan-

sions of these elements and consider them modulo the ideal (A"~Y* Br—1k) This
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shows that the following elements are in [ :

((n—kl)k:)A(n—l)kB(n—2)k + + ((n;kl)k)A(n—ka(n—l)k,
((r;cill)k)A(n_l)kB(n—z)k 4o+ ((’2‘;)1’“),4("‘2)’“3("‘1)’“,
((n—ol)k)A(n—l)ch(n—Q)k + e 4 ((n—kl)k)A(n—ka(n—l)k,

The coefficients of AM~VkBn=2k An-1k-1pn=2)k+1 " A(n=2k pn—Dk fory the

matrix:

(") () ()

To show that all monomials of degree (2n—3)k in A and B are in I, it suffices to show

that this matrix is invertible. Since ¢ = nk + 1 we have ((”_1,3’“”) = (—l)k(Qkk_T) for

0 <r <k, and so by Lemma, 7.1.1, the determinant of this matrix is

PP ) e B ()

D6 WD)

With this we complete the proof that (z1---2,)" 2 € (277, ..., 27"1)*%.

7.3 A computation of Frobenius closure

Let R = K[Xyq,..., X,]/(X]+ -+ X)) as before, where the characteristic of K
is p 1 n.
Lemma 7.3.1. Let R = K[Xy,..., X,|/(XT+---+ X)) where K is a field of char-

acteristic p. Then R is F—pure if and only if p=1 (mod n).
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Proof. This is Proposition 5.21 (c) of [HR2]. O

The main result of this section is the following theorem.

Theorem 7.3.2. Let R = K[Xy,...,X,]/(X] + --- + X)) where K is a field of

characteristic p. Then
(x1---z) 2 € (2t . an HE.
if and only if p £ 1 (mod n).

One implication follows from Lemma 7.3.1, and so we need to consider the case
p# 1 (mod n).

The case n = 3 seems to be the most difficult, and we handle that first. Let
R = K[X,Y,Z]/(X?® + Y3 + Z3) where p = 2 (mod 3). We need to show that
zyz € (2%, 9% 2%)F.

Let A =193 B =2and so A+ B = —z3. We first show that when p = 2, we
have xyz € (22,92, 22)F by establishing that (zyz)® € (22,42, 2%)®l. Note that it
suffices to show that (zyz)® € (2'°,4', 2!%), or in other words that (AB(A + B))? €
(A% B® (A + B)%), but this is easily seen to be true.

We may now assume p = 6m + 5 where m > 0. We shall show that in this case

(zyz)P € (22,92, 2%, i.e., that

6m-+5 12m+10 _ 12m+10 _12m+10
€ (x .Y , 2 ).

(zyz)
Note that to establish this, it suffices to show

)6m—|—3 c (x12m+9 12m+9 12m—|—9)
)

(zyz Yy , 2

Y

i.e., that (AB(A+ B))2m+1 c (A4M+3’ Bim+3, (A+ B)4m+3)_
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Lemma 7.3.3. Let K[A, B] be a polynomial ring over a field K of characteristic

p=6m+5 where m > 0. Then we have

(AB(A+B))2m+1 c I = (A4m+3, B4m+3, (A+B)4m+3).

Proof. To show that (AB(A + B))?™*! € I, we shall show that the following terms
grouped together symmetrically from its binomial expansion,

fi=(AB)*" ' (A+ B), f3= (AB)*"(A3+ B?), ...,

foms1 = (AB)?mH1(A?mHL 4 Bomit),
are all in the ideal I. Note that I contains the elements (AB)™(A + B)*™m*3,
(AB)™ Y (A+ B)*™+5 .. (AB)(A+ B)*™*1 (A+ B)%"3. We consider the binomial

expansions of these elements modulo (A*™+3 B*™3) and get the following elements

in I :
Am+3 Am+3 Am+3
Gmi)fi + i) fs + + (55 fomen,
4m—+5 4m+5 4m—+5
(2m+3) fi + (2m—|—4) fs + + (3m+3) Jomt1,
6m—+3 6m—+3 6m—+3
(3m+2) ho+ (3m—|—3) fs + o+ (4m—|—2) fom+1-
The coefficients of fi, f3,..., foms1 arising from these terms form the matrix:

() () o ()

2m+-2 2m+3 3m+2
(omis)  (omia) (3m13)
\Gmia) (Gmia) - (mis) )

We need to show that this matrix is invertible, but in the notation of Lemma 7.1.2,

its determinant is F'(4m + 3,2m + 2, m) and is easily seen to be nonzero. O
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The above lemma completes the case n = 3. We may now assume n > 4 and

p=nk+dfor2<é<n—-1.1Ifk=0ie,2<p<n-1, we have

(xl . $n)(n—2)p — _(xl .. .xn_l)(n—Q)szln—Q)P—n(x? + -4 xZ—l)
€ @,

In the remaining case, we have n > 4 and k > 1. To prove that (z;---2,)" % €

n—1 n—l)F

(277, ., , we shall show

c (xgn—l)nk—l—n’ o ,x%n—l)nk—l—n).

