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1. Introduction

We investigate the existence of homogeneous prime elements, equivalently, of homo-
geneous principal prime ideals, in normal N-graded rings R of dimension two. It turns 
out that there are elegant necessary as well as sufficient conditions for the existence 
of such prime ideals in terms of rational coefficient Weil divisors, i.e., Q-divisors, on 
ProjR.

When speaking of an N-graded ring R, we assume throughout this paper that R is 
a finitely generated algebra over its subring R0, and that R0 is an algebraically closed 
field. We say that an N-grading on R is irredundant if

gcd{n ∈ N | Rn "= 0} = 1.

Relevant material on Q-divisors is summarized in §2. Our main result is:

Theorem 1.1. Let R be a normal ring of dimension 2, with an irredundant N-grading, 
where R0 is an algebraically closed field. Set X := ProjR, and let D be a Q-divisor on 
X such that R = ⊕n!0H0(X, OX(nD))Tn. Let d be a positive integer.

(1) Suppose x ∈ Rd is a prime element. Set

s := gcd{n ∈ N | [R/xR]n "= 0}.

Then the integers d and s are relatively prime, and the divisor sdD is linearly equiv-
alent to a point of X. In particular, degD = 1/sd.

(2) Conversely, suppose dD is linearly equivalent to a point P with P /∈ supp(frac(D)). 
Let g be a rational function on X with

div(g) = P − dD.

Then x := gT d is a prime element, and the induced grading on R/xR is irredundant.

The proof of the theorem and further results regarding the number of homogeneous 
principal prime ideals are included in §3. We next record various examples.

Example 1.2. If a standard N-graded ring R, as in the theorem, has a homogeneous prime 
element, we claim that R must be a polynomial ring over R0.

If x ∈ Rd is a prime element, the theorem implies that d = 1. Independent of the 
theorem, note that R/xR is an N-graded domain of dimension 1, with [R/xR]0 alge-
braically closed, so R/xR is a numerical semigroup ring by [4, Proposition 2.2.11]. Since 
it is standard graded, R/xR must be a polynomial ring. But then R is a polynomial ring 
as well.
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Example 1.3. The hypothesis that the underlying field R0 is algebraically closed is crucial 
in Theorem 1.1 and Example 1.2: the standard graded ring Q[x, y, z]/(x2 + y2 + z2) has 
a homogeneous prime element x.

Example 1.4. In view of Example 1.2, the ring R := C[x, y, z]/(x2−yz), with the standard 
N-grading, has no homogeneous prime element. However, for nonstandard gradings, there 
can be homogeneous prime elements:

Fix such a grading with deg x = a, deg y = b, and deg z = 2a − b, where gcd(a, b) = 1
and b is even. Then one has a homogeneous prime element

ya−b/2 − zb/2,

which generates the kernel of the C-algebra homomorphism R −→ C[t] with

x &−→ ta, y &−→ tb, z &−→ t2a−b.

Example 1.5. The ring C[x, y, z]/(x4 + y2z + xz2), with deg x = 4, deg y = 5, and 
deg z = 6, has no homogeneous prime elements in view of Theorem 1.1(1), since the 
corresponding Q-divisor has degree 2/15 by Proposition 2.2.

Example 1.6. Consider C[x, y, z]/(x2 +y3 +z6), with deg x = 3, deg y = 2, and deg z = 1. 
Then (z) is the unique homogeneous principal prime ideal: the corresponding Q-divisor 
has degree 1, again by Proposition 2.2.

Example 1.7. Set R := C[x, y, z]/(x2 − y3 + z7), with deg x = 21, deg y = 14, and 
deg z = 6. Then the corresponding Q-divisor has degree 1/42 by Proposition 2.2, so 
the degree of a homogeneous prime element must divide 42. In view of the degrees of 
the generators of R, the possibilities are 6, 14, 21, and 42, and indeed there are prime 
elements with each of these degrees, namely z, y, x, and y3 − λx2 for scalars λ "= 0, 1, 
see also Example 3.4.

2. Rational coefficient Weil divisors

We review the construction of normal graded rings in terms of Q-divisors; this is 
work of Dolgačev [2], Pinkham [6], and Demazure [1]. Let X be a normal projective 
variety. A Q-divisor on X is a Q-linear combination of irreducible subvarieties of X of 
codimension one. Let D =

∑
niVi be such a divisor, where ni ∈ Q, and Vi are distinct. 

Set

'D( :=
∑

'ni(Vi,

where 'n( is the greatest integer less than or equal to n. We define
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OX(D) := OX('D().

