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A conjecture of Hirose, Watanabe, and Yoshida offers a characterization of when a stan-

dard graded strongly F-regular ring is Gorenstein, in terms of an F-pure threshold. We

prove this conjecture under the additional hypothesis that the anti-canonical cover of

the ring is Noetherian. Moreover, under this hypothesis on the anti-canonical cover, we

give a similar criterion for when a normal F-pure (respectively log canonical) singularity

is quasi-Gorenstein, in terms of an F-pure (respectively log canonical) threshold.

1 Introduction

LetR be an F-pure domain of positive characteristic, and a a nonzero proper ideal. The F-

pure threshold fpt(a)was defined byWatanabe and the second author of this article [37];

it may be viewed as a positive characteristic analogue of the log canonical threshold,

and is an important measure of the singularities of the pair (SpecR,V(a)). For example,

a local ring (R,m) is regular if and only if fpt(m) > dimR− 1.
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We say that R is strongly F-regular if fpt(a) > 0 for each nonzero proper ideal a

of R. It is well-known that each strongly F-regular ring is Cohen–Macaulay and normal;

it is then natural to ask:when is a strongly F-regular ringGorenstein? Toward answering

this in the graded context, Hirose, Watanabe, and Yoshida proposed the following:

Conjecture 1.1. [20, Conjecture 1.1 (2)] Let R be a standard graded strongly F-regular

ring, with R0 an F-finite field of characteristic p > 0. Let m be the unique homogeneous

maximal ideal of R. Then fpt(m) = −a(R) if and only if R is Gorenstein. �

We prove that the conjecture holds for many classes of (not necessarily strongly

F-regular) F-pure normal standard graded rings:

Theorem A (Corollaries 3.17, 4.12). Let R be an F-pure, normal, standard graded ring,

with R0 an F-finite field of characteristic p > 0. Let m denote the homogeneous maximal

ideal of R. Set X = SpecR, and suppose that the anti-canonical cover
⊕

n�0 OX (−nKX )

of X is a Noetherian ring. Then fpt(m) = −a(R) if and only if R is quasi-Gorenstein. �

A ring is Gorenstein if and only if it is Cohen–Macaulay and quasi-Gorenstein.

Under the hypotheses of Theorem A, the anti-canonical cover
⊕

n�0 OX (−nKX ) is known

to be Noetherian in each of the following cases:

(1) R is Q-Gorenstein,

(2) R is a semigroup ring,

(3) R is a determinantal ring,

(4) R is a strongly F-regular ring of dimension at most three,

(5) R is a four-dimensional strongly F-regular ring, of characteristic p > 5.

We give two proofs of Theorem A: the first has the advantage that it can be

adapted to obtain results in the local setting, e.g., Theorem 3.14. The second proof,

while limited to the graded context, provides a technique for computing the numerical

invariants at hand; see Proposition 4.3 for the case of determinantal rings. We describe

the two techniques, after recalling some definitions:

Recall that a ring R of prime characteristic p is called F-finite if the Frobenius

map F : R −→ F∗R is a finite map. Let R be a local or standard graded F-finite domain of

characteristic p > 0, and suppose that R is F-pure, that is, the e-th iterated Frobenius

map Fe : R −→ Fe
∗R with x �−→ Fe

∗x
pe splits as an R-linear map for each e � 1. Given a
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nonzero ideal a � R, and an integer e � 1, set νe(a) to be the largest integer r � 0 such

that there exists a nonzero element c in ar for which the composite map

R
Fe−→ Fe

∗R
×Fe∗ c−−→ Fe

∗R, where x �−→ Fe
∗x

pe �−→ Fe
∗ (cx

pe ),

splits as an R-module homomorphism. Then, fpt(a) is defined to be lime−→∞ νe(a)/pe.

The first proof of TheoremAuses an invariant c(a) thatwas originally introduced

in [32]: Given a nonzero ideal a � R, this invariant is defined in terms of the Grothendieck

trace of the iterated Frobenius map Tre : Fe
∗ωR −→ ωR, where ωR is the canonical module

of R. For an F-pure normal graded ring (R,m), one has

fpt(m) � c(m) � −a(R),

with equality holding when R is a quasi-Gorenstein standard graded ring; see Propo-

sitions 3.5 and 3.6. Thus, it suffices to show that if fpt(m) = c(m), then R is quasi-

Gorenstein. Generalizing the argument of [37, Theorem 2.7], we are indeed able to prove

this when the anti-canonical cover of R is Noetherian. We also use the invariant c(m) in

answering another question of Hirose, Watanabe, and Yoshida, [20, Question 6.7]; see

Corollary 3.18.

Our second proof uses the so-called Fedder-type criterion: Writing the standard

graded ring R as S/I , for S a polynomial ring and I a homogeneous ideal, we charac-

terize νe(m) in terms of the ideal I [pe] :S I , and use this to show that −νe(m) equals the

degree of a minimal generator of the (1− pe)-th symbolic power of ωR, see Theorem 4.1.

Using this, we give explicit computations of fpt(m) in many situations, e.g., for deter-

minant rings and for Q-Gorenstein rings, see Propositions 4.3 and 4.5. We also prove

that if (R,m) is a Q-Gorenstein normal domain, with index coprime to p, then the pair

(R,mfpt(m)) is sharply F-pure; see Proposition 4.13.

Thus farwe have discussed singularities in positive characteristic; we also prove

an analogous result in characteristic zero. de Fernex–Hacon [10] extended the definition

of log terminal and log canonical singularities to the non-Q-Gorenstein setting, which

can be regarded as the characteristic zero counterparts of strongly F-regular and F-pure

rings. Using their definition, we formulate a characteristic zero analogue of Theorem A

as follows:

Theorem B (Corollary 5.13). Let R be a standard graded normal ring, with R0 an alge-

braically closed field of characteristic zero. Set m to be the homogeneous maximal

ideal of R. Assume that X := SpecR has log canonical singularities in the sense of
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de Fernex–Hacon; set

lct(m) = sup{t � 0 | (X ,mt) is log canonical in the sense of de Fernex–Hacon}.
(1) Then lct(m) � −a(R).
(2) Suppose, in addition, that the anti-canonical cover

⊕
n�0 OX (−nKX ) is

Noetherian. Then lct(m) = −a(R) if and only if R is quasi-Gorenstein. �

We remark that in the situation of Theorem B, the anti-canonical cover is Noe-

therian whenever X has log terminal singularities in the sense of de Fernex–Hacon, or

if R is Q-Gorenstein. Thus, Theorem B gives an affirmative answer to a conjecture of

De Stefani-Núñez-Betancourt [11, Conjecture 6.9].

In order to prove Theorem B, we introduce a new invariant d(a) for an ideal a of a

normal variety X with Du Bois singularities, in terms of a variant of multiplier modules,

see Definition 5.4. We are then able to employ the same strategy as in the first proof of

Theorem A, using d(a) in place of c(a).

Throughout this article, all rings are assumed to be Noetherian (except possibly

for anti-canonical covers), commutative, with unity. By a standard graded ring, we

mean an N-graded ring R = ⊕
n�0Rn, with R0 a field, such that R is generated as an

R0-algebra by finitely many elements of R1.

2 Preliminaries on F -singularities

In this section, we briefly review the theory of F-singularities. In order to state the

definitions, we first introduce the following notation:

Let R be a ring of prime characteristic p > 0. We denote by R◦ the set of elements

of R that are not in any minimal prime ideal. Given an R-module M and e ∈ N, the R-

module Fe
∗M is defined by the following two conditions: (i) Fe

∗M = M as an abelian group,

and (ii) the R-module structure of Fe
∗M is given by r ·x := rp

e
x for r ∈ R and x ∈ Fe

∗M . We

write elements of Fe
∗M in the form Fe

∗x with x ∈ M . The e-th iterated Frobeniusmap is the

R-linear map Fe : R −→ Fe
∗R sending x to Fe

∗x
pe . We say that R is F-finite if the Frobenius

map is finite, that is, F1
∗R is a finitely generated R-module. When (R,m) is local, the e-th

iterated Frobenius map Fe : R −→ Fe
∗R induces a map Fe

Him(R)
: Hi

m(R) −→ Hi
m(R) for each i.

We recall the definition of classical F-singularities:

Definition 2.1. Let R be an F-finite reduced ring of prime characteristic p > 0.

(1) We say thatR is F-pure if the FrobeniusmapR −→ F∗R splits as anR-linear

map.
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(2) We say that R is strongly F-regular if for every c ∈ R◦, there exists a power

q = pe of p such that the R-linear map R −→ Fe
∗R sending 1 to Fe

∗ c splits.

(3) When (R,m) is local, we say thatR is F-injective if FHim(R) : H
i
m(R) −→ Hi

m(R) is

injective for each i. In general, we say thatR is F-injective if the localization

Rm is F-injective for each maximal ideal m of R.

(4) When (R,m) is local, we say thatR is F-rational ifR is Cohen–Macaulay and

if for every c ∈ R◦, there exists e ∈ N such that cFe
Hdm(R)

: Hd
m(R) −→ Hd

m(R)

sending z to cFe
Hdm(R)

(z) is injective. In general, we say that R is F-rational if

the localization Rm is F-rational for each maximal ideal m of R. �

Next we generalize these to the pair setting, see [17, 30, 37]:

Definition 2.2. Let a be an ideal of an F-finite reduced ring R of prime characteristic p

such that a ∩ R◦ 	= ∅.

(1) Suppose that R is local. For a real number t � 0, the pair (R, at) is sharply

F-pure if there exist q = pe and c ∈ a�t(q−1)� such that the R-linear map

R −→ Fe
∗R sending 1 to Fe

∗ c splits. The pair (R, at) is weakly F-pure if there

exist infinitely many e ∈ N and associated elements ce ∈ a
t(pe−1)� such that

each R-linear map R −→ Fe
∗R sending 1 to Fe

∗ ce splits.

When R is not local, (R, at) is said to be sharply F-pure (respectively weakly

F-pure) if the localization (Rm, atm) at m is sharply F-pure (respectively

weakly F-pure) for every maximal ideal m of R.

(2) Suppose that R is F-pure. Then the F-pure threshold fpt(a) of a is defined

as

fpt(a) = sup{t ∈ R�0 | (R, at) is weakly F-pure}.

(3) Suppose that R is a normal local domain and � is an effective Q-divisor on

X := SpecR. For a real number t � 0, the pair ((R,�); at) is sharply F-pure

if there exists q = pe and c ∈ a�t(q−1)� such that the R-linear map

R −→ Fe
∗ OX (�(q− 1)��) with 1 �−→ Fe

∗ c

splits. The pair ((R,�); at) is weakly F-pure if there exist infinitely many

e ∈ N and associated elements ce ∈ a
t(pe−1)� such that each R-linear map

R −→ Fe
∗ OX (
(pe − 1)��) with 1 �−→ Fe

∗ ce
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splits. If, in addition, a = OX , then we simply say that (X ,�) is F-pure.

If (R,�) is F-pure, then the F-pure threshold fpt(�; a) of a with respect to

the pair (R,�) is defined by

fpt(�; a) = sup{t ∈ R�0 | ((R,�); at) is weakly F-pure}. �

Remark 2.3.

(1) Sharp F-purity implies weak F-purity. When a = R, the sharp F-purity and

the weak F-purity of (R, at) are equivalent to the F-purity ofR. Suppose that

R is F-pure. It is easy to check that if (R, at) is weakly F-pure with t > 0,

then (R, at−ε) is sharply F-pure for every t � ε > 0 (cf. [30, Lemma 5.2]).

Thus,

fpt(a) = sup{t ∈ R�0 | (R, at) is sharply F-pure}.

(2) Our definition of the F-purity of (R,�) coincides with the one in [17,

Definition 2.1]. �

The following is a standard application of Matlis duality, which we will use in

Section 3.

Lemma 2.4 (cf. [17, Proposition 2.4]). Let (R,m) be ad-dimensional F-finite normal local

ring of characteristic p > 0,� be an effective Q-divisor on X = SpecR and a be a nonzero

ideal of R. For any real number t � 0, the pair ((R,�); at) is weakly F-pure if and only if

there exist infinitely many e ∈ N and associated elements ce ∈ a
t(pe−1)� such that

ceF
e
X ,� : H

d
m(ωX )

FeX ,�−−→ Hd
m(OX (
peKX + (pe − 1)��)) ×ce−−→ Hd

m(OX (
peKX + (pe − 1)��))

is injective, where Fe
X ,� is the map induced by the R-linear map R −→ Fe

∗ OX (
(pe − 1)��)
sending 1 to Fe

∗1. �

The following is a reformulation of the so-called “Fedder-type criterion," that

we will use in Section 4.

Proposition 2.5. Let S = k[x1, . . . ,xn] be a polynomial ring over an F-finite field k of

characteristic p > 0 and I be a homogeneous ideal of S. Suppose that R := S/I is F-pure.

Downloaded from https://academic.oup.com/imrn/article-abstract/2017/21/6484/3061088
by University of Utah user
on 02 November 2017



6490 A. K. Singh et al.

Given an e ∈ N and a homogeneous ideal a ⊂ S containing I such that aR ∩ R◦ 	= ∅, we

define the integer νe(a) by

νe(a) := max{r � 0 | ar(I [pe] : I) 	⊂ (xp
e

1 , . . . ,xp
e

n )}.

(1) For a real number t � 0, the pair (R, (aR)t) is sharply (respectivelyweakly) F-

pure if and only if νe(a) � �(pe−1)t� for some e (respectively νe(a) � 
(pe−1)t�
for infinitely many e).

(2) fpt(aR) = lime−→∞ νe(a)/pe. �

Proof. It follows from [36, Lemma 3.9] (where the criterion for F-purity is stated in the

local setting, but the same argument works in the graded setting). �

In order to generalize the definition of F-rational and F-injective rings to the pair

setting, we use the notion of at-tight closure and at-sharp Frobenius closure.

Definition 2.6. Let a be an ideal of a reduced ring R of prime characteristic p > 0 such

that a ∩ R◦ 	= ∅, and t � 0 be a real number.

(1) ([18, Definition 6.1]) For an ideal I ⊆ R, the at-tight closure I ∗at of I is defined

to be the ideal of R consisting of all elements x ∈ R for which there exists

c ∈ R◦ such that ca�t(q−1)�xq ⊆ I [q] for all large q = pe.

(2) ([30, Definition 3.10]) For an ideal I ⊂ R, the at-sharp Frobenius closure IF�a
t

of I is defined to be the ideal of R consisting of all elements x ∈ R such that

a�t(q−1)�xq ⊆ I [q] for all large q = pe.

(3) Suppose that (R,m) is local. The at-sharp Frobenius closure 0F�a
t

Him(R)
of the zero

submodule in Hi
m(R) is defined to be the submodule of Hi

m(R) consisting of

all elements z ∈ Hi
m(R) such that a�t(q−1)�Fe

Him(R)
(z) = 0 in Hi

m(R) for all large

q = pe. �

The following technical remark is useful for the study of the invariant c(a), which

will be introduced in Section 3.

Remark 2.7. Let (R,m) be an F-finite reduced local ring of characteristic p > 0. Let

Tre : Fe
∗ωR −→ ωR be the e-th iteration of the trace map on R, that is, the ωR-dual of the

e-th iterated Frobenius map Fe : R −→ Fe
∗R. It then follows from an argument similar to
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the proof of [16, Lemma 2.1] that 0F�a
t

Hdm(R)
= 0 if and only if

∑
e�e0

Tre(Fe
∗ (a

�t(pe−1)�ωR)) = ωR

for every integer e0 � 0. �

Definition 2.8. Let R be an F-finite Cohen–Macaulay reduced ring of prime char-

acteristic p > 0, a be an ideal of R such that a ∩ R◦ 	= ∅, and t � 0 be a real

number.

(1) ([32, Definition 6.1]) WhenR is local, (R, at) is said to be F-rational if J ∗at = J

for every ideal J generated by a full system of parameters for R.

(2) When R is local, (R, at) is said to be sharply F-injective if JF�a
t = J for every

ideal J generated by a full system of parameters for R.

When R is not local, the pair (R, at) is said to be F-rational (respectively sharply

F-injective) if the localization (Rm, atm) atm is F-rational (respectively sharply F-injective)

for every maximal ideal m of R. When a = R, this definition coincides with the one in

Definition 2.1. �

We review basic properties of sharply F-injective pairs and F-rational pairs.

Lemma 2.9. Let R be an F-finite reduced ring of prime characteristic p > 0, a be an

ideal of R such that a ∩ R◦ 	= ∅, and t � 0 be a real number. Set d := dimR.

(1) Suppose that (R,m) is Cohen–Macaulay. Then the following are equiva-

lent:

(a) (R, at) is sharply F-injective (respectively F-rational).

(b) JF�a
t = J (respectively J ∗at = J ) for an ideal J generated by a full

system of parameters.

(c) 0F�a
t

Hdm(R)
= 0 (respectively 0∗at

Hdm(R)
= 0).

(2) Suppose that R is F-rational.

(a) There exists a rational number t0 > 0 such that (R, at0) is sharply

F-injective.

(b) If (R, at) is sharply F-injective with t > 0, then (R, at−ε) is

F-rational for every t � ε > 0.
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(3) Suppose that (R,m) is local. If (R, at) is sharply F-pure, then 0F�a
t

Him(R)
= 0 for

every i. When R is quasi-Gorenstein, (R, at) is sharply F-pure if and only if

0F�a
t

Hdm(R)
= 0.

(4) Let (R,m) ↪−→ (S, n) be a flat local homomorphism of F-finite reduced

local rings of characteristic p > 0. Suppose that S/mS is a field which

is a separable algebraic extension of R/m. Then 0F�a
t

Hdm(R)
= 0 if and only if

0F�(aS)
t

Hdn (S)
= 0. �

Proof. We may assume throughout that (R,m) is local. Let J be an ideal generated by

a full system of parameters for R.

(1) The F-rational case follows from [32, Lemma 6.3] and the sharp F-injective

case follows from an analogous argument.

(2) First we will show (a). Fix a nonzero element f ∈ a. Since R is F-rational, there

exists e0 ∈ N such that fFe0
Hdm(R)

: Hd
m(R) −→ Hd

m(R) is injective. Then for each n ∈ N, the

map

f 1+pe0+···+p(n−1)e0Fne0
Hdm(R)

: Hd
m(R) −→ Hd

m(R)

is also injective. Set t0 = 1/(pe0 − 1) and let z ∈ 0F�a
t0

Hdm(R)
. Since

f 1+pe0+···+p(n−1)e0Fne0
Hdm(R)

(z) ∈ at0(p
ne0−1)Fne0

Hdm(R)
(z) = 0

for sufficiently large n, one has z = 0 by the injectivity of f 1+pe0+···+p(n−1)e0Fne0
Hdm(R)

. It follows

that 0F�a
t0

Hdm(R)
= 0.

Next we will show (b). Let x ∈ J ∗at−ε . Since 1 is a parameter at−ε-test element by

[32, Lemma 6.8] (see [32, Definition 6.6] for the definition of parameter at−ε-test elements),

a�t(q−1)�xq ⊆ a�(t−ε)q�xq ⊆ J [q] for all sufficiently large q = pe. Then the sharp F-injectivity

of (R, at) implies that x ∈ J , that is, J ∗at−ε = J .

(3) Let z ∈ 0F�a
t

Him(R)
. Since (R, at) is sharply F-pure, there exist a sufficiently large

q = pe and c ∈ a�t(pe−1)� such that the R-linear map R −→ Fe
∗R sending 1 to Fe

∗ c splits,

and in particular, cFe
Him(R)

: Hi
m(R) −→ Hi

m(R) is injective. Then z has to be zero, because

cFe
Him(R)

(z) ∈ a�t(pe−1)�Fe
Him(R)

(z) = 0. That is, 0F�a
t

Him(R)
= 0.

For the latter assertion, suppose that R is quasi-Gorenstein. Then by [30, Theo-

rem 4.1], (R, at) is sharply F-pure if and only if for infinitely many q = pe, there exists

c ∈ a�t(q−1)� such that cFe
Hdm(R)

: Hd
m(R) −→ Hd

m(R) is injective. Looking at the socle of Hd
m(R),

we see that this condition is equivalent to saying that 0F�a
t

Hdm(R)
= 0.
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(4) SinceHd
n (S) does not change by passing to the completion of S, wemay assume

that S is complete. Let TreR : F
e
∗ωR −→ ωR (respectively TreS : F

e
∗ωS −→ ωS) denote the e-th

iteration of the trace map on R (respectively S). It then follows from the proof of [35,

Lemma 1.5 (2)] that TreR ⊗R S : Fe
∗ωR ⊗R S −→ ωR ⊗R S is isomorphic to TreS for each e ∈ N.