As before, let A; =27,..., A, = z]. It suffices to show that
(Ay---Ap) =2k g (AP DR Al DR,
By Lemma 7.1.3, this reduces to showing
(A1 4)"2F(A; + Ak € T = (Agnf1)k+1’ Agnfl)k—}—l, (A, + Ap)(DEFL)
The only remaining ingredient is the following lemma.

Lemma 7.3.4. Let K[A, B] be a polynomial ring over a field K of characteristic

p >0 where p=nk +0 wheren >4, k>1 and 2 <6 <n—1. Then
(A, B)@=3k C [ = (A(m=Dk+L Bln=Dkt1 (4 4 py(n=Dk+1)

In particular, (AB)"=2k(A 4+ B)*k ¢ I.
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Proof. Note that I contains the elements: (A 4 B)(—1k+1 gk B(n=3)k—1/
(A+B)nDE+L g1 pn=3)k (A4 B)(n-Dk+1 B(n=2)k=1 e take the binomial ex-
pansions of these elements and consider them modulo the ideal (A"~ Dk+1 Bn—1k+1),

This shows that the following elements are in I :

((nfk{gllc—H)A(n—l)kB(n—Q)k 4.+ ((";kl}rkl“)A("—Q)’“B("‘l)’“,
((nflk)k—H)A(n—l)kB(an)k + + ((nf;])ckﬂ)A(n72)k3(n*1)k,

((nfll)k—kl)A(n—l)kB(an)k + e 4 ((nflclJZ/chrl)A(nf?)kB(n*l)k_

The coefficients of A~DkB(n=2)k A(n-Lk-1pn=2)k+1 " A(n=2)k Bn=1k form the

matrix:
() (7)o ()
() () ()
\(0) () (0

To show that all monomials of degree (2n — 3)k in A and B are in I, it suffices to
show that this matrix is invertible. The determinant of this matrix is

("D () - G

(i) G -+~ G

which is easily seen to be nonzero since the characteristic of the field is p = nk + ¢

where 2 < § <n — 1. O

Remark 7.3.5. Although we established that zyz € (22,92 2?)* in the ring R =
K[X,Y,Z]/(X3 +Y? + Z3), this is, in a certain sense, unexplained. Under mild

hypotheses on a ring, tight closure has a “colon—capturing” property: for zy,...z,
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part of a system of parameters for an excellent local (or graded) equidimensional ring

*

A, we have (z1,...2T4-1) a4 T, C (21,...2,-1)* and various instances of elements

being in the tight closure of ideals are easily seen to arise from this colon—capturing
property.

To illustrate our point, we recall from [Ho, Example 5.7] how z? € (z,y)* in
the ring R above is seen to arise from colon—capturing. Consider the Segre product
T = R#S where S = K[U,V]. Then the elements zv — yu, zu and yv form a system
of parameters for the ring 7. This ring is not Cohen-Macaulay as seen from the

relation on the parameters:
(zu) (2v) (zv — yu) = (20)*(zu) — (2u)*(yv).
The colon—capturing property of tight closure shows
(zu)(zv) €  (zu,yv) i (zv —yu) C (zu,yv)".

There is a retraction R ®x S — R under which U +— 1 and V +— 1. This gives
us a retraction from 7" — R which, when applied to (zu)(zv) € (zu,yv)*, shows

2? € (z,y)* in R.
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ABSTRACT

F-regularity, F—rationality and F—purity

by

Anurag K. Singh

Chair: Melvin Hochster

Examples are constructed to show that the property of F-regularity does not
deform. Specifically, we exhibit a three dimensional domain which is not F-regular
or even F—pure, but has a quotient by a principal ideal which is F-regular.

We show that the invariant subring for the action of the symplectic group on a
polynomial ring is, in general, not F—pure. This shows that the socle element modulo
an ideal can be forced into the expansion of the ideal in a separable extension, as
well as in a linearly disjoint purely inseparable extension.

Conditions are examined under which graded rings have Veronese subrings which
are F-rational or F-regular. The results obtained give us various techniques of
constructing F-rational rings which are not F-regular.

For certain classes of local non—equidimensional rings, we prove the conjecture
that no ideal generated by a system of parameters can be tightly closed. A new

closure operation is constructed, which agrees with tight closure for equidimensional



rings, and rectifies the absence of the colon—capturing property of tight closure in
non—equidimensional rings.

We compute the Frobenius closure and tight closure of certain ideals in diagonal
hypersurfaces. This enables us to establish the equality of tight closure and plus

closure for these ideals.