The divisor D is effective, denoted D ! 0, if each ni is nonnegative. The support of the 
fractional part of D is the set

supp(frac(D)) := {Vi | ni /∈ Z}.

Let K(X) denote the field of rational functions on X. Each g ∈ K(X) defines a Weil 
divisor div(g) by considering the zeros and poles of g with appropriate multiplicity. As 
these multiplicities are integers, it follows that for a Q-divisor D one has

H0(X,OX('D()) = {g ∈ K(X) | div(g) + 'D( ! 0}
= {g ∈ K(X) | div(g) + D ! 0} = H0(X,OX(D)).

A Q-divisor D is ample if ND is an ample Cartier divisor for some N ∈ N. In this 
case, the generalized section ring R(X, D) is the N-graded ring

R(X,D) := ⊕n!0H
0(X,OX(nD))Tn,

where T is an element of degree 1, transcendental over K(X).

Theorem 2.1 ([1, 3.5]). Let R be an N-graded normal domain that is finitely generated 
over a field R0. Let T be a homogeneous element of degree 1 in the fraction field of R. 
Then there exists a unique ample Q-divisor D on X := ProjR such that

Rn = H0(X,OX(nD))Tn for each n ! 0.

The following result is due to Tomari:

Proposition 2.2 ([8, Proposition 2.1]). For R and D as in the theorem above, one has

lim
t→1

(1 − t)dim RP (R, t) = (degD)dim R−1,

where P (R, t) is the Hilbert series of R.

3. Homogeneous prime elements

Before proceeding with the proof of the main theorem, we record a lemma:

Lemma 3.1. Let R be a domain with an irredundant N-grading. Let x be a nonzero element 
of degree d > 0, and set

s := gcd{n ∈ N | [R/xR]n "= 0}.
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Then gcd(d, s) = 1. Moreover, x is a prime element of R if and only if xs is a prime 
element of the Veronese subring R(s) := ⊕n!0Rns.

Proof. Note that P (R/xR, t) is a rational function of ts, and that

P (R, t) = 1
1 − td

P (R/xR, t).

Since the grading on R is irredundant, it follows that gcd(d, s) = 1.
We claim that (xR)(s) = xsR(s). Choose a homogeneous element of (xR)(s), and 

express it as rxm with m largest possible. Suppose m is not a multiple of s. By considering 
its degree, we see that the image of r must be 0 in R/xR, contradicting the maximality 
of m. It follows that (xR)(s) ⊆ xsR(s), the reverse containment being trivial. Hence

R/xR = (R/xR)(s) = R(s)/xsR(s),

which gives the desired equivalence. !

Proof of Theorem 1.1. For a prime element x ∈ Rd, the ring R/xR is an N-graded domain 
of dimension 1, over an algebraically closed field, so [4, Proposition 2.2.11] implies that it 
is isomorphic to a numerical semigroup ring. Take s as in Lemma 3.1. Since the Veronese 
subring R(s) corresponds to the Q-divisor sD, the proof of (1) reduces using the lemma 
to the case where s = 1. In this case,

P (R/xR, t) = 1
1 − t

− p(t)

for p(t) a polynomial, so

P (R, t) = 1
1 − td

( 1
1 − t

− p(t)
)
,

and Proposition 2.2 shows that degD = 1/d. To complete the proof of (1), it remains to 
verify that dD is linearly equivalent to a point of X.

The exact sequence

0 −−−−→ R(−d) x−−−−→ R −−−−→ R/xR −−−−→ 0

shows that for n * 0 one has

rankRn+d = 1 + rankRn.

Choose m * 0 such that mdD is integral, and the above holds with n = md, i.e.,

rankH0(X,OX(mdD + dD)) = 1 + rankH0(X,OX(mdD)).
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Let g be a rational function on X such that x = gT d. Then div(g) + dD ! 0, and

rankH0(X,OX(mdD + div(g) + dD)) = 1 + rankH0(X,OX(mdD)).

Since mdD is an integral divisor, it follows that

'div(g) + dD( "= 0.

Bearing in mind that div(g) + dD is an effective divisor of degree 1, it follows that

div(g) + dD = P,

for P a point of X.
For (2), we claim that

xR = ⊕n!0H
0(X,OX(nD − P ))Tn,

and that this is a prime ideal of R. Note that homogeneous elements of xR have the 
form

gT dhTm

for hTm ∈ R, i.e., with h satisfying

div(h) + mD ! 0.

Since div(g) = P − dD, the above condition is equivalent to

div(gh) + (m + d)D − P ! 0,

i.e., to the condition that gh ∈ H0(X, OX((m + d)D − P )). This proves the claim.
To verify that the ideal xR is prime, consider hiTmi in R! xR, for i = 1, 2. Then

div(hi) + miD ! 0 whereas div(hi) + miD − P " 0.

Since P is not in the support of the fractional part of D, it follows that

div(h1h2) + (m1 + m2)D − P " 0,

and hence that h1h2Tm1+m2 /∈ xR. Thus, xR is indeed prime. It remains to prove that 
the grading on R/xR is irredundant. Set

s := gcd{n ∈ N | [R/xR]n "= 0},
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in which case

P (R/xR, t) = 1
1 − ts

− p(ts),

where p(ts) is a polynomial in ts, and

P (R, t) = 1
1 − td

( 1
1 − ts

− p(ts)
)
.

Proposition 2.2 gives the second equality below,

1
ds

= lim
t→1

(1 − t)2P (R, t) = degD = 1
d
,

implying that s = 1. !

Example 3.2. Take P1 := Proj C[u, v], with points parametrized by u/v, and set

D := 1
2(0) + 1

2(∞) − 1
2(1).

Then R := R(P1, D) is the C-algebra generated by

x := u− v

v
T 2, y := u− v

u
T 2, z := (u− v)2

uv
T 3,

i.e., R is the hypersurface C[x, y, z]/(z2 − xy(x − y)), with deg x = 2 = deg y, and 
deg z = 3. Note that degD = 1/2, and that 2D is an integral divisor. Theorem 1.1(2) 
shows that

⊕n!0H
0(X,OX(nD − P ))Tn

is a prime ideal for P ∈ P1!{0, ∞, 1}. Indeed, for P = [λ : 1] with λ "= 0, 1, the displayed 
ideal is the prime (x −λy)R. These are precisely the homogeneous principal prime ideals 
of R, with the points 0, ∞, and 1 that belong to supp(frac(D)) corresponding respectively 
to the ideals xR, yR and (x − y)R that are not prime.

Remark 3.3. Let D be a Q-divisor on P1 such that degD = 1/d where d is a positive 
integer, and dD is integral. Then the ring R := R(P1, D) has infinitely many distinct 
homogeneous principal prime ideals: all points of P1 are linearly equivalent, so for each 
point P there exists a rational function g with

div(g) = P − dD,

and Theorem 1.1(2) implies that gT dR is a prime ideal for each point P with
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P ∈ P1 \ supp(frac(D)).

This explains the infinitely many prime ideals in Example 3.2, and also in Example 3.4
below; the latter, moreover, has homogeneous prime elements of different degrees.

Example 3.4. On P1 := Proj C[u, v], consider the Q-divisor

D := 1
2(∞) − 1

3(0) − 1
7(1).

Then R := R(P1, D) is the ring C[x, y, z]/(x2 − y3 + z7), where

z := u2(u− v)
v3 T 6, y := u5(u− v)2

v7 T 14, x := u7(u− v)3
v10 T 21.

For each point P = [λ : 1] in P1 ! {0, ∞, 1}, i.e., with λ "= 0, 1, one has a prime ideal

⊕n!0H
0(X,OX(nD − P ))Tn = (y3 − λx2)R.

These, along with xR, yR, and zR, are precisely the homogeneous principal prime ideals.

Example 3.5. Set X to be the elliptic curve Proj C[u, v, w]/(v2w − u3 + w3). Then

div(v/w) = P1 + P2 + P3 − 3O,

where O = [0 : 1 : 0] is the point at infinity, and

P1 = [1 : 0 : 1], P2 = [θ : 0 : 1], P3 = [θ2 : 0 : 1],

for θ a primitive cube root of unity. Take

D := 1
2P1 + 1

2P2 + 1
2P3 −O.

The ring R := R(X, D) has generators

x := w

v
T 2, y := w

v
T 3, z := uw

v2 T 4,

so R = C[x, y, z]/(x6+y4−z3). Since degD = 1/2, the only possible homogeneous prime 
elements are in degree 2. Indeed,

2D = P1 + P2 + P3 − 2O = div(v/w) + O,

and O /∈ supp(frac(D)), so (w/v)T 2 = x is a prime element; note that xR is the unique
homogeneous principal prime ideal of R, in contrast with Examples 3.2 and 3.4.
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Example 3.6. With X and O as in the previous example, note that

div(u/w) = Q1 + Q2 − 2O,

where

Q1 = [0 : i : 1], Q2 = [0 : −i : 1].

Consider the Q-divisor

D = 1
2Q1 + 1

2Q2 −
1
2O.

Then the ring R := R(X, D) has generators

x := w

u
T 2, y := w

u
T 3, z := w

u
T 4, t := vw2

u3 T 6,

and presentation

R = C[x, y, z, t]/(y2 − xz, x6 − z3 + t2).

Once again, since degD = 1/2, the only possibility for homogeneous prime elements is 
in degree 2. We see that

2D = Q1 + Q2 −O = div(u/w) + O.

However, since O ∈ supp(frac(D)), Theorem 1.1(2) does not apply. Indeed, (w/u)T 2 = x

is not a prime element. The key point is that X is not rational, and there does not exist 
a point P , linearly equivalent to 2D, with P /∈ supp(frac(D)).

4. Rational singularities

Let H be a numerical semigroup. For F a field and t an indeterminate, set

F[H] := F[tn | n ∈ H].

Question 4.1. Does F[H] deform to a normal N-graded ring, i.e., does there exist a normal 
N-graded ring R, with x ∈ R homogeneous, such that R/xR ∼= F[H]?

Question 4.2. For which numerical semigroups H does there exist R, as above, such 
that R has rational singularities?

The following is a partial answer:
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Proposition 4.3. Let R be a normal ring of dimension 2, with an irredundant N-grading, 
where R0 = F is an algebraically closed field. Suppose x0 is a homogeneous prime element 
that is part of a minimal reduction of R+, and that the induced grading on R/x0R is 
irredundant. Then the following are equivalent:

(1) The ring R has rational singularities.
(2) There exist minimal F-algebra generators x0, . . . , xr for R, with xi homogeneous, 

and

r + deg x0 > deg x1 > · · · > deg xr = r. (4.3.1)

Proof. Note that R/x0R is a numerical semigroup ring; let H denote the semigroup.
(1) =⇒ (2): The element x0 extends to a minimal generating set x0, . . . , xr for R. 

Since R/x0R = F[H] is a numerical semigroup ring, the degrees of x1, . . . , xr are distinct; 
after reindexing, we may assume that

deg x1 > · · · > deg xr.

Since R is a 2-dimensional ring with rational singularities, it has minimal multiplicity 
by [5, Theorem 3.1], namely

e(R) = edim(R) − 1.

As x0 is part of a minimal reduction of R+, the ring R/x0R has minimal multiplicity as 
well, i.e., e(R/x0R) = r. It follows that deg xr = r. By [7, Corollary 3.2], the Frobenius 
number of H is deg x1 − deg xr = deg x1 − r, which is the a-invariant of F[H]. But then

a(R) + deg x0 = a(F[H]) = deg x1 − r.

Since R is a ring of positive dimension with rational singularities, a(R) must be negative 
by [3,9], implying that r + deg x0 > deg x1 as desired.

(2) =⇒ (1): Since R is normal by assumption, one has only to verify that a(R) < 0 in 
view of the above references. This is immediate since the a-invariant of F[H], equivalently 
the Frobenius number of H, is deg x1 − r. !

Example 4.4. Consider the Q-divisor

D := 5
7(0) − 4

7(∞)

on P1 := Proj C[u, v], with points parametrized by u/v. Then R := R(P1, D) has gener-
ators

w := v2

u2T
3, x := v3

u3T
5, y := v4

u4T
7, z := v5

u5T
7.
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The relations are readily seen to be the size two minors of the matrix
(
w x z
x y w3

)
.

Each point P = [λ : 1] with λ "= 0 gives a prime ideal

⊕n!0H
0(X,OX(nD − P ))Tn = (y − λz)R,

and these are precisely the homogeneous principal prime ideals of R.
For example,

R/(y − z)R = C[t3, t5, t7].

Since (y − z, w)R is a minimal reduction of R+ and the grading on R/(y − z)R is 
irredundant, Proposition 4.3 applies. The ring R has rational singularities since a(R) =
−3, and the inequalities (4.3.1) indeed hold since

3 + deg(y − z) > deg y > deg x > degw = 3.

Example 4.5. Take R as in Example 1.6, i.e., R := C[x, y, z]/(x2+y3+z6), with deg x = 3, 
deg y = 2, and deg z = 1. Then z is a prime element such that the induced grading 
on R/zR is irredundant; z is also part of the minimal reduction (z, y)R of R+. Since 
a(R) = 0, the ring R does not have rational singularities; likewise, (4.3.1) does not hold 
since

2 + deg z ≯ deg x.
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