By Remark 2.7, 0F�a
t

Hdm(R)
= 0 if and only if

⊕
e�e0

TreR :
⊕
e�e0

Fe
∗ (a

�t(pe−1)�ωR) −→ ωR

is surjective for every integer e0 � 0. Tensoring with S, we see that this condition is

equivalent to the surjectivity of

⊕
e�0

TreS :
⊕
e�e0

Fe
∗ (a

�t(pe−1)�ωS) −→ ωS

for every e0 � 0, which holds by Remark 2.7 again if and only if 0F�(aS)
t

Hdn (S)
= 0. �

3 Positive characteristic case I

We introduce a new invariant of singularities in positive characteristic, and study its

basic properties. Using this, we give a partial answer to Conjecture 1.1.

Definition 3.1. Let (R,m) be a d-dimensional F-finite F-injective local ring of charac-

teristic p > 0, a be an ideal of R such that a ∩ R◦ 	= ∅. For each integer i, the threshold

ci(a) is defined by

ci(a) = sup{t ∈ R�0

∣∣ 0F�at
Him(R)

= 0}.

Note that ci(a) = ∞ when Hi
m(R) = 0. Also, we simply denote cd(a) by c(a). �

Remark 3.2. Let R be an N-graded ring with R0 an F-finite field of characteristic p > 0,

and m the homogeneous maximal ideal of R. Then we can define ci(m) similarly, that is,

ci(m) = sup{t ∈ R�0

∣∣ 0F�mt
Him(R)

= 0}.

Since Hi
m(R) ∼= Hi

mRm
(Rm), we have the equality ci(m) = ci(mRm). �

Lemma 3.3. Let the notation be the same as in Definition 3.1.
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(1) If R is Cohen–Macaulay, then

c(a) = sup{t ∈ R�0 | (R, at) is sharply F-injective}.

(2) If R is F-rational, then

c(a) = sup{t ∈ R�0 | (R, at) is F-rational}.

(3) Suppose that R is F-pure. Then ci(a) � fpt(a) for each i. In addition, if R is

quasi-Gorenstein, then c(a) = fpt(a).

(4) c(a) is less than or equal to the height ht a of a.

(5) Suppose that R is Cohen–Macaulay and the residue field R/m is infinite. If

J ⊂ R is a minimal reduction of m, then md+1−�c(m)� ⊆ J .

(6) Suppose that R is Cohen–Macaulay. If c(m) > d − 1, then R is regular and

in particular c(m) = d. �

Proof. (1) (respectively (2), (3)) follows from Lemma 2.9 (1) (respectively (2), (3)).

(4) Since the trace map commutes with localization, by Remark 2.7, c(a) � c(aRp)

for every prime ideal p containing a. Localizing at a minimal prime of a, we may assume

that ht a = d. We can also assume by Lemma 2.9 (4) that the residue field R/m is infinite.

Let J be a minimal reduction of a, and we will show that 0F�a
t

Hdm(R)
⊇ (0 : J)Hdm(R) 	= 0 for

every t > d. Let z ∈ (0 : J)Hdm(R). If t > d, then J [q] ⊇ a�t(q−1)� for all large q = pe (because

a�t(q−1)� = J �t′q(q−1)�an for some fixed n ∈ N, where t′q = t − n/(q− 1)). Then

a�t(q−1)�Fe
Hdm(R)

(z) ⊆ J [q]Fe
Hdm(R)

(z) = Fe
Hdm(R)

(Jz) = 0

for such q = pe, which implies that z ∈ 0F�a
t

Hdm(R)
.

(5) It follows from Remark 2.7 that
∑

e�e0
Tre(Fe

∗ (m
�(c(m)−ε)(pe−1)�ωR)) = ωR for all

e0 ∈ Z�0 and for all c(m) � ε > 0 (when c(m) = 0, we put ε = 0). Multiplying by md+1−�c(m)�

on both sides, one has

md+1−�c(m)�ωR = md+1−�c(m)� ∑
e�e0

Tre
(
Fe

∗ (m
�(c(m)−ε)(pe−1)�ωR)

)
⊆
∑
e�e0

Tre
(
Fe

∗ (m
�(c(m)−ε)(pe−1)�+(d+1−�c(m)�)peωR)

)
⊆
∑
e�e0

Tre
(
Fe

∗ (m
dpeωR)

)
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⊆
∑
e�e0

Tre
(
Fe

∗ (J
[pe]ωR)

)
⊆ JωR

for sufficiently large e0 and for sufficiently small ε > 0. Since R/J is the Matlis dual of

ωR/JωR, this means that md+1−�c(m)� ⊆ J .

(6) Let J be a minimal reduction of m; we may assume by Lemma 2.9 (4) that the

residue field R/m is infinite. It then follows from (5) that m = J , which means that m

is generated by at most d elements, that is, R is regular. If R is regular, then c(m) =
fpt(m) = d by (3) and [37, Theorem 2.7 (1)]. �

Example 3.4. Let S be the n-dimensional polynomial ring k[x1, . . . ,xn] over an F-finite

field k. LetR = S(r) be the r-th Veronese subring of S andmR be the homogeneousmaximal

ideal of R. Then fpt(mR) = n/r and c(mR) = �n/r�. �

When R is an N-graded ring, the i-th a-invariant ai(R) is defined by

ai(R) = max{n ∈ Z | [Hi
m(R)]n 	= 0}

for each i. The following proposition can be viewed as an extension of [11, Theorem 4.3].

Proposition 3.5. Let R be an F-injective N-graded ring, with R0 an F-finite field of

characteristic p > 0. Let m be the homogeneous maximal ideal of R. Then ci(m) � −ai(R)
for each i. In particular, if R is F-pure, then by Lemma 3.3 (3), one has the inequality

fpt(m) � −ai(R) for every integer i. �

Proof. We may assume that Hi
m(R) 	= 0. We will then show that ci(m) � −ai(R) + ε,

that is, 0F�m
−ai(R)+ε

Him(R)
	= 0, for every ε > 0. Note that ai(R) � 0, because R is F-injective.

Let z ∈ [Hi
m(R)]ai(R) be a nonzero element. Since �(−ai(R)+ ε)(q− 1)� + ai(R)q > 0 for all

sufficiently large q = pe, one has

m�(−ai(R)+ε)(q−1)�Fe
Him(R)

(z) ⊆ [Hi
m(R)]>0 = 0

for such q, which means that z ∈ 0F�m
−ai(R)+ε

Him(R)
. �
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We record two cases inwhich the above result canbe strengthened to an equality:

Proposition 3.6. Let R be an F-injective standard graded ring with R0 an F-finite field

of characteristic p > 0. Let m denote the homogeneous maximal ideal of R. Suppose that

one of the following conditions is satisfied:

(1) R is Cohen–Macaulay,

(2) R is normal and quasi-Gorenstein.

Then c(m) = −a(R). �

Proof. Let d be the dimension of R. First, we assume that the condition (1) holds and

we will prove that c(m) � −a(R) − ε for every ε > 0. We may assume by Lemma 2.9 (4)

that R0 is an infinite field. Let J be a minimal reduction of m. As R is a Cohen–Macaulay

standard graded ring, J is generated by a homogeneous regular sequence of degree one.

Then md+a(R)+1 is contained in J but md+a(R) is not.

It is enough to show that JF�m
−a(R)−ε = J by Lemma 2.9 (1) and Lemma 3.3 (1). Let

x ∈ JF�m
−a(R)−ε

, and we may assume that the degree of x is less than or equal to d+ a(R).

By definition, m�(−a(R)−ε)(q−1)�xq ⊆ J [q] for all sufficiently large q = pe. Thus,

xq ∈ (J [q] : J �(−a(R)−ε)(q−1)�) ⊆ J [q] + Jdq−�(−a(R)−ε)(q−1)�−d+1.

The degree of xq is less than or equal to (d+a(R))q, but dq−�(−a(R)− ε)(q−1)�−d+1

is greater than (d + a(R))q for sufficiently large q, so xq has to lie in J [q] for such q. It

then follows from the F-injectivity of R that x ∈ J , that is, JF�m
−a(R)−ε = J .

Next, we assume that the condition (2) holds andwewill show that c(m) � −a(R).
It is enough to show by Lemma 3.3 (3) that fpt(m) � −a(R). Let X = ProjR. Since R is a

quasi-Gorenstein normal standard graded ring, there exists a very ample divisor H on

X such that R = ⊕
n�0H

0(X ,OX (nH)) and KX ∼ a(R)H . Note that X is globally F-split

and a(R) � 0, because R is F-pure. It then follows from an argument similar to the

proof of [31, Theorem 4.3] that there exists an effective Cartier divisor D on X such that

D ∼ (1 − p)a(R)H and that the composite map

OX −→ F∗OX −→ F∗OX (D) x �−→ F∗xp �−→ F∗(sxp)

splits as an OX -module homomorphism, where s is a defining section for D. This map

induces the R-linear map R −→ F∗R with 1 �−→ F∗s, which also splits. Since s belongs
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to m(1−p)a(R) by the definition of D, the pair (R,m−a(R)) is sharply F-pure. Thus, fpt(m) �
−a(R). �

Motivated by Conjecture 1.1, we propose the following conjecture.

Conjecture 3.7. Let (R,m) be an F-finite F-pure normal local ring of characteristic

p > 0. Then R is quasi-Gorenstein if and only if fpt(m) = c(m). �

Remark 3.8. Conjecture 3.7 can fail if R is not normal. Indeed, [11, Example 5.3] and

Proposition 3.6 give a counterexample. �

Conjecture 3.7 implies an extension of Conjecture 1.1.

Proposition 3.9. Let R be an F-pure normal standard graded ring, with R0 an F-finite

field of characteristic p > 0. Let m denote the homogeneous maximal ideal of R. Suppose

that Conjecture 3.7 holds for the localization Rm of R at m. Then R is quasi-Gorenstein

if and only if fpt(m) = −a(R). �

Proof. The “only if" part immediately follows from Lemma 3.3 (3) and Proposition 3.6.

We will show the “if" part. Suppose that fpt(m) = −a(R). Then by Remark 3.2,

Lemma 3.3 (3) and Proposition 3.6,

−a(R) = fpt(m) � fpt(mRm) � c(mRm) = c(m) = −a(R),

which implies that fpt(mRm) = c(mRm). It then follows from Conjecture 3.7 that Rm is

quasi-Gorenstein, which is equivalent to saying that R is quasi-Gorenstein. �

Theorem 3.10. Let (R,m) be an F-finite normal local ring of characteristic p > 0 and �

be an effectiveQ-divisor onX := SpecR such that (X ,�) is F-pure andKX+� isQ-Cartier

of index r. If R is not quasi-Gorenstein, then

fpt(�;m)+ 1

r
� c(m). �

Proof. Let d be the dimension of R. For every fpt(�;m) > ε > 0 (when fpt(�;m) = 0,

put ε = 0), by the definition of fpt(�;m) and Lemma 2.4, there exist q0 = pe0 and c

in m
(fpt(�;m)−ε)(q0−1)� such that

cFe0
X ,� : H

d
m(ωX ) −→ Hd

m(OX (
q0KX + (q0 − 1)��))
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is injective. We consider the following commutative diagram:

ωX × Hd
m(R) ��

��

Hd
m(ωX )

cF
e0
X ,�

��
OX (
q0KX + (q0 − 1)��)× Hd

m(R) �� Hd
m(OX (
q0KX + (q0 − 1)��)),

where the left vertical map sends (x, z) to (cxq0 ,Fe0
Hdm(R)

(z)).

For each 1/r > ε′ > 0, we will show that 0F�m
fpt(�;m)+1/r−ε−ε′

Hdm(R)
= 0, which implies the

assertion. Let ξ ∈ 0F�m
fpt(�;m)+1/r−ε−ε′

Hdm(R)
, that is, there exists q1 ∈ N such that

m�(fpt(�;m)+1/r−ε−ε′)(q−1)�Fe
Hdm(R)

(ξ) = 0

for all q = pe � q1. By the definition of weak F-purity, we may assume that q0 is suffi-

ciently large so that q0 � q1 and ε′(q0 − 1) � 2. Since R is not quasi-Gorenstein, r � 2 or

� is strictly effective. In either case, the fractional ideal ωr
X = OX (KX )

r is contained in

the fractional ideal mOX (r(KX +�)). Therefore, for all x ∈ ωX , one has

cxq0 ∈ m
(fpt(�;m)−ε)(q0−1)�ωq0
X

⊆ m
(fpt(�;m)−ε)(q0−1)�+
(q0−1)/r�OX (
q0KX + (q0 − 1)��)
⊆ m�(fpt(�;m)+1/r−ε−ε′)(q0−1)�OX (
q0KX + (q0 − 1)��)

by the choice of q0. Since q0 � q1,

cxq0Fe0
Hdm(R)

(ξ) ∈ m�(fpt(�;m)+1/r−ε−ε′)(q0−1)�OX (
q0KX + (q0 − 1)��)Fe0
Hdm(R)

(ξ)

= 0 in Hd
m(OX (
q0KX + (q0 − 1)��)),

and it then follows from the commutativity of the above diagram that cFe0
X ,�(xξ) = 0. The

injectivity of the map cFe0
X ,� implies that xξ = 0 for all x ∈ ωX . This forces ξ to be zero,

because ωX × Hd
m(R) −→ Hd

m(ωX ) is the duality pairing. Thus, 0F�m
fpt(�;m)+1/r−ε−ε′

Hdm(R)
= 0. �

We give an example of a standard graded Cohen–Macaulay ring R that is F-pure,

with a(R) = −1 and fpt(m) = 0; this is based on [34]. The ring R is Q-Gorenstein, with

index 2.

Example 3.11. Let k be a field of characteristic p ≡ 1 mod 4, and set

S = k[w,x,y, z]/(w4 + x4 + y4 + z4) .
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By the characteristic assumption, the ring S is F-pure. Set R to be the k-subalgebra

generated by the monomials

w4, w3x, w2x2, wx3, x4, y4, y3z, y2z2, yz3, z4.

Then R is a direct summand of S as an R-module: one way to see this is to use the

Z/4×Z/4-grading on S under which degw = (1, 0) = deg x, and deg y = (0, 1) = deg z, in

which case R is the subring of S generated by elements of degree (0, 0). It follows that R

is F-pure, normal, as well as Cohen–Macaulay.

The ringR has a standard grading under which each of the monomials displayed

is assigned degree one. Computing the socle modulo the system of parameters x4, y4, z4,

it follows that a(R) = −1. By Proposition 3.6, we have c(m) = 1.

The fractional ideal

ωR = 1

w2x2
(w3x,w2x2,wx3)(y3z,y2z2,yz3)

is, up to isomorphism, the graded canonical module of R; its second symbolic power is

ω
(2)
R = y2z2

w2x2
R,

so the ring R is Q-Gorenstein. Using Theorem 4.1, one checks that that νe(m) = 0 for each

e � 1. It follows that fpt(m) = 0. �

Corollary 3.12. Let (R,m) be an F-finite F-pure normal local ring of characteristic

p > 0.

(1) Suppose that there exists an effective Q-divisor � on X = SpecR such

that KX + � is Q-Cartier, (X ,�) is F-pure and fpt(�;m) = fpt(m). Then

Conjecture 3.7 holds for this R.

(2) If c(m) = 0, then R is quasi-Gorenstein. �

Proof. (1) immediately follows from Theorem 3.10. We will show (2). Since R is F-pure,

then by [31, Theorem 4.3 (ii)], there exists an effective Q-divisor � on X such that (R,�)

is sharply F-pure with KX +� Q-Cartier. Then

0 � fpt(�;m) � fpt(m) � c(m) = 0,

and the assertion follows from (1). �
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When is the assumption of Corollary 3.12 (1) satisfied? If the pair (R,mfpt(m)) is

sharply F-pure, then by a similar argument to the proof of [31, Theorem 4.3 (ii)], there

exists an effective Q-divisor � on X such that ((R,�);mfpt(m)) is sharply F-pure with

KX +� Q-Cartier. Then fpt(�;m) = fpt(m), that is, the assumption of Corollary 3.12 (1)

is satisfied.

Question 3.13 (cf. [20, Question 3.6]). Let (R,m) be an F-finite F-pure normal local ring

of characteristic p > 0. When is the pair (R,mfpt(m)) sharply or weakly F-pure? �

Wewill show in Proposition 4.13 that if (R,m) is an F-pure Q-Gorenstein normal

standard graded ring over an F-finite field of characteristic p > 0 with Gorenstein index

not divisible by p, then (R,mfpt(m)) is sharply F-pure.

We now prove the main result of this section:

Theorem 3.14. Let (R,m) be an F-finite F-pure normal local ring of characteristic p > 0.

Suppose that the anti-canonical cover
⊕

n�0 OX (−nKX ) of X := SpecR is Noetherian.

Then fpt(m) = c(m) if and only if R is quasi-Gorenstein. �

Proof. Since
⊕

n�0 OX (−nKX ) is Noetherian, one can find an integer r � 1 satisfying the

following: for every q = pe, if we write q − 1 = rne + je with ne � 0 and r − 1 � je � 0,

then

OX ((1 − q)KX ) = OX (−rKX )
neOX (−jeKX ).

Suppose that R is not quasi-Gorenstein, and we will show that fpt(m) + 1
r � c(m). Let

ϕ1, . . . ,ϕl be a system of generators for OX (−rKX ).

For every fpt(m) > ε > 0, there exist a sufficiently large q = pe and c ∈
m
(fpt(m)−ε)(q−1)� such that the R-linear map R −→ Fe

∗R sending 1 to Fe
∗ c splits (when

fpt(m) = 0, put ε = 0 and c = 1). That is, there exists an R-linear map ϕ : Fe
∗R −→ R

sending Fe
∗ c to 1. It follows from Grothendieck duality that there exists an isomorphism


 : HomR(F
e
∗R,R) ∼= Fe

∗ OX ((1 − q)KX ) = Fe
∗ (OX (−rKX )

neOX (−jeKX )) .

We write 
(ϕ) = ∑
m F

e
∗ (ϕ

m1
1 · · ·ϕml

l ψm) with ψm ∈ OX (−jeKX ), where m runs through all

elements of {(m1, . . . ,ml) ∈ Zl
�0 | m1 + · · · +ml = ne}. Then

1 = ϕ(Fe
∗ c) = 
−1

(∑
m

Fe
∗ (ϕ

m1
1 · · ·ϕml

l ψm)

)
(Fe

∗ c)

=
∑
m


−1
(
Fe

∗ (ϕ
m1
1 · · ·ϕml

l ψm)
)
(Fe

∗ c).
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Therefore, there exists m = (m1, . . . ,ml) ∈ Zl
�0 with

∑l
i=1mi = ne such that


−1(Fe
∗ (ϕ

m1
1 · · ·ϕml

l ψm))(Fe
∗ c) is a unit. Replacing c by a unit multiple, we may assume

that 
(ϕ) = Fe
∗ (ϕ

m1
1 · · ·ϕml

l ψm).

Since each ϕi determines an effective divisor Di which is linearly equivalent to

−rKX , the section Fe
∗ (ϕ

m1
1 · · ·ϕml

l ψm) lies in Fe
∗ OX ((1 − q)KX − m1D1 − · · · − mlDl) and we

have the following commutative diagram:

Fe
∗ OX ((1 − q)KX −m1D1 − · · · −mlDl) �� Fe

∗ OX ((1 − q)KX )

HomR(Fe
∗ OX (m1D1 + · · · +mlDl),R) ��

��

HomR(Fe
∗R,R),




��

where the vertical maps are isomorphisms. Therefore, ϕ induces an R-linear map

Fe
∗ OX (m1D1 + · · · +mlDl) −→ R

sending Fe
∗ c to 1. Then its Matlis dual

cFe : Hd
m(ωR) −→ Hd

m(OX (qKX +m1D1 + · · · +mlDl))

is injective. On the other hand, since R is not quasi-Gorenstein and rKX + Di ∼ 0, the

fractional ideal ωr
X = OX (KX )

r is contained in mOX (rKX + Di) for each i = 1, . . . , l. Hence,

ω
q
X is contained in m
(q−1)/r�OX (qKX +m1D1+· · ·+mlDl). It then follows from an analogous

argument to the proof of Theorem 3.10 that fpt(m)+ 1
r � c(m). �

Remark 3.15. In the setting of Theorem 3.14, it is well-known that
⊕

n�0 OX (−nKX ) is

Noetherian if R is Q-Gorenstein, R is a normal semigroup ring or R is a determinantal

ring. We briefly explain the reason why
⊕

n�0 OX (−nKX ) is Noetherian in the latter case.

Let R be the determinantal ring k[T]/I , where T is anm×nmatrix of indetermi-

nates withm � n, and I is the ideal generated by the size tminors of T where 1 � t � m.

Then the anti-canonical class of R is the class of the (n − m)-th symbolic power of

the prime ideal p generated by the size t − 1 minors of the first t − 1 rows of T by [7,

Theorem 8.8]. Moreover, the symbolic powers of p coincide with its ordinary powers by

[7, Corollary 7.10], so the anti-canonical cover is the Rees algebra of pn−m. In particular,

it is Noetherian. �
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Another case where
⊕

n�0 OX (−nKX ) is Noetherian is the following:

Corollary 3.16. Let X be a three-dimensional strongly F-regular variety over an alge-

braically closed field of characteristic p > 5 and x be a closed point of X . Then

fpt(mx) = c(mx) if and only if X is Gorenstein at x. �

Proof. Wemay assume thatX is affine. By [31, Theorem 4.3] and [17, Theorem 3.3], there

exists an effective Q-divisor � on X such that KX +� is Q-Cartier and (X ,�) is strongly

F-regular and in particular is klt. Since the minimal model program holds for three-

dimensional klt pairs in characteristic p > 5, the anti-canonical cover
⊕

n�0 OX (−nKX )

is Noetherian (see e.g., [9, Theorem 2.28]). Thus, the assertion follows fromTheorem 3.14.

�

A combination of Proposition 3.9, Theorem 3.14, Remark 3.15, and Corollary 3.16

gives an extension of [20, Theorem 1.2 (2)]:

Corollary 3.17. Let R be an F-pure normal standard graded ring, with R0 an F-finite

field of characteristic p > 0. Let m be the homogeneous maximal ideal of R. Suppose that

the anti-canonical cover
⊕

n�0 OX (−nKX ) of X := SpecR is Noetherian. This assumption

is satisfied, for example, in each of the following cases:

(1) R is Q-Gorenstein,

(2) R is a semigroup ring,

(3) R is a determinantal ring,

(4) R is a strongly F-regular ring of dimension at most three,

(5) R is a four-dimensional strongly F-regular ring and p > 5.

Then fpt(m) = −a(R) if and only if R is quasi-Gorenstein. �

Proof. If
⊕

n�0 OX (−nKX ) is Noetherian, then the assertion follows fromProposition 3.9

and Theorem 3.14. By Remark 3.15,
⊕

n�0 OX (−nKX ) is Noetherian in the case of (1), (2),

and (3). We will explain why
⊕

n�0 OX (−nKX ) is Noetherian in the case of (4) and (5).

Since two-dimensional strongly F-regular rings are Q-Gorenstein, we may

assume that dimX � 3. Also, since strong F-regularity is preserved under flat base

change by [1, Theorem 3.6], we may assume that R0 is an algebraically closed field. Let

D be a very ample divisor on Y := ProjR so that R = ⊕
m�0H

0(Y ,OY (mD)). It follows

from [31, Theorem 1.1] that Y is a normal projective variety of Fano type of dimension
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at most three. It is known that the minimal model program holds for klt surfaces and

also for three-dimensional klt pairs in characteristic p > 5 (see [2, 4, 15]). Thus, applying

essentially the same argument as the proof of [3, Corollary 1.1.9], we can see that

⊕
n�0

OX (−nKX ) ∼=
⊕
m∈Z

⊕
n�0

H0(Y ,OY (mD− nKY ))

is Noetherian. �

We also give an answer to [20, Question 6.7]. Before stating the result, we fix

some notation. Let M = Zd, N = HomZ(M ,Z), and denote the duality pairing between

MR := M⊗Z R and NR := N⊗Z R by 〈−,−〉 : MR ×NR −→ R. Let σ ⊂ NR be a strongly convex

rational polyhedral cone and denote its dual cone by σ∨. Let R = k[σ∨ ∩M] be the affine

semigroup ring over a field k defined by σ and m be the unique monomial maximal ideal

of R. The Newton Polyhedron P(m) ⊆ MR of m is defined as the convex hull of the set of

exponents m ∈ M of monomials xm ∈ m. We define the function λm by

λm : σ
∨ −→ R u �−→ sup{λ ∈ R�0 | u ∈ λP(m)},

where we set λP(m) = σ∨ if λ = 0, and denote

aσ (R) := −min{λm(u) | u ∈ Int(σ∨) ∩M}.

Note that aσ (R) coincides with the a-invariant a(R) if R is standard graded.

Corollary 3.18. We use the above notation. Let R = k[σ∨ ∩ M] be a (not necessarily

standard graded) affine semigroup ring over an F-finite field k of characteristic p > 0

defined by σ .

(1) Then c(m) = −aσ (R).
(2) fpt(m) = −aσ (R) if and only if R is Gorenstein. �

Proof. Since (2) follows from (1) and Theorem 3.14, we will show only (1). Let v1, . . . ,vs

be the primitive generators for σ , that is, the first lattice points on the edges of σ . The

graded canonical module ωR consists of the monomials xm such that 〈m,vi〉 � 1 for all

i = 1, . . . , s. Hence, its k-dual Hd
m(R) is written as

Hd
m(R) =

⊕
m∈S

kxm,
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where S = {m ∈ M | 〈m,vi〉 � −1 for all i = 1, . . . , s}. It follows from the fact that 1 is

an mt-test element by [18, Theorem 6.4] (see [18, Definition 6.3] for the definition of mt-

test elements) that the pair (R,mt) is F-rational if and only if for each m ∈ S, one has

m�tpe�xpem 	= 0 in Hd
m(R), or equivalently,

(pem+ �tpe�P(m)) ∩ S 	= ∅,

for infinitely many e. We can rephrase this condition as saying that −m ∈ Int(tP(m)),

using an argument similar to the proof of [5, Theorem 3]. By Lemma 3.3 (2),

c(m) = sup{t ∈ R�0 | (R,mt) is F-rational}
= sup{t ∈ R�0 | −m ∈ Int(tP(m)) for all m ∈ S}
= min

u∈−S
λm(u).

Since −S = Int(σ∨) ∩M , one has the equality c(m) = −aσ (R). �

4 Positive characteristic case II

In this section we give a different interpretation of the function νe(m), where m is the

homogeneous maximal ideal of an F-pure normal standard graded domain R over an

F-finite field (Theorem 4.1). Combining it with the Fedder-type criteria (Proposition 2.5),

we give explicit computations of fpt(m) inmany situations (e.g., Propositions 4.3 and 4.5),

eventually yielding Corollary 3.17 as a consequence (see Corollary 4.12).

Theorem 4.1. Let S be an n-dimensional standard graded polynomial ring over an F-

finite field of characteristic p > 0. Let I be a homogeneous ideal such that R := S/I is an

F-pure normal domain. Let ωR denote the graded canonical module of R. Then, for each

q = pe, one has a graded isomorphism

I [q] :S I
I [q]

∼= (ωR(n))
(1−q) .

In particular, if m is the homogeneous maximal ideal of R, then −νe(m) equals the degree
of a minimal generator of ω(1−q)

R (See Proposition 2.5 for the definition of νe(m)). �

Proof. After taking a flat base change, we may assume that S = k[x1, . . . ,xn], where k

is a perfect field. It then follows that S is a free Sq-module with basis xi11 · · ·xinn where

0 � ij � q − 1 for each j. Consider the homomorphism ϕ ∈ HomSq(S,Sq) that maps the
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basis element (x1 · · ·xn)q−1 to 1, and every other basis element to 0. It is readily seen

that ϕ generates HomSq(S,Sq) as an S-module.

Let J be the ideal of Sq consisting of q-th powers of elements of I ; note that

JS = I [q]. Then

HomSq(S/I ,S
q/J) ∼= I [q] :S I

I [q] ϕ,

see [12, page 465]. Next, note that one has graded isomorphisms

HomSq(S/I ,S
q/J) ∼= HomRq(R,R

q)

∼= HomRq(R, HomRq(ωRq ,ωRq))

∼= HomRq(R⊗Rq ωRq ,ωRq)

∼= HomRq(ω
(q)
R ,ωRq)

∼= HomRq(ω
(q)
R ⊗R R,ωRq)

∼= HomR(ω
(q)
R , HomRq(R,ωRq))

∼= HomR(ω
(q)
R ,ωR)

∼= ω
(1−q)
R .

Since the homomorphism ϕ has degree n− nq, the desired isomorphism follows.

Suppose ω(1−q)
R is generated in degrees −d1 < · · · < −dr , then (I [q] :S I)/I [q] is

generated in degrees n(q − 1) − d1 < · · · < n(q − 1) − dr . Hence the least degree of a

homogeneous element of I [q] :S I that is, not in m[q] belongs to the set

{n(q− 1)− d1, . . . ,n(q− 1)− dr},

and I [q] :S I ⊆ mn(q−1)−d1 . Since the definition of νe(m) translates as

νe(m) = max{r ∈ N | (I [q] :S I) 	⊆ m[q] + mn(q−1)+1−r},

it follows that νe(m) ∈ {d1, . . . ,dr}. �

As an immediate consequence we get:

Corollary 4.2. IfR is an F-pure quasi-Gorenstein standard graded normal domain, over

an F-finite field, with homogeneous maximal ideal m, then

fpt(m) = −a(R).

In particular, by Proposition 3.5, in this case a(R) � ai(R) for all i = 0, . . . , dimR. �

Downloaded from https://academic.oup.com/imrn/article-abstract/2017/21/6484/3061088
by University of Utah user
on 02 November 2017



6506 A. K. Singh et al.

Proposition 4.3. Let R be the determinantal ring k[T]/I , where k is an F-finite field, the

matrix of indeterminates T has size m × n with m � n, and I is the ideal generated by

the size t minors of T where 1 � t � m. Let m be the homogeneous maximal ideal of R.

Then

fpt(m) = m(t − 1). �

Remark 4.4. In the notation of the proposition, the ring R has a-invariant −n(t − 1).

It follows that fpt(m) = −a(R) precisely when m = n or t = 1, that is, if and only if R is

Gorenstein.

In the case t = 2, the F-pure threshold has been calculated previously, see [8,

Corollary 1] or [20, Example 6.2]. Since I is a homogeneous ideal of k[T], which is F-pure,

one can also ask for fpt(I). This threshold has been computed in [28] (see [19] for various

generalizations):

fpt(I) = min
{
(m− l)(n− l)

t − l

∣∣ l = 0, . . . , t − 1
}
. �

Proof of Proposition 4.3. The graded canonical module of R is computed in [6, Corol-

lary 1.6], namely, it equals qn−m(m − mt), where q is the prime ideal generated by the

size t − 1 minors of the first t − 1 columns of the matrix T . The divisor class group of

R is described by [7, Corollary 7.10], from which it follows that ω(1−q)
R is generated by

elements of degree −m(q− 1)(t − 1). Theorem 4.1 now gives

νe(m) = m(q− 1)(t − 1),

from which the result follows. �

Proposition 4.5. Let R be an F-pure Q-Gorenstein standard graded normal domain,

over an F-finite field, with homogeneous maximal ideal m. If c is the order of ωR in the

divisor class group and ω(c) is generated in degree D, then:

fpt(m) = D/c.

In particular, fpt(m) = −a(R) if and only if R is quasi-Gorenstein. �

Proof. For q = pe let us write 1−q = a(q)c+b(q), with 0 � b(q) < c. By the assumptions

we have:

ω
(1−q)
R = (

ω(c)
)a(q)

ω
(b(q))
R .
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In particular, ω(1−q)
R is generated in degrees d satisfying:

a(q)D+ A � d � a(q)D+ B,

where the minimal generators of ω(b(q))R have degrees between A and B. Therefore

−a(q)D− B � νe(m) � −a(q)D− A,

and fpt(m) = limq−→∞ νe(m)/q = D/c.

For the last part of the statement, simply notice that, if ω(c)R is principal but ωR

is not, then the generator of ω(c)R must have degree less than −a(R)c, since ω(c)R ⊆ ωc
R. �

Remark 4.6. In the above notation, if c = p notice that a(q) = −q/p and b(q) = 1.

Furthermore A can be chosen to be the negative of the a-invariant of R, so:

νe(m) � (q/p)D+ a(R) = (q− 1)D/p+ D/p+ a(R) = (q− 1)fpt(m)+ fpt(m)+ a(R). �

Given a finitely generated graded R-moduleM , we denote by δ(M) the least inte-

ger d such thatMd 	= 0. In the case in which R is a normal domain, the canonical module

ωR is isomorphic (as a graded module) to a divisorial ideal of R.

Lemma 4.7. If R is a normal standard graded domain, and a a graded divisorial ideal,

then:

(1) δ(a(−1)) � −δ(a).
(2) δ(a(−1)) = −δ(a) if and only if a is principal. �

Proof. Let a = (a1, . . . ,ar), where the ai are homogeneous elements of the quotient field

of R of degree di ∈ Z, where δ(a) = d1 � d2 � · · · � dr . If b ∈ a(−1) is a homogeneous

nonzero element of degree l, then l+d1 � 0 since a1b is a homogeneous nonzero element

of R. This shows (1).

Concerning point (2), if b is a homogeneous nonzero element of a(−1) of degree

−d1, then ba1 = u is a unit of R. Because bai = fi ∈ R for all i = 1, . . . , r, we have

ai = u−1fia1 for all i = 1, . . . , r, so that a1 generates a as an R-module. �

Proposition 4.8. Let R be an F-pure standard graded normal domain, over an F-finite

field, with homogeneous maximal ideal m. Then:

νe(m) � a(R)(1 − q) ∀ q = pe.
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In particular fpt(m) � −a(R). Further, if R is not quasi-Gorenstein, then:

νe(m) < a(R)(1 − q) ∀ q = pe. �

Proof. For the first part of the statement, notice that δ
(
ω
(q−1)
R

)
� δ

(
ω
q−1
R

)
= δ(ωR)

(q− 1) = −a(R)(q− 1), so δ
(
ω
(1−q)
R

)
� a(R)(q− 1) by Lemma 4.7, and νe(m) � a(R)(1 − q)

by Theorem 4.1.

For the second part, assume that νe(m) = a(R)(1 − q) for some q = pe. Since

δ
(
ω
(q−1)
R

)
� a(R)(1 − q), by putting together Theorem 4.1 and Lemma 4.7, ω(q−1)

R must be

principal and generated in degree −a(R)(q− 1). Notice that ω(q−1)
R ⊇ ω

q−1
R and δ

(
ω
q−1
R

)
=

a(R)(1 − q). Therefore the only possibility is that ω(q−1)
R = ω

q−1
R , so that ωR must be

principal itself. �

Proposition 4.9. Let R be an F-pure standard graded normal domain, over an F-finite

field, with homogeneous maximal ideal m. If the anti-canonical cover
⊕

k�0 ω
(−k)
R of R is

Noetherian, then fpt(m) = −a(R) if and only if R is quasi-Gorenstein. �

Proof. If the anti-canonical cover ofR is Noetherian, then there exists a positive integer

c such that, if we write 1 − q = −a(q)c − b(q) with a(q) positive and 0 � b(q) < c:

ω
(1−q)
R = (

ω(−c)
)a(q)

ω
(−b(q))
R .

Let us say that ω(−c) is generated in degrees −d1 < · · · < −dr . Furthermore, let −e1 <
· · · < −es be the degrees of the minimal generators of R,ω(−1), . . . ,ω(−c+1). We have that

νe(m) ∈ {a(q)di + ej | i = 1, . . . , r and j = 1, . . . , s} ∀ q = pe.

By choosing i ∈ {1, . . . , r} such that νe(m) = a(q)di + ej (for some j) for infinitely many q,

then

fpt(m) = lim
q−→∞ νe(m)/q = di/c.

For the second part of the statement, simply note that if R is not quasi-

Gorenstein, with the above notation we have −di � −d1 > a(R)c by (the same argument

of) Proposition 4.8. �

Remark 4.10. The above argument shows also that fpt(m) is a rational number

whenever the assumptions of the corollary are satisfied; this was already known by

[9]. �
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Proposition 4.11. Let R be an F-pure standard graded normal domain, over an F-finite

field, with homogeneous maximal ideal m. If there exists a positive integer c such that

δ
(
ω(c)

)
< −a(R)c, then fpt(m) < −a(R). �

Proof. Let δ
(
ω(c)

) = D. With the same notation of the proof above q− 1 = a(q)c + b(q),

so:

δ(ω
(q−1)
R ) � a(q)D+ δ

(
ω
(b(q))
R

)
.

Then, using Theorem 4.1 together with Lemma 4.7, for such q:

νe(m) � a(q)D.

Thus, fpt(m) = limq−→∞ νe(m)/q � D/c < −a(R). �

The following provides strong evidence for the conjecture of Hirose–Watanabe–

Yoshida 1.1 and, more generally, for the standard graded case of Conjecture 3.7.

Corollary 4.12. Let R be an F-pure standard graded normal domain, over an F-

finite field, with homogeneous maximal ideal m. Suppose that one of the following is

satisfied:

(1) The anti-canonical cover
⊕

k�0 ω
(−k)
R of R is noetherian.

(2) For some positive integer c, there is a nonzero element of ω(c)R of degree

< −a(R)c.

Then fpt(m) = −a(R) if and only if R is quasi-Gorenstein. �

The following gives an extension of [20, Proposition 3.4].

Proposition 4.13. Let R be an F-pure standard graded normal domain, over an F-finite

field, with homogeneous maximal ideal m. Suppose that the c-th Veronese subring of

the anti-canonical cover of R is standard graded and c is not a multiple of p. Then

νe(m) = (pe − 1)fpt(m) for infinitely many positive integers e. In particular, (R,mfpt(m)) is

sharply F-pure. �

Proof. Since p does not divide c, there is an infinite subset A ⊆ {pe | e ∈ N} such that

q− 1 = a(q)c for all q ∈ A, with a(q) ∈ N. For such q

ω
(1−q)
R = (

ω(−c)
)a(q)

.
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So if ω(−c) is generated in degrees −d1 < · · · < −dr , then

νe(m) ∈ {a(q)di | i = 1, . . . , r} ∀ q ∈ A.

So there exists i such that fpt(m) = di/c, and for all but finitely many q ∈ A

νe(m) = (q− 1)fpt(m). �

5 Characteristic zero case

Throughout this section, let X be a normal variety over an algebraically closed field of

characteristic zero and a be a nonzero coherent ideal sheaf on X .

We prove a characteristic zero analogue of Conjecture 1.1. First, we define a

variant of multiplier submodules:

Definition 5.1. Let π : Y −→ X be a log resolution of (X , a), that is, π is a proper bira-

tional morphism from a smooth variety Y such that aOY = OY (−F) is invertible and

Exc(π) ∪ Supp(F) is a simple normal crossing divisor. Let E be the reduced divisor sup-

ported on Exc(π). For a real number t � 0, themultiplier submodule J (ωX , at) is defined
by

J (ωX , at) := π∗ωY (�−tF�) ⊆ ωX .

This submodule of ωX is independent of the choice of π , see, for example, the proof of

[32, Proposition 3.4]. When a = OX or t = 0, we simply denote J (ωX , at) by J (ωX ).
As a variant of J (ωX , at), we define the submodule I(ωX , at) of ωX by

I(ωX , at) :=
{
π∗ωY (�εE − (t − ε)F�) if t > 0

π∗ωY (E) if t = 0

for sufficiently small ε > 0. It is easy to see that I(ωX , at) is independent of the choice

of ε if ε > 0 is sufficiently small. When a = OX or t = 0, we simply denote I(ωX , at) by
I(ωX ). �

Lemma 5.2. I(ωX , at) is independent of the choice of the resolution. �

Proof. Although it immediately follows from [14, Lemma 13.3 and Corollary 13.7], we

give a more direct proof here.
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We consider the casewhere t > 0; the case t = 0 follows from a similar argument.

Let f : Y −→ X be a log resolution of (X , a) such that aOX = OX (−F) is invertible, and

let EY be the reduced divisor supported on Exc(f ). Let g : Z −→ Y be a log resolution

of (Y ,EY + F), and let EZ be the reduced divisor supported on Exc(g). Then it is enough

to show that

ωY (�εEY − (t − ε)F�) = g∗ωZ(�ε′(g−1
∗ EY + EZ)− (t − ε′)g∗F�)

for sufficiently small real numbers ε, ε′ > 0, since two log resolutions of (X , a) can

be dominated by a third log resolution. Let
⋃

i Ei be the irreducible decomposition of

Supp(EY + F). For sufficiently small ε > 0, we can write

�KY + εEY − (t − ε)F� = KY − tF +
∑
i

aiEi,

where 1 � ai > 0 for all i. Since
∑

i Ei is a simple normal crossing divisor on Y , the pair

(Y ,
∑

i aiEi) is log canonical. By the definition of log canonical pairs, we have

G :=�KZ + ε′(g−1
∗ EY + EZ)− (t − ε′)g∗F� − g∗�KY + εEY − (t − ε)F�

=
⌈
KZ/Y + ε′ (g−1

∗ EY + EZ + g∗F
)− g∗∑

i

aiEi

⌉
� 0.

Note that G is a g-exceptional divisor for sufficiently small ε′ > 0. Therefore,

g∗ωZ(�ε′(g−1
∗ EY + EZ)− (t − ε′)g∗F�) =g∗ (g∗ (ωY (�εEY − (t − ε)F�))⊗ OZ(G))

=ωY (�εEY − (t − ε)F�)⊗ g∗OZ(G)

=ωY (�εEY − (t − ε)F�). �

Remark 5.3.

(1) X has only rational singularities if and only if X is Cohen–Macaulay and

J (ωX ) = ωX , see [25, Theorem 5.10].

(2) If X has only Du Bois singularities, then I(ωX ) = ωX , see [26]. In case X is

Cohen–Macaulay, the converse holds as well. The reader is referred to [29]

for the definition and a simple characterization of Du Bois singularities. �
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Using I(ωX , at), we define a new invariant of singularities in characteristic zero:

Definition 5.4. Suppose that X has only Du Bois singularities. Then the threshold d(a)

is defined by

d(a) := sup{t � 0 | I(ωX , at) = ωX }.

If x is a closed point of X , then the threshold dx(a) is defined by

dx(a) := sup{t � 0 | I(ωX , at)x = ωX ,x}. �

Remark 5.5. Let R be an N-graded ring with R0 an algebraically closed field k of char-

acteristic zero, and let m be the homogeneous maximal ideal of R. Let X = SpecR and

x ∈ X be the closed point corresponding to m. By considering a k∗-equivariant log res-

olution of (X ,m), we see that I(ωX ,mt) is a graded submodule of the graded canonical

module ωR. This implies that d(m) = dx(m). �

In [10] de Fernex–Hacon extended the notion of log canonical thresholds to the

non-Q-Gorenstein setting; we recall their definition:

Definition 5.6 ([10, Proposition 7.2]). Suppose that t � 0 is a real number.

(1) The pair (X , at) is said to be klt (respectively log canonical) in the sense

of de Fernex–Hacon if there exists an effective Q-divisor � on X such that

KX +� is Q-Cartier and ((X ,�); at) is klt (respectively log canonical) in the

classical sense. That is, if π : Y −→ X is a log resolution of (X ,�, a) such

that aOY = OY (−F) is invertible and if we write

KY − π∗(KX +�)− tF =
∑
i

aiEi,

where the Ei are prime divisors on Y and the ai are real numbers, then

ai > −1 (respectively ai � −1) for all i. The log canonical threshold lct(a) of

a is defined by

lct(a) := sup{t � 0 | (X , at) is log canonical

in the sense of de Fernex–Hacon}.
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(2) Let x be a closed point of X . Then (X , at) is klt (respectively log canonical)

at x in the sense of de Fernex–Hacon if there exists a open neighborhood

U of x such that (U , (a|U )t) is klt (respectively log canonical) in the sense of

de Fernex–Hacon. If, in addition, a = OX , then we say that (X ,x) is a log

terminal (respectively log canonical) singularity in the sense of de Fernex–

Hacon. The log canonical threshold lctx(a) of a at x is defined by

lctx(a) := sup{t � 0 | (X , at) is log canonical at x

in the sense of de Fernex–Hacon}.

If� is an effective Q-divisor on X such thatKX +� is Q-Cartier and (X ,�) is

log canonical at x (in the classical sense), then the log canonical threshold

lctx(�; a) is defined by

lctx(�; a) := sup{t � 0 | ((X ,�); at) is log canonical at x

(in the classical sense)}. �

We prove some basic properties of dx(a).

Lemma 5.7. Let (X ,x) be a d-dimensional normal singularity.

(1) If (X ,x) is a rational singularity, then

dx(a) = sup{t � 0 | J (ωX , at)x = ωX ,x}.

(2) Suppose that (X ,x) is a log canonical singularity in the sense of de Fernex–

Hacon. Then lctx(a) � dx(a). In addition, if X is quasi-Gorenstein at x, then

lctx(a) = dx(a).

(3) Suppose that (X ,x) is a Cohen–Macaulay DuBois singularity. Then dx(mx) �
d. If J ⊆ OX ,x is a minimal reduction of the maximal ideal mx , then

md+1−�dx (mx )�
x ⊆ J .

(4) Suppose that X is Cohen–Macaulay at x. If dx(mx) > d − 1, then X is

nonsingular at x and in particular dx(mx) = d. �

Proof. (1) Shrinking X if necessary, we may assume that X has only rational singular-

ities. First we will check that dx(a) > 0. Let π : Y −→ X be a log resolution of (X , a) such
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that aOY = OY (−F) is invertible and let E be the reduced divisor supported on Exc(π).

For sufficiently small t > ε > 0,

KY + E � �KY + εE − (t − ε)F� � KY .

Taking the pushforward π∗, we obtain inclusions ωX ⊃ I(ωX , at) ⊃ J (ωX ) = ωX by

Remark 5.3 (1). That is, dx(a) � t > 0.

Now we will show the assertion. Since J (ωX , at) ⊆ I(ωX , at), the inequality

dx(a) � sup{t � 0 | J (ωX , at)x = ωX ,x}

is obvious. We will prove the reverse inequality. It is enough to show that if I(ωX , at)x =
ωX ,x with t > 0, then J (ωX , at−ε)x = ωX ,x for all t � ε > 0. Fix a real number t � ε > 0.

Shrinking X again if necessary, we may assume that X is affine and that I(ωX , at) = ωX .

This means that for sufficiently small (1/2)ε � ε′ > 0,

ordEi(KY + divY (f )+ ε′E − (t − ε′)F) > −1

for every prime divisor Ei on Y and for every f ∈ ωX . If Ei is an irreducible component

of SuppF , then

ordEi(KY + divY (f )− (t − ε)F) � ordEi(KY + divY (f )+ ε′E − (t − ε′)F) > −1.

On the other hand, since X has only rational singularities, KY + divY (f ) � 0 by

Remark 5.3 (1). Therefore, if Ei is not a component of SuppF , then

ordEi(KY + divY (f )− (t − ε)F) = ordEi(KY + divY (f )) � 0.

Summing up above, we conclude that �KY +divY (f )− (t− ε)F� � 0 for every f ∈ ωX , that
is, J (ωX , at−ε) = ωX .

(2) For the former assertion, it is enough to show that if (X , at) is log canonical

at x in the sense of de Fernex–Hacon, then I(ωX , at)x = ωX ,x . Shrinking X if necessary,

we may assume that X is affine and there exists an effective Q-divisor � on X such that

((X ,�); at) is log canonical with KX + � Q-Cartier of index r. Let π : Y −→ X be a log

resolution of (X ,�, a) such that aOY = OY (−F) is invertible and let E be the reduced

divisor supported on Exc(π). By the definition of log canonical pairs,

�KY − π∗(KX +�)+ ε1E − (t − ε2)F� � 0

Downloaded from https://academic.oup.com/imrn/article-abstract/2017/21/6484/3061088
by University of Utah user
on 02 November 2017



A Gorenstein Criterion for Strongly F-Regular Rings 6515

for every ε1 > 0 and t � ε2 > 0 (when t = 0, put ε2 = 0). Let f ∈ ωX . Since the fractional

ideal ωr
X is contained in OX (r(KX +�)), one has divY (f )+π∗(KX +�) � 0. It follows from

these two inequalities that

�KY + ε1E − (t − ε2)F� + divY (f ) � 0,

which implies that f ∈ I(ωX , at).
Now we will show the latter assertion. Shrinking X again if necessary, we may

assume that ωX ∼= OX . Then I(ωX , at) can be identified with the maximal non-lc ideal

J ′(X , at) under this isomorphism (see [14, Definition 7.4] for the definition of J ′(X , at)).

Since J ′(X , at) = OX if and only if (X , at) is log canonical by the definition of J ′(X , at),

one has the equality that lctx(a) = dx(a).

(3) The proof is essentially the same as that of [33, Theorem 5.2.5]. Let f : Y −→
SpecOX ,x be the blow-up atmx with exceptional divisor Fx . Take a log resolution π : X̃ −→
SpecOX ,x of mx . Then there exists a morphism g : X̃ −→ Y such that π = f ◦ g. Let
E = ∑s

i=1 Ei be the reduced divisor supported on Exc(π). We may assume that E1, . . . ,Er

are all the components of E dominating an irreducible component of Fx , and put E ′ :=∑s
i=r+1 Ei. If t > d, then

I(ωX ,mt
x)x = π∗OX̃ (�KX̃ + εE − (t − ε)g∗Fx�)

⊆ π∗OX̃ (KX̃ + E ′ − dg∗Fx)

= f∗
(
g∗OX̃ (KX̃ + E ′)⊗ OY (−dFx)

)
⊆ f∗ωY (−dFx)
= f∗md

xωY

for sufficiently small ε > 0. It follows from [21, Theorem 3.7] and [22, Lemma 5.1.6] that

I(ωX ,mt
x)x :OX ,x ωX ,x ⊆ f∗md

xωY :OX ,x ωX ,x = core(m),

where core(m) is the intersection of all reductions of m. In particular, I(ωX ,mt
x)x � ωX ,x ,

that is, dx(mx) < t. Thus, dx(mx) � d.

Since I(ωX ,mdx (mx )−ε
x )x = ωX ,x for every ε > 0 (we put ε = 0 when dx(mx) = 0), by

the same argument as above,

md+1−�dx (mx )�
x ωX ,x = md+1−�dx (mx )�

x I(ωX ,mdx (mx )−ε
x )x ⊆ f∗md

xωY
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for sufficiently small ε > 0. It then follows from [21, Theorem 3.7] and [22, Lemma 5.1.6]

again that

md+1−�dx (mx )�
x ⊆ f∗md

xωY :OX ,x ωX ,x = core(m) ⊆ J .

(4) Let J be a minimal reduction of mx . It then follows from (3) that mx = J , which

means that mx is generated by at most d elements, that is, X is nonsingular at x. If X is

nonsingular at x, then by (2), we see that dx(mx) = lctx(mx) = d. �

We can compute the log canonical threshold of the maximal ideal of an affine

determinantal variety using F-pure thresholds:

Proposition 5.8. Let D := Speck[T]/I be the affine determinantal variety over an

algebraically closed field k of characteristic zero, where T is an m × n matrix of inde-

terminates with m � n, and I is the ideal generated by the size t minors of T where

1 � t � m. Let m be the homogeneous maximal ideal of k[T]/I , corresponding to the

origin 0 in D. Then

lct(m) = m(t − 1). �

Proof. For each prime integer p, let Rp := Fp[T]/Ip be the modulo p reduction of k[T]/I ,
and mp the homogeneous maximal ideal of Rp. It then follows from [9, Theorem 6.4] and

Proposition 4.3 that

lct(m) = lim
p−→∞ fpt(mp) = m(t − 1). �

Proposition 5.9. Let x be a closed point of X and � be an effective Q-divisor on X

such that (X ,�) is log canonical at x with KX +� being Q-Cartier of index r. If X is not

quasi-Gorenstein at x, then

lctx(�;mx)+ 1

r
� dx(mx).

In particular, if dx(mx) = 0, then X is quasi-Gorenstein at x. �

Proof. Shrinking X if necessary, we may assume that X is affine, OX (r(KX +�)) ∼= OX

and ((X ,�);mlctx (�;mx )
x ) is log canonical. Let π : Y −→ X be a log resolution of (X ,�,mx)

such that mxOX = OX (−Fx) is invertible, and let E be the reduced divisor supported on
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Exc(π). Putting t = lctx(�;mx), one has the inequality

�KY − π∗(KX +�)− (t − ε)Fx + εE� � 0

for every ε > 0. On the other hand, since X is not quasi-Gorenstein at x, the fractional

ideal ωr
X is contained in mxOX (r(KX +�)). Hence, for each f ∈ ωX , one has the inequality

rdivY (f )+ rπ∗(KX +�)− Fx � 0.

It follows from these two inequalities that

0 ��KY − π∗(KX +�)− (t − ε)Fx + εE�

=
⌈
KY + εE −

(
t + 1

r
− ε

)
Fx − π∗(KX +�)+ 1

r
Fx

⌉
�KY +

⌈
εE −

(
t + 1

r
− ε

)
Fx

⌉
+ divY (f )

for all ε > 0 and all f ∈ ωX . This means that I(ωX ,mlctx (�;mx )+1/r
x ) = ωX , that is, dx(mx) �

lctx(�;mx)+ 1/r. �

The following theorem is the main result of this section; this is a characteristic

zero analogue of Theorem 3.14.

Theorem 5.10. Suppose that (X ,x) is a log canonical singularity in the sense of

de Fernex–Hacon. Assume in addition that the anti-canonical cover
⊕

n�0 OX (−nKX )x

is Noetherian. Then lctx(mx) = dx(mx) if and only if (X ,x) is quasi-Gorenstein. �

Proof. Since the “if" part immediately follows from Lemma 5.7 (2), we will show the

“only if" part. Shrinking X if necessary, we may assume that X is log canonical in the

sense of de Fernex–Hacon and that
⊕

n�0 OX (−nKX ) is Noetherian. Then one can find an

integer r � 1 such that OX (−rmKX ) = OX (−rKX )
m for every integer m � 1. Fix a real

number ε with min{lct(mx), 1/r} > ε > 0; when lct(mx) = 0, put ε = 0. Since (X ,mlct(mx )−ε
x )

is log canonical in the sense of de Fernex–Hacon, there exists an integer m0 � 1 such

that the m-th limiting log discrepancy am,F (X ,mlct(mx )−ε
x ) is nonnegative for every prime

divisor F overX and for every positivemultiplem ofm0 by [10, Definition 7.1] (see loc. cit.

for the definition of the m-th limiting log discrepancy of a pair). By the choice of r, one

has

ar,F (X ,m
lct(mx )−ε
x ) = arm0,F (X ,m

lct(mx )−ε
x ) � 0.
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It follows from an argument similar to the proof of [10, Proposition 7.2] that there exists

an effectiveQ-divisor� onX such thatKX+� isQ-Cartier of index r and ((X ,�);mlct(mx )−ε
x )

is log canonical. If X is not quasi-Gorenstein at x, then by Proposition 5.9,

lctx(mx) < lctx(mx)− ε + 1

r
� lctx(�;mx)+ 1

r
� dx(mx).

This contradicts the assumption that lctx(mx) = dx(mx). �

Corollary 5.11. Suppose that (X ,x) is a log terminal singularity in the sense of

de Fernex–Hacon. Then lctx(mx) = dx(mx) if and only if (X ,x) is Gorenstein. �

Proof. Since (X ,x) is log terminal, using the minimal model program for klt pairs,

one can show that the anti-canonical cover
⊕

n�0 OX (−nKX )x is Noetherian (see [24,

Theorem 92]). Thus, the assertion follows from Theorem 5.10. �

Proposition 5.12. Let R be a normal standard graded ring, with R0 an algebraically

closed field of characteristic zero, and let m denote the homogeneous maximal ideal of

R. Suppose that SpecR has only Du Bois singularities. Then d(m) � −a(R). �

Proof. Put X = SpecR. Since X has only Du Bois singularities, a(R) � 0 by [27, Theo-

rem 4.4]. Suppose that I(ωX ,mt) = ωX with t > 0. Let ϕ : Y −→ X be the blow-up of X at

m and E = ProjR be its exceptional divisor. Take a log resolution ψ : X̃ −→ Y of (Y ,E)

and let Ẽ be the strict transform of E on X̃ . We fix a canonical divisor KX̃ on X̃ such that

ψ∗KX̃ = KY . Since I(ωX ,mt) = ωX ,

ordẼ(�KX̃ + divX̃ (f )+ εẼ − (t − ε)ψ∗E�) � 0

for all f ∈ ωX and all sufficiently small ε > 0. Taking the direct image by ψ , we see that

ordE(�KY + divY (f ) + εE − (t − ε)E�) � 0, that is, ϕ∗ωY (�ε − t�E) = ωX for sufficiently

small ε > 0. On the other hand, it is easy to see by the definition of ϕ (see, e.g., [22,

Proposition 6.2.1]) that

ϕ∗ωY (�ε − t�E) = [ωX ]�
t−ε�+1.

Thus, t � −a(R), that is, d(m) � −a(R). �

As a consequence, we can prove a characteristic zero analogue of Conjecture 1.1,

which gives an affirmative answer to [11, Conjecture 6.9].
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Corollary 5.13. LetR be a normal standard graded ring, withR0 an algebraically closed

field of characteristic zero. Let m denote the homogeneous maximal ideal of R. Assume

that X := SpecR has log canonical singularities in the sense of de Fernex–Hacon.

(1) Then lct(m) � −a(R).
(2) Suppose in addition that the anti-canonical cover

⊕
n�0 OX (−nKX ) is Noe-

therian (this assumption is satisfied, for example, if X has log terminal

singularities in the sense of de Fernex–Hacon or if R is Q-Gorenstein). Then

lct(m) = −a(R) if and only if R is quasi-Gorenstein. �

Proof. Since (1) follows from Remark 5.5, Lemma 5.7 (2) and Proposition 5.12, we will

show (2). Let x ∈ X be the closed point corresponding to m. If lct(m) = −a(R), then
lctx(m) has to be equal to dx(m) by Remark 5.5, Lemma 5.7 (2) and Proposition 5.12

again. It follows from Theorem 5.10 that X is quasi-Gorenstein at x, which is equivalent

to saying that R is quasi-Gorenstein.

Next we will show the “if" part of (2). Suppose that R is quasi-Gorenstein. Let

ϕ : Y −→ X be the blow-up of X = SpecR at m and E = ProjR be its exceptional divisor.

Note that Y is normal and quasi-Gorenstein. It is easy to see that KY/X = −(1 + a(R))E,

see, for example, the proof of [31, Proposition 5.4]. Take a log resolution ψ : X̃ −→ Y of

(Y ,E), and then

KX̃/X + a(R)ψ∗E = KX̃/Y + ψ∗(KY/X + a(R)E) = KX̃/Y − ψ∗E.

Since X has only log canonical singularities, E has also only log canonical singularities.

It follows from inversion of adjunction for log canonical pairs [23] that (Y ,E) is log

canonical, which implies that all the coefficients of the divisor KX̃/Y − ψ∗E are greater

than or equal to −1. Thus, (X ,m−a(R)) is log canonical, that is, lct(m) � −a(R). �

Remark 5.14. Let (R,m) be the same as in Corollary 5.13. If X = SpecR is Q-

Gorenstein, then we can show that lct(m) � −ai(R) for all i (see the paragraph preceding

Proposition 3.5 for the definition of ai(R)). The proof is as follows.

Wemay assume that i � 2. Let ϕ : Y −→ X be the blow-up ofX atm and Z = ProjR

be its exceptional divisor. Since R is a normal standard graded ring, there exists a very

ample divisor H on Z such that R = ⊕
n�0H

0(Z,OZ(nH)) and rKZ ∼ aH for some a ∈ Z,

where r is the Gorenstein index of R. We see by the same argument as the proof of [31,

Proposition 5.4] that KY/X = −(1 + a/r)Z, which implies that lct(m) has to be less than

or equal to −a/r. Therefore, in order to prove the inequality lct(m) � −ai(R), it suffices
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to show that −a/r � −ai(R). This condition is equivalent to saying that if � is an integer

greater than a/r, then Hi−1(Z,OZ(�H)) = 0, because

ai(R) = max{� ∈ Z | Hi−1(Z,OZ(�H)) 	= 0}.

However, since �H−KZ ∼Q (�−a/r)H is ample, this is immediate from [13, Theorem 1.7].

�

When the ring is toric, we have a similar characterization in the non-standard

graded case:

Corollary 5.15. Let the notation be the same as in Corollary 3.18. Let R = k[σ∨ ∩ M]
be an affine semigroup ring over a field k of characteristic zero, defined by a strongly

convex rational polyhedral cone σ . Let m be the unique monomial maximal ideal of R.

(1) Then d(m) = −aσ (R).
(2) lct(m) = −aσ (R) if and only if R is Gorenstein. �

Proof. It follows from the existence of a toric log resolution of m that J ′(mt) and

I(ωX ,mt) are torus-invariant, and so lct(m) and d(m) are preserved under base field

extension. Thus, we may assume that k is algebraically closed.

Since (2) follows from (1), Remark 5.5, and Corollary 5.11, it remains to justify (1).

For this, use the same strategy as the proof of Corollary 3.18, in which case the assertion

follows from [5, Theorem 2] and Lemma 5.7 (1). �
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