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1 Introduction

Let R be a commutative Noetherian ring and a ⊂ R an ideal. In [15],Huneke asked whether

the number of associated prime ideals of a local cohomology module Hn
a (R) is always

finite. In [29], the first author constructed an example of a hypersurface

R =
Z[u, v,w, x, y, z]
(ux + vy + wz)

(1.1)

for which the local cohomology module H3
(x,y,z)(R) has a p-torsion element for every prime

integer p, and consequently has infinitely many associated prime ideals. However, this

example does not address Huneke’s question for rings containing a field, nor does it yield

an example over a local ring. More recently, Katzman constructed the following example

in [19]: let K be an arbitrary field and consider the hypersurface

S =
K[s, t, u, v, x, y](

su2x2 − (s + t)uxvy + tv2y2
) . (1.2)
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1704 A. K. Singh and I. Swanson

Katzman showed that the local cohomology module H2
(x,y)(S) has infinitely many asso-

ciated prime ideals. Since the defining equation of this hypersurface factors, the ring in

Katzman’s example is not an integral domain. In this paper,we generalize Katzman’s con-

struction and obtain families of examples which include examples over normal domains

and even over hypersurfaces with rational singularities.

Theorem 1.1. Let K be an arbitrary field. Then there exists a standard graded hypersur-

face R with [R]0 = K, which is a unique factorization domain and contains an ideal a such

that a local cohomology module Hn
a (R) has infinitely many associated prime ideals.

If K has characteristic zero, there exist such examples where, furthermore, R has

rational singularities. If K has positive characteristic, R may be chosen to be F-regular. If

m denotes the homogeneous maximal ideal of R, then Hn
a (Rm) has infinitely many associ-

ated prime ideals as well. �

There are affirmative answers to Huneke’s question if the ring R is regular, but,

as our theorem indicates, the hypothesis of regularity cannot be weakened substantially.

The first results were obtained by Huneke and Sharp who proved that if R is a regular

ring containing a field of prime characteristic, then the set of associated prime ideals of

Hn
a (R) is finite, [17, Corollary 2.3]. Lyubeznik established that Hn

a (R) has finitely many

associated prime ideals if R is a regular local ring containing a field of characteristic

zero, or an unramified regular local ring of mixed characteristic, see [21, Corollary 3.6(c)]

and [23, Theorem 1], respectively. Marley proved that if R is a local ring, then for any

finitely generated R-module M of dimension at most three, any local cohomology module

Hn
a (M) has finitely many associated primes, [24, Corollary 2.7]. If i is the smallest integer

for which Hi
a(M) is not a finitely generated R-module, then the set Ass Hi

a(M) is finite,

as proved in [3, 20]. For some of the other work on this question, we refer the reader to

[4, 5, 8, 22, 25, 32].

In Section 2, we establish a relationship between the associated primes of Frobe-

nius powers of an ideal and the associated primes of a local cohomology module over

an auxiliary ring. Recall that for an ideal a in a ring R of prime characteristic p > 0,

the Frobenius powers of a are the ideals a[pe] = (xpe

| x ∈ a), where e ∈ N. The finite-

ness of the associated primes of the ideals a[pe] is related to the localization problem in

tight closure theory discussed in Section 6. In [18], Katzman constructed the first exam-

ple where the set
⋃

e Ass R/a[pe] is infinite. The question however remained whether the

set
⋃

e Ass R/(a[pe])∗ is finite or if it has finitely many maximal elements—this has strong

implications for the localization problem, see [1, 9, 18, 28] or [16, Section 12]. As an ap-

plication of our results on local cohomology, we settle this question in Section 6 with the

following theorem.
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Associated Primes 1705

Theorem 1.2. There exists an F-regular unique factorization domain R of characteristic

p > 0, with an ideal a, for which the set

⋃
e∈N

Ass
R

a[pe] =
⋃
e∈N

Ass
R(

a[pe]
)∗ (1.3)

has infinitely many maximal elements. �

2 General constructions

Let a = (x1, . . . , xn) be an ideal of a ring R. For an integer r ≥ 0, the local cohomology mod-

ule Hr
a(R) may be computed as the rth cohomology module of the extended Čech complex

0 −→ R −→
n⊕

i=1

Rxi
−→

⊕
i<j

Rxixj
−→ · · · −→ Rx1···xn −→ 0. (2.1)

For positive integers mi and an element f ∈ R, we will use [f + (xm1

1 , . . . , xmn
n )] to denote

the cohomology class

[
f

xm1

1 · · · xmn
n

]
∈ Hn

a (R) =
Rx1···xn∑
Rx1···x̂i···xn

. (2.2)

It is easily seen that [f + (xm1

1 , . . . , xmn
n )] ∈ Hn

a (R) is zero if and only if there exist integers

ki ≥ 0 such that

fxk1

1 · · · xkn
n ∈ (xm1+k1

1 , . . . , xmn+kn
n

)
R. (2.3)

Consequently, Hn
a (R) may also be computed as the direct limit

Hn
a (R) ∼= lim−−→ m∈N

R(
xm

1 , . . . , xm
n

)
R

, (2.4)

where the maps in the direct system are induced by multiplication by the element

x1 · · · xn. We may regard an element [f + (xm
1 , . . . , xm

n )] ∈ Hn
a (R) as the class of f +

(xm
1 , . . . , xm

n )R in this direct limit.

We next record two results which illustrate the relationship between associated

primes of local cohomology modules and associated primes of generalized Frobenius

powers of ideals.
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1706 A. K. Singh and I. Swanson

Proposition 2.1. Let R be a Noetherian ring and {Mi}i∈I a direct system of R-modules.

Then

Ass
(

lim−−→ Mi

) ⊆ ⋃
i∈I

Ass Mi. (2.5)

In particular, if a = (x1, . . . , xn) is an ideal of R, then for any infinite set S of positive

integers,

Ass Hn
a (R) ⊆

⋃
m∈S

Ass
R(

xm
1 , . . . , xm

n

) . (2.6)
�

Proof. Let p = ann m for some element m ∈ lim−−→ Mi. If z ∈ p, then zm = 0, and so there

exists i ∈ I such that m is the image of mi ∈ Mi and zmi = 0. Since p is finitely generated,

there exists j ≥ i such that mi �→ mj ∈ Mj and pmj = 0. Consequently,

p ⊆ 0 :R mj ⊆ 0 :R m = p, (2.7)

that is, p = annmj ∈ Ass Mj. �

It immediately follows that whenever Hn
a (R) has infinitely many associated prime

ideals, the set
⋃

m Ass R/(xm
1 , . . . , xm

n ) is infinite as well. The converse is false, as we will

see in Remark 4.7.

Proposition 2.2. Let A be an N-graded ring which is generated, as an A0-algebra, by ele-

ments t1, . . . , tn of degree 1 which are nonzerodivisors in A. Let R be the extension ring

R =
A
[
u1, . . . , un, x1, . . . , xn

](
u1x1 − t1, . . . , unxn − tn

) . (2.8)

Let m1, . . . , mn be positive integers and f ∈ A a homogeneous element. Then, for arbitrary

integers ki ≥ 0,

(
tm1

1 , . . . , tmn
n

)
A :A0

f =
(
xm1+k1

1 , . . . , xmn+kn
n

)
R :A0

fxk1

1 · · · xkn
n . (2.9)

Consequently, if we consider the element η = [f + (xm1

1 , . . . , xmn
n )] of the local cohomology

module Hn
(x1,...,xn)(R), then

(
tm1

1 , . . . , tmn
n

)
A :A0

f = annA0
η. (2.10)

�
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Associated Primes 1707

Proof. The inclusion ⊆ is easily verified. For the other inclusion, let ei ∈ Zn+1 be the unit

vector with 1 as its ith entry, and consider the Zn+1-grading on R, where deg xi = ei and

deg ui = en+1 − ei for all 1 ≤ i ≤ n. If f ∈ Ar, then, as an element of R, the degree of f is

ren+1. The subring A is a direct summand of R since

Aj = R(0,...,0,j) for j ≥ 0, (2.11)

and A = ⊕j≥0R(0,...,0,j). Now if h ∈ A0 is an element such that

hfxk1

1 · · · xkn
n ∈ (xm1+k1

1 , . . . , xmn+kn
n

)
R, (2.12)

then there exist homogeneous elements c1, . . . , cn ∈ R such that

hfxk1

1 · · · xkn
n = c1xm1+k1

1 + · · · + cnxmn+kn
n . (2.13)

Comparing degrees, we must have deg c1 = (−m1, k2, . . . , kn, r), and so c1 is an A0-linear

combination of monomials µ of the form

µ = ul1+m1

1 ul2

2 · · ·uln
n xl1

1 xl2+k2

2 · · · xln+kn
n , (2.14)

where li ≥ 0 and m1 + l1 + · · · + ln = r. Consequently,

µxm1+k1

1 =
(
u1x1

)l1+m1
(
u2x2

)l2 · · · (unxn

)ln
xk1

1 · · · xkn
n

= tl1+m1

1 tl2

2 · · · tln
n xk1

1 · · · xkn
n ,

(2.15)

and so c1xm1+k
1 ∈ (xk1

1 · · · xkn
n tm1

1 )R. Similar computations for c2, . . . , cn show that

hfxk1

1 · · · xkn
n ∈ xk1

1 · · · xkn
n

(
tm1

1 , . . . , tmn
n

)
R. (2.16)

Multiplying by uk1

1 · · ·ukn
n and using that A is a direct summand of R, we get

hftk1

1 · · · tkn
n ∈ tk1

1 · · · tkn
n

(
tm1

1 , . . . , tmn
n

)
R ∩ A

= tk1

1 · · · tkn
n

(
tm1

1 , . . . , tmn
n

)
A.

(2.17)

Since the elements ti ∈ A are nonzerodivisors, the required result follows. �

We next record two results which will be used in the proof of Theorem 2.6.

Lemma 2.3. Let M be a square matrix with entries in a ring R. Then the minimal primes

of the ideal (det M)R are precisely the minimal primes of the cokernel of the matrix M.

�
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1708 A. K. Singh and I. Swanson

Proof. Let C denote the cokernel of M, that is, we have an exact sequence

Rn M−−→ Rn −→ C −→ 0. (2.18)

For a prime ideal p ∈ Spec R, note that Cp = 0 if and only if Rn
p

M−→ Rn
p is surjective or,

equivalently, is an isomorphism. This occurs if and only if det M is a unit in Rp, and so

we have

V(det M) = Supp C. (2.19)
�

Lemma 2.4. Let R be an N-graded ring and M a Z-graded R-module. For every integer r

and prime ideal p ∈ AssR0
Mr, there exists a homogeneous prime ideal P ∈ AssR M such

that P ∩ R0 = p. Consequently, if the set AssR0
M is infinite, then so is the set AssR M. �

Proof. Let p = annR0
m for some element m ∈ Mr. There is no loss of generality in replac-

ing M by the cyclic module R/a ∼= mR, in which case p = a ∩ R0. The isomorphism

R(
a + R+

) ∼=
R0

p
(2.20)

shows that a + R+ is a prime ideal of R. Let P be a minimal prime of a which is contained

in a + R+. Then P ∈ MinR R/a ⊆ AssR R/a, and P ∩ R0 = p since (a + R+) ∩ R0 = p. �

Definition 2.5. Let d be a positive even integer and r0, . . . , rd elements of a ring A0. The

nth multidiagonal matrix with respect to r0, . . . , rd will refer to the n × n matrix

Mn =



rd/2 · · · r0

...
. . .

. . .

rd
. . .

. . .
. . .

. . . r0

. . .
. . .

...

rd · · · rd/2


, (2.21)

where the elements r0, . . . , rd occur along the d + 1 central diagonals, and all the other

entries are zero. (These multidiagonal matrices are special cases of Töplitz matrices.)
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Associated Primes 1709

Theorem 2.6. Let d be an even positive integer, r0, . . . , rd elements of a domain A0, a ≥ 0

an integer, and Mn the nth multidiagonal matrix with respect to r0, . . . , rd. Let u, v, x, y

be variables over A0, and S ⊆ N a subset such that

⋃
n∈S

Min
(

det Mn−a−d/2

)
(2.22)

is an infinite set. If

A =
A0[x, y](

(xy)a
(
r0xd + r1xd−1y + · · · + rdyd

)) , (2.23)

then
⋃

n∈S
Ass A/(xn, yn) is an infinite set.

Furthermore, if r0 and rd are nonzero elements of A0, then for

R =
A0[u, v, x, y](

r0(ux)d + r1(ux)d−1(vy) + · · · + rd(vy)d
) , (2.24)

the local cohomology module H2
(x,y)(R) has infinitely many associated primes.

If (A0, m) is a local domain or if (A0, m) is a graded domain and det Mn is a homo-

geneous element for all n ≥ 0, then these issues are preserved under localizations of A

and R at the respective maximal ideals (m + (x, y))A and (m + (u, v, x, y))R. �

Proof. Consider the A0-module [A/(xn, yn)]n−1+a+d/2 for n > a + d. A generating set for

this module is given by the n − a − d/2 monomials

xa+d/2yn−1, xa+d/2+1yn−2, . . . , xn−1ya+d/2. (2.25)

There are n − a − d/2 relations amongst these monomials, arising from the equations

(xy)a
(
r0xd + r1xd−1y + · · · + rdyd

)
xiyn−1−a−d/2−i = 0, (2.26)

where 0 ≤ i ≤ n − 1 − a − d/2. Using this, it is easily checked that the presentation matrix

for [A/(xn, yn)]n−1+a+d/2 is precisely the multidiagonal matrix Mn−a−d/2. By Lemma

2.3, whenever det Mn−a−d/2 is nonzero, its minimal primes are the minimal primes of

[A/(xn, yn)]n−1+a+d/2, and so

⋃
n∈S

AssA0

[
A(

xn, yn
)]

n−1+a+d/2

(2.27)

is an infinite set. Using Lemma 2.4, the set
⋃

n∈S
Ass A/(xn, yn) is infinite as well.
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1710 A. K. Singh and I. Swanson

Note that xy is a nonzerodivisor in A0[x, y]/(r0xd + r1xd−1y+ · · ·+ rdyd) whenever

r0 and rd are nonzero elements of A0. The set AssA0
H2

(x,y)(R) is infinite by Proposition 2.2.

Since A0 = R0, Lemma 2.4 implies that the set AssR H2
(x,y)(R) is infinite. �

Remark 2.7. We demonstrate how Katzman’s examples from [18, 19] follow from Theo-

rem 2.6. Let K be an arbitrary field and consider the polynomial ring A0 = K[t]. Let Mn

be the nth multidiagonal matrix with respect to the elements r0 = 1, r1 = −(1 + t), and

r2 = t. An inductive argument shows that

det Mn = (−1)n
(
1 + t + t2 + · · · + tn

)
= (−1)n tn+1 − 1

t − 1
∀n ≥ 1. (2.28)

It is easily verified that
⋃

n∈N
Min(det Mn) is an infinite set and, if K has characteristic

p > 0, that the set
⋃

e∈N
Min(det Mpe−2) is also infinite. Theorem 2.6 now gives us the

main results of [19]: the local cohomology module H2
(x,y)(R) has infinitely many associ-

ated primes, where

R =
K[t, u, v, x, y](

u2x2 − (1 + t)uxvy + tv2y2
) . (2.29)

Similarly, graded or local examples may be obtained using (1.2), in which case H2
(x,y)(S)

and H2
(x,y)(Sm) have infinitely many associated primes.

If K has characteristic p > 0, consider the hypersurface

A =
K[t, x, y](

xy
(
x2 − (1 + t)xy + ty2

)) , (2.30)

where a = 1 in the notation of Theorem 2.6. The theorem now implies that the Frobe-

nius powers of the ideal (x, y)A have infinitely many associated primes, as first proved

by Katzman in [18].

3 Tridiagonal matrices

The results of Section 2 demonstrate how multidiagonal matrices give rise to associ-

ated primes of local cohomology modules and of Frobenius powers of ideals. One of the

goals of this paper is to construct an integral domain A of characteristic p > 0, with an

ideal a, such that the set
⋃

e Ass A/a[pe] is infinite. To obtain such examples directly from

Theorem 2.6, we need the set
⋃

e Min(det Mpe−d/2) to be infinite, since the domain hy-

pothesis forces a = 0 in the notation of the theorem. In Section 7, we show that⋃
e Min(det Mpe−d/2) can indeed be infinite when d = 4.
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In Proposition 3.1, we prove that
⋃

e Min(det Mpe−d/2) is finite whenever d = 2,

see also [18, Lemma 10]. Nevertheless, the main results of our paper rely heavily on an

analysis of multidiagonal matrices with d = 2, which we undertake next.

In the notation of Definition 2.5, multidiagonal matrices with d = 2 have the form

Mn =



r1 r0

r2 r1 r0

. . .
. . .

. . .

r2 r1 r0

r2 r1


. (3.1)

It is convenient to define det M0 = 1, and it is easily seen that

det Mn+2 = r1 det Mn+1 − r0r2 det Mn ∀n ≥ 0. (3.2)

While we will not be using it here, we mention that

det Mn =

�n/2�∑
i=0

(−1)i

(
n − i

i

)
rn−2i
1

(
r0r2

)i
. (3.3)

Consider the generating function for det Mn:

G(x) =
∑
n≥0

(
det Mn

)
xn. (3.4)

By the recursion formula,

∑
n≥0

(
det Mn+2

)
xn+2 = r1

∑
n≥0

(
det Mn+1

)
xn+2 − r0r2

∑
n≥0

(
det Mn

)
xn+2, (3.5)

and substituting G(x) and solving, we get

G(x) =
∑
n≥0

(
det Mn

)
xn =

1

1 − r1x + r0r2x2
. (3.6)

Proposition 3.1. Let r0, r1, and r2 be elements of a ring R of prime characteristic p > 0.

For each n ∈ N, let Mn be the nth multidiagonal matrix with respect to r0, r1, and r2.

Then, for any integer e ≥ 1,

det Mpe−1 =
(

det Mp−1

)1+p+···+pe−1

. (3.7)

Consequently, the set
⋃

e Min(det Mpe−1) is finite. �
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1712 A. K. Singh and I. Swanson

Proof. Let 1 − r1x + r0r2x2 = (1 − αx)(1 − βx) for some elements α and β in a suitable

extension of R. The generating function G(x) can be written as

G(x) =
∑
n≥0

(
det Mn

)
xn =

1

(1 − αx)(1 − βx)
=

∑
i,j≥0

αiβjxi+j, (3.8)

and consequently,

det Mp−1 =

p−1∑
i=0

αiβp−1−i, det Mpe−1 =

pe−1∑
i=0

αiβpe−1−i. (3.9)

Using this,

(
det Mp−1

)1+p+···+pe−1

=

e−1∏
j=0

(
p−1∑
i=0

αiβp−1−i

)pj

=

e−1∏
j=0

(
p−1∑
i=0

αipj

β(p−1−i)pj

)

=

pe−1∑
k=0

αkβpe−1−k = det Mpe−1.

(3.10)

�

We next consider a special family of tridiagonal matrices: let K[s, t] be a polyno-

mial ring over a field K, and consider the n × n multidiagonal matrices

Mn =



t s

s t s

. . .
. . .

. . .

s t s

s t


. (3.11)

In the notation of Definition 2.5, we have d = 2, r1 = t, and r0 = r2 = s. Setting Qn(s, t) =

det Mn, we have

Q0 = 1, Q1 = t, Qn+2 = tQn+1 − s2Qn ∀n ≥ 0. (3.12)

Note that the polynomials Qn(s, t) are relatively prime to s. Using the specialization Pn(t)

= Qn(1, t), we get polynomials Pn(t) ∈ K[t] satisfying the recursion

P0(t) = 1, P1(t) = t, Pn+2(t) = tPn+1(t) − Pn(t) ∀n ≥ 0. (3.13)
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Associated Primes 1713

Each Pn(t) is a monic polynomial of degree n, and in Lemma 3.3, we establish that

the number of distinct irreducible factors of the polynomials {Pn(t)}n∈N is infinite. As

Qn(s, t) = snPn(t/s) for all n ≥ 0, this also establishes that the number of distinct irre-

ducible factors of the polynomials {Qn(s, t)}n∈N is infinite.

Lemma 3.2. Let K be an algebraically closed field and consider the polynomials Pn(t) =

det Mn ∈ K[t] for n ≥ 1 as above.

(1) If ξ is a nonzero element of K with ξ 
= ±1, then Pn(ξ + ξ−1) = 0 if and only if

ξ2n+2 = 1.

(2) The number of distinct roots of Pn which are different from 0 and ±1 is half

the number of distinct (2n + 2)th roots of unity different from ±1.

(3) If 2n + 2 is invertible in K, then Pn(t) has n distinct roots of the form ξ + ξ−1,

where ξ2n+2 = 1 and ξ 
= ±1.

(4) The elements 2 or −2 are roots of Pn(t) if and only if the characteristic of K is

a positive prime p which divides n + 1.

(5) If the characteristic of K is an odd prime p, then Pq−2(t) has q−2 distinct roots

for all q = pe. If p = 2, then Pq−2(t) has q/2 − 1 distinct roots. �

Proof. (1) Consider the generating function of the polynomials Pn(t):

G(t, x) =
∑
n≥0

Pn(t)xn =
1

1 − xt + x2
∈ K[t][[x]]. (3.14)

If ξ 
= 0 and ξ 
= ±1, then

∑
n≥0

Pn

(
ξ + ξ−1

)
xn =

1

1 − x
(
ξ + ξ−1

)
+ x2

=
1(

ξ−1 − x
)
(ξ − x)

=
1(

ξ − ξ−1
)(

ξ−1 − x
) −

1(
ξ − ξ−1

)
(ξ − x)

=
ξ

ξ − ξ−1

∑
n≥0

(ξx)n −
ξ−1

ξ − ξ−1

∑
n≥0

(
ξ−1x

)n ∈ K[[x]].

(3.15)

Equating the coefficients of xn, we have

Pn

(
ξ + ξ−1

)
=

ξn+1 − ξ−(n+1)

ξ − ξ−1
=

ξ2n+2 − 1

ξn
(
ξ2 − 1

) , (3.16)

and the assertion follows.
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(2) We observe that

ξ +
1

ξ
−

(
η +

1

η

)
= ξ − η −

ξ − η

ξη
= (ξ − η)

(
1 −

1

ξη

)
, (3.17)

and so ξ + ξ−1 = η + η−1 if and only if ξ equals η or η−1.

(3) Since 2n + 2 is invertible in K, the polynomial X2n+2 − 1 = 0 has 2n distinct

roots ξ with ξ 
= ±1. These give the n distinct roots ξ + ξ−1 of the degree-n polynomial

Pn(t).

(4) Using the generating function above,

G(2, x) =
1

1 − 2x + x2
= (1 − x)−2 = 1 + 2x + 3x2 + · · · , (3.18)

and so Pn(±2) = 0 if and only if n + 1 = 0 in K.

(5) The case when p is odd follows immediately from (2). If p = 2, the equation

X2q−2−1 = (Xq−1−1)2 = 0 has q−2 distinct roots ξ with ξ 
= 1, which ensures that Pq−2(t)

has at least q/2−1 distinct roots. It follows from (4) that 0 is not a root of Pq−2(t), so these

must be all the roots. �

Lemma 3.3. Let K be an arbitrary field. Then the number of distinct irreducible factors

of the polynomials {Pn(t)}n∈N is infinite. If K has characteristic p > 0 and q = pe varies

over the powers of p, then the polynomials {Pq−2(t)}q=pe have infinitely many distinct

irreducible factors.

Consequently the number of distinct irreducible factors of the homogeneous

polynomials {Qn(s, t)}n∈N as well as {Qq−2(s, t)}q=pe is also infinite. �

Proof. It follows from Lemma 3.2 that {Pn(t)}n as well as {Pq−2(t)}q=pe have infinitely

many distinct irreducible factors in K[t]. �

4 Examples over integral domains

We can now construct a domain which has a local cohomology module with infinitely

many associated primes.

Theorem 4.1. Let K be an arbitrary field and consider the integral domain

R =
K[s, t, u, v, x, y](

su2x2 + tuxvy + sv2y2
) . (4.1)

Then the local cohomology module H2
(x,y)(R) has infinitely many associated prime ideals.

Also, H2
(x,y)(Rm) has infinitely many associated primes for the local domain Rm, where

m = (s, t, u, v, x, y)R.

 at U
niversity of U

tah on A
ugust 22, 2011

im
rn.oxfordjournals.org

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


Associated Primes 1715

If S is any infinite set of positive integers, then the set
⋃

m∈S
Ass R/(xm, ym) is

infinite; in particular, if K has characteristic p > 0, then
⋃

e∈N
Ass R/(xpe

, ype

) is infinite.

The same conclusions hold if the hypersurface R is replaced by its specialization R/(s−1)

or by the localization Rm. �

Proof. The assertions regarding local cohomology follow from Theorem 2.6 and Lemma

3.3. These, along with Proposition 2.1, imply the results for generalized Frobenius pow-

ers of ideals; see also the remark below. �

Remark 4.2. Specializing s = 1 and working with the hypersurface

S =
R

(s − 1)
=

K[t, u, v, x, y](
u2x2 + tuxvy + v2y2

) , (4.2)

similar arguments show that H2
(x,y)(S) has infinitely many associated primes. This gives

an example of a four-dimensional integral domain S for which H2
(x,y)(S) has infinitely

many associated prime ideals. However, it remains an open question whether a local co-

homology module Hi
a(T) has infinitely many associated primes, where T is a local ring

of dimension four. This is of interest in view of Marley’s results that the local cohomol-

ogy of a Noetherian local ring of dimension less than four has finitely many associated

primes [24].

For the assertion regarding the associated primes of generalized Frobenius pow-

ers of an ideal, the hypersurface R of Theorem 4.1 can be modified to obtain a three-

dimensional local domain or a two-dimensional nonlocal domain.

Theorem 4.3. Let K be an arbitrary field and consider the integral domain

A =
K[s, t, x, y](

sx2 + txy + sy2
) . (4.3)

Then the set
⋃

n∈N
Ass A/(xn, yn) is infinite. The same conclusion holds if A is replaced

by the specialization A/(s − 1) or by the localization A(s,t,x,y). �

The proof of the theorem is again an immediate consequence of Theorem 2.6

and Lemma 3.3, but we feel it is of interest to explicitly determine the infinite set⋃
n∈N

Ass A/(xn, yn) at least in this one example, and we record the result as Theorem 4.6.

If K has characteristic p > 0, this theorem also shows that the set
⋃

e∈N
Ass A/(xpe

, ype

) is

finite. We next record some preliminary computations which will be needed in determin-

ing the associated primes of the ideals (xn, yn)A, and will also be used later in Section 5.
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Lemma 4.4. Consider the polynomial ring K[s, t, x, y] and integers m,n ≥ 1. Then

(1) xyn−1Qn−1 ∈ (xn, yn, sx2 + txy + sy2),

(2) (xn, yn, sx2 + txy + sy2) : (smxyn−1) = (x, y,Qn−1),

(3) (xn, yn, x2 + txy + y2) : (xyn−1) = (x, y, Pn−1). �

Proof. (1) The case n = 1 holds trivially. Using the equation tQi = Qi+1 + s2Qi−1 for

1 ≤ i ≤ n − 2, we get(
sx2 + txy + sy2

)
(sx)n−2−iyiQi

= sn−1−ixn−iyiQi + sn−1−ixn−2−iyi+2Qi

+ sn−2−ixn−1−iyi+1Qi+1 + sn−ixn−1−iyi+1Qi−1,

(4.4)

and taking an alternating sum gives us

n−2∑
i=0

(−1)i
(
sx2 + txy + sy2

)
(sx)n−2−iyiQi

= sn−1xnQ0 + (−1)n−2xyn−1Qn−1 + (−1)n−2synQn−2.

(4.5)

This shows that xyn−1Qn−1 ∈ (xn, yn, sx2 + txy + sy2).

(2) If n = 1, we have the unit ideal on each side of the asserted equality, so we

may assume that n ≥ 2 for the rest of this proof. It is easy to verify that

sxyn−1(x, y) ⊆ (xn, yn, sx2 + txy + sy2
)
. (4.6)

Let h ∈ K[s, t] be an element such that

hsmxyn−1 ∈ (xn, yn, sx2 + txy + sy2
)
. (4.7)

Using the grading where deg s = deg t = 0 and deg x = deg y = 1, there exist elements α,

β, and d0, . . . , dn−2 in K[s, t] with

hsmxyn−1

= αxn + βyn +
(
d0xn−2 − d1xn−3y + · · · + (−1)n−2dn−2yn−2

)(
sx2 + txy + sy2

)
.

(4.8)

Comparing coefficients of xn−1y, xn−2y2, . . . , xyn−1, we get

sd1 − td0 = 0,

sdi+2 − tdi+1 + sdi = 0 ∀ 0 ≤ i ≤ n − 4,

(−1)n−2
(
tdn−2 − sdn−3

)
= hsm.

(4.9)
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In particular,

d1 =

(
t

s

)
d0, di+2 =

(
t

s

)
di+1 − di ∀ 0 ≤ i ≤ n − 4, (4.10)

and consequently, di = d0Pi(t/s) for 0 ≤ i ≤ n − 2, where the Pi are the polynomials

defined recursively in Section 3. This gives us

hsm = (−1)n−2

(
td0Pn−2

(
t

s

)
− sd0Pn−3

(
t

s

))
= (−1)n−2sd0Pn−1

(
t

s

)
,

(4.11)

and so hsm+n−2 = (−1)n−2d0Qn−1. Since s and Qn−1 are relatively prime in K[s, t], we see

that h is a multiple of Qn−1.

(3) This case is the inhomogeneous case of (2) and is left to the reader. �

Lemma 4.5. Let A = K[s, t, x, y]/(sx2 + txy + sy2) and let n ≥ 1 be an arbitrary integer.

(1) si−1xiyn−i ∈ (xn, yn, xyn−1) for all 1 ≤ i ≤ n. In particular,

sn−1(x, y)n ⊆ (xn, yn, xyn−1
)
, sn(x, y)n ⊆ (xn, yn, sxyn−1

)
. (4.12)

(2) Also, tn(x, y)n ⊆ (xn, yn, sxyn−1).

(3) If n ≥ 2, the ideal (xn, yn, sxyn−1) has a primary decomposition

(
xn, yn, sxyn−1

)
= (x, y)n ∩ (xn, yn, sxyn−1, sn, tn

)
. (4.13)

�

Proof. For (1), we use induction on i to show that si−1xiyn−i ∈ (xn, yn, xyn−1). This is

certainly true if i = 1 and, assuming the result for integers less than i, observe that

si−1xiyn−i = −si−2xi−2yn−i
(
txy + sy2

)
= −si−2txi−1yn−i+1 − si−1xi−2yn−i+2 ∈ (xn, yn, xyn−1

)
.

(4.14)

Next, the equation txy = −(sx2 + sy2) gives us

t(x, y)n ⊆ (xn, yn
)

+ s(x, y)n, (4.15)
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and using this inductively, we get

tn(x, y)n ⊆ (xn, yn
)

+ sn(x, y)n ⊆ (xn, yn, sxyn−1
)
, (4.16)

which proves (2).

We next use the grading on the hypersurface A, where deg s = deg t = 0 and

deg x = deg y = 1. If α and β are nonzero homogeneous elements of A with αsn + βtn ∈
(x, y)n, then α and β must have degree at least n, and therefore belong to the ideal (x, y)n.

This shows that

(
sn, tn

) ∩ (x, y)n =
(
sn, tn

)
(x, y)n, (4.17)

and using (1) and (2), we get

(
sn, tn

) ∩ (x, y)n ⊆ (xn, yn, sxyn−1
)
. (4.18)

The intersection asserted in (3) follows immediately from this, and it remains

to verify that the ideals q1 = (x, y)n and q2 = (xn, yn, sxyn−1, sn, tn) are indeed primary

ideals. The radical of q2 is the maximal ideal (s, t, x, y), so q2 is a primary ideal. Using the

earlier grading, any homogeneous zerodivisor in the ring A/q1 must have positive degree,

and hence must be nilpotent. Consequently, q1 is a primary ideal as well. �

Theorem 4.6. Let A = K[s, t, x, y]/(sx2+txy+sy2),where K is a field. Then Ass A/(x2, y2) =

{(x, y), (t, x, y)} and

Ass
A(

xn, yn
) =

{
(x, y), (s, t, x, y)

} ∪ Ass
A(

x, y,Qn−1

) for n ≥ 3. (4.19)

In particular,
⋃

n∈N
Ass A/(xn, yn) is an infinite set. If K is an algebraically closed field,

let

S =
{(

x, y, t − sξ − sξ−1
)
A | ξ ∈ K, ξn = 1 for some n ≥ 1, ξ 
= ±1

}
. (4.20)

In the case that K has characteristic zero,

⋃
n≥1

Ass
A(

xn, yn
) =

{
(x, y), (t, x, y), (s, t, x, y)

} ∪ S, (4.21)

and if K has positive characteristic, then

⋃
n≥1

Ass
A(

xn, yn
) =

{
(x, y), (t, x, y), (s, t, x, y), (t − 2s, x, y), (t + 2s, x, y)

} ∪ S. (4.22)
�
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Proof. It is easily checked that (x, y)2∩(x2, y2, t) is a primary decomposition of (x2, y2), so

we need to compute Ass A/(xn, yn) for n ≥ 3. By Lemma 4.4(2),we have an exact sequence

0 −→ A(
x, y,Qn−1

) ·sxyn−1

−−−−−→ A(
xn, yn

) −→ A(
xn, yn, sxyn−1

) −→ 0, (4.23)

and consequently,

Ass
A(

x, y,Qn−1

) ⊆ Ass
A(

xn, yn
) ⊆ Ass

A(
x, y,Qn−1

) ∪ Ass
A(

xn, yn, sxyn−1
) .

(4.24)

By Lemma 4.5, Ass A/(xn, yn, sxyn−1) = {(x, y), (s, t, x, y)}, and so it suffices to verify that

the prime ideals p1 = (x, y) and p2 = (s, t, x, y) are indeed associated primes of A/(xn, yn).

This follows since p1 is a minimal prime of (xn, yn) and

p2 =
(
xn, yn

)
: (xy)n−1. (4.25)

If K is an algebraically closed field, the polynomials Qi(s, t) split into linear fac-

tors determined by the roots of Pi(t), which are computed in Lemma 3.2. �

Remark 4.7. If K is a field of characteristic p > 0 and A is the hypersurface (4.3), we

proved that the set
⋃

n∈N
Ass A/(xn, yn) is infinite. However, the set

⋃
e∈N

Ass A/(xpe

, ype

)

is finite since, by Theorem 4.6,

Ass
A(

xpe
, ype

) =
{
(x, y), (s, t, x, y)

} ∪ Ass
A(

x, y,Qpe−1

) for pe ≥ 3, (4.26)

and Qpe−1 is a power of Qp−1 by Proposition 3.1. The set Ass H2
(x,y)(R) is finite as well by

using Proposition 2.1. Consequently, we have a strict inclusion

Ass H2
(x,y)(R) �

⋃
n∈N

Ass
R(

xn, yn
)
R

. (4.27)

The set
⋃

n∈N
Ass A/(xn, yn) has been explicitly computed in Theorem 4.6, and we next

observe that the only associated prime of H2
(x,y)(R) is the maximal ideal m = (s, t, x, y).

The module H2
(x,y)(R) is generated over R by the elements ηq = [1 + (xq, yq)] for q = pe,

and it suffices to show that ηq is killed by a power of m. It is immediately seen that xq and

yq kill ηq, and for the remaining cases, note that

sqηq =
[
sqx2q +

(
x3q, yq

)]
= 0, tqηq =

[
tqxqyq +

(
x2q, y2q

)]
= 0. (4.28)
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5 F-regular and unique factorization domain examples

In Theorem 4.1, we proved that for the hypersurface (4.1), the local cohomology module

H2
(x,y)(R) has infinitely many associated prime ideals. This ring R, while being a domain,

is not normal. In Theorem 5.1, we construct examples over normal hypersurfaces, in fact

over hypersurfaces of characteristic zero with rational singularities, as well as over F-

regular hypersurfaces of positive characteristic. F-regularity is a notion arising from the

theory of tight closure developed by Hochster and Huneke in [10]. A brief discussion may

be found in Section 6, though for details of the theory and its applications, we refer the

reader to [10, 11, 12, 16].

Theorem 5.1. Let K be an arbitrary field, and consider the hypersurface

S =
K[s, t, u, v,w, x, y, z](

su2x2 + sv2y2 + tuxvy + tw2z2
) . (5.1)

Then S is a normal domain for which the local cohomology module H3
(x,y,z)(S) has infin-

itely many associated prime ideals. This is preserved if we replace S by S/(s−1) or by the

localization S(s,t,u,v,w,x,y,z). If K has characteristic zero, then S has rational singularities,

and if K has characteristic p > 0, then S is F-regular. �

Proof. We defer the proof that S has rational singularities or is F-regular, see Lemma 5.3.

Normality follows from this or may be proved directly using the Jacobian criterion. Let

B be the subring of S generated, as a K-algebra, by the elements s, t, a = ux, b = vy, and

c = wz, that is,

B =
K[s, t, a, b, c](

sa2 + sb2 + tab + tc2
) . (5.2)

For integers n ≥ 1, let

ηn =
[
s(ux)(vy)n−1 +

(
xn, yn, z

)] ∈ H3
(x,y,z)(S). (5.3)

Using S0 = K[s, t] as the subring of S of elements of degree zero, Proposition 2.2 implies

that

annS0
ηn =

(
an, bn, c

)
B :S0

sabn−1, (5.4)
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and then Lemma 4.4(2) give us

(
an, bn, c

)
B :S0

sabn−1 =
(
Qn−1

)
S0, (5.5)

where the Qi are the polynomials defined recursively in Section 3. Using Lemmas 2.4 and

3.3, it follows that H3
(x,y,z)(S) has infinitely many associated prime ideals. �

It remains to prove that the hypersurface S in Theorem 5.1 has rational singular-

ities or is F-regular, depending on the characteristic. The results of [30] provide a direct

proof that the hypersurface S has rational singularities in characteristic zero. However,

instead of relying on this, we prove here that if K has positive characteristic, then S is

F-regular. Using [31, Theorem 4.3], it then follows that S has rational singularities when

K has characteristic zero. We first record an elementary lemma.

Lemma 5.2. Let (S, m) be an N-graded Gorenstein domain of dimension d, finitely gen-

erated over a field [S]0 = K of characteristic p > 0, and let η ∈ Hd
m(S) denote a socle

generator. Let c ∈ R be a nonzero element such that Sc is regular. Then S is F-regular if

and only if there exists an integer e ≥ 1 such that η belongs to the S-span of cFe(η). �

Proof. If S is F-regular, then the zero submodule of Hd
m(S) is tightly closed, that is,

0∗Hd
m(S) = 0, and so there exists a positive integer e such that cFe(η) 
= 0. Since η gener-

ates the socle of Hd
m(S), which is one-dimensional, η must belong to the S-span of cFe(η).

Conversely, assume that η belongs to the S-span of cFe(η) for some e ≥ 1. Then

cFe(η) 
= 0, and so the Frobenius morphism F : Hd
m(S) → Hd

m(S) is injective. It follows from

[14, Proposition 6.11] that the ring S is F-pure. By [11, Theorem 6.2], the element c has a

power which is a test element but then, since S is F-pure, c itself must be a test element.

The condition cFe(η) 
= 0 implies that η /∈ 0∗Hd
m(S). Consequently, 0∗Hd

m(S) = 0, and it follows

that S is F-regular. �

Lemma 5.3. Let K be a field and consider the hypersurface (5.1). If K has characteristic

p > 0, then S is F-regular. If K has characteristic zero, then S has rational singularities.

�

Proof. We first consider the case where K has characteristic p > 0. It is easily checked

that Stwz is a regular ring. We may compute H7
m(S) using the Čech complex with respect

to the system of parameters s, u, x, v, y, w − t, z − t. The socle of H7
m(S) is spanned by the

element

η =
[
t4 + (s, u, x, v, y,w − t, z − t)

] ∈ H7
m(S). (5.6)
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Since Stwz is regular, it suffices, by Lemma 5.2, to show that η belongs to the S-span of

twzFe(η) for some e ≥ 1, that is, that

t4
(
suxvy(w − t)(z − t)

)q−1 ∈ (twzt4q, sq, uq, xq, vq, yq, (w − t)q, (z − t)q
)
S (5.7)

for some q = pe. We will consider here the case p ≥ 5, and the interested reader may

verify that (5.7) holds with q = 23 and q = 32 in the remaining cases p = 2 and p = 3,

respectively. It suffices to show that

t4(suxvy)p−1 ∈ (t4p+3, sp, up, xp, vp, yp, w − t, z − t
)
S. (5.8)

Working in the polynomial ring A=K[s, t, u, v, x, y], it is enough to check that t4(suxvy)p−1

∈ a + (t5p−1)A, where

a =
(
xp, yp, su2x2 + sv2y2 + tuxvy + t5

)
A. (5.9)

We observe that

t5p−1 ≡ t4
(
su2x2 + sv2y2 + tuxvy

)p−1
mod a

= t4
∑
i,j

(
p − 1

i

)(
p − 1 − i

j

)(
su2x2

)i(
sv2y2

)j(tuxvy)p−1−i−j mod a

= t4
∑
i,j

(
p − 1

i

)(
p − 1 − i

j

)
si+jtp−1−i−j(ux)p−1+i−j(vy)p−1−i+j mod a.

(5.10)

The only terms which contribute mod(xp, yp) are those for which i = j, and so

t5p−1 ≡ t4

(p−1)/2∑
i=0

(
p − 1

i

)(
p − 1 − i

i

)
s2itp−1−2i(uxvy)p−1 mod a. (5.11)

When 2i < p − 1, the corresponding summand in the above expression is a multiple of

t5(uxvy)p−1, which is an element of a. Thus

t5p−1 ≡ t4

(
p − 1

(p − 1)/2

)
sp−1(uxvy)p−1 mod a. (5.12)

Since the binomial coefficient occurring above is a unit, t4(suxvy)p−1 ∈ a + (t5p−1)A,

which completes the proof that S is F-regular.
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It remains to show that S has rational singularities in the case where K has char-

acteristic zero. By [31, Theorem 4.3], it suffices to show that S has F-rational type, that is,

that for all but finitely many prime integers p, the fiber over pZ of the map

Z −→ Z[s, t, u, v,w, x, y, z](
su2x2 + sv2y2 + tuxvy + tw2z2

) (5.13)

is an F-rational ring. While this is indeed true for all prime integers p, our earlier com-

putation for p ≥ 5 certainly suffices. �

We next construct unique factorization domains with similar behavior.

Theorem 5.4. Let K be an arbitrary field, and consider the hypersurface

T =
K[r, s, t, u, v,w, x, y, z](

su2x2 + sv2y2 + tuxvy + rw2z2
) . (5.14)

Then T is a unique factorization domain for which the local cohomology module

H3
(x,y,z)(T) has infinitely many associated prime ideals. This is preserved if T is replaced

by the localization at its homogeneous maximal ideal. The hypersurface T has rational

singularities if K has characteristic zero, and is F-regular in the case of positive charac-

teristic. �

Proof. It is easily verified that T is a normal domain; in particular, the element t − r ∈ T

is a nonzerodivisor. Note that

T

(t − r)
∼=

K[s, t, u, v,w, x, y, z](
su2x2 + sv2y2 + tuxvy + tw2z2

) (5.15)

is F-regular or F-rational by Lemma 5.3. The rational singularity property deforms by [6],

and F-regularity deforms for Gorenstein rings by [11, Corollary 4.7]. It follows that T has

rational singularities if K has characteristic zero, and is F-regular in the case of positive

characteristic.

We next prove that T is a unique factorization domain. Consider the multiplica-

tive system W ⊂ T generated by the elements w and z. Since W is generated by prime

elements, by Nagata’s theorem, it suffices to verify that W−1T is a unique factorization

domain, see [27, Theorem 6.3] or [7, Corollary 7.3]. But

W−1T = K
[
s, t, u, v, x, y,w,w−1, z, z−1

]
(5.16)

is a localization of a polynomial ring, and hence is a unique factorization domain.
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For integers n ≥ 1, consider

ηn =
[
s(ux)(vy)n−1 +

(
xn, yn, z

)] ∈ H3
(x,y,z)(T). (5.17)

As in the proof of Theorem 5.1, we use Proposition 2.2 and Lemma 4.4(2) to compute

annT0
ηn, where T0 = K[r, s, t]. Setting a = ux, b = vy, and c = wz, we see that

annT0
ηn =

(
Qn−1

)
T0. (5.18)

By Lemmas 2.4 and 3.3, it follows that H3
(x,y,z)(T) has infinitely many associated prime

ideals. �

6 An application to tight closure theory

Let R be a ring of characteristic p > 0 and let R◦ denote the complement of the minimal

primes of R. For an ideal a = (x1, . . . , xn) of R and a prime power q = pe, we use the

notation a[q] = (xq
1 , . . . , x

q
n). The tight closure of a is the ideal a∗ = {z ∈ R | there exists

c ∈ R◦ for which czq ∈ a[q] for all q  0}, see [10]. A ring R is F-regular if a∗ = a for all

ideals a of R and its localizations.

More generally, let F denote the Frobenius functor and Fe its eth iteration. If an R-

module M has presentation matrix (aij), then Fe(M) has presentation matrix (aq
ij), where

q = pe. For modules N ⊆ M, we use N
[q]
M to denote the image of Fe(N) → Fe(M). We say

that an element m ∈ M is in the tight closure of N in M, denoted N∗
M, if there exists an el-

ement c ∈ R◦ such that cFe(m) ∈ N
[q]
M for all q  0. While the theory has found several ap-

plications, the question whether tight closure commutes with localization remains open

even for finitely generated algebras over fields of positive characteristic.

Let W be a multiplicative system in R and N ⊆ M finitely generated R-modules.

Then

W−1
(
N∗

M

) ⊆ (W−1N
)∗
W−1M

, (6.1)

where W−1(N∗
M) is identified with its image in W−1M. When this inclusion is an equality,

we say that tight closure commutes with localization at W for the pair N ⊆ M. It may be

checked that this occurs if and only if tight closure commutes with localization at W for

the pair 0 ⊆ M/N. Following [1], we set

Ge(M/N) =
Fe(M/N)
0∗Fe(M/N)

. (6.2)
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An element c ∈ R◦ is a weak test element if there exists q0 = pe0 such that for every

pair of finitely generated modules N ⊆ M, an element m ∈ M is in N∗
M if and only if

cFe(m) ∈ N
[q]
M for all q ≥ q0. By [11, Theorem 6.1], if R is of finite type over an excellent

local ring, then R has a weak test element.

Proposition 6.1 [1, Lemma 3.5]. Let R be a ring of characteristic p > 0 and N ⊆ M finitely

generated R-modules. Then the tight closure of N ⊆ M commutes with localization at

any multiplicative system W which is disjoint from the set
⋃

e∈N
Ass Fe(M)/N

[q]
M .

If R has a weak test element, then the tight closure of N ⊆ M also commutes with

localization at multiplicative systems W disjoint from the set
⋃

e∈N
Ass Ge(M/N). �

Consider a bounded complex P• of finitely generated projective R-modules:

0 −→ Pn
dn−−→ Pn−1 −→ · · · d1−−→ P0 −→ 0. (6.3)

The complex P• is said to have phantom homology at the ith spot if

Ker di ⊆
(

Im di+1

)∗
Pi

. (6.4)

The complex P• is stably phantom acyclic if Fe(P•) has phantom homology at the ith spot

for all i ≥ 1, for all e ≥ 1. An R-module M has finite phantom projective dimension if

there exists a bounded stably phantom acyclic complex P• of projective R-modules with

H0(P•) ∼= M.

Theorem 6.2 [1, Theorem 8.1]. Let R be an equidimensional ring of positive characteris-

tic, which is of finite type over an excellent local ring. If N ⊆ M are finitely generated

R-modules such that M/N has finite phantom projective dimension, then the tight clo-

sure of N in M commutes with localization at W for every multiplicative system W of R.

�

The key points of the proof are that for M/N of finite phantom projective dimen-

sion, the set
⋃

e Ass Ge(M/N) has finitely many maximal elements, and that if (R, m) is a

local ring, then there is a positive integer B such that for all q = pe, the ideal mBq kills

the local cohomology module

H0
m

(
Ge

(
M

N

))
. (6.5)

For more details on this approach to the localization problem, we refer the reader to the

papers [1, 9, 18, 28] and [16, Section 12]. Specializing to the case where M = R and N = a

 at U
niversity of U

tah on A
ugust 22, 2011

im
rn.oxfordjournals.org

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


1726 A. K. Singh and I. Swanson

is an ideal, we note that

Ge

(
R

a

)
∼=

R(
a[q]
)∗ , q = pe. (6.6)

This raises the following questions.

Question 6.3 [9, page 90]. Let R be a Noetherian ring of characteristic p > 0 and a an ideal

of R.

(1) Does the set
⋃

q Ass R/a[q] have finitely many maximal elements?

(2) Does
⋃

q Ass R/(a[q])∗ have finitely many maximal elements?

(3) For a complete local domain (R, m) and an ideal a ⊂ R, is there a positive inte-

ger B such that

mBqH0
m

(
R(

a[q]
)∗
)

= 0 ∀q = pe? (6.7)

Katzman proved that affirmative answers to Question 6.3(2) and (3) imply that

tight closure commutes with localization.

Theorem 6.4 [18]. Assume that for every local ring (R, m) of characteristic p > 0 and ideal

a ⊂ R, the set
⋃

q Ass R/(a[q])∗ has finitely many maximal elements. Also, if for every ideal

a ⊂ R there exists a positive integer B such that mBq kills

H0
m

(
R(

a[q]
)∗
)

∀q = pe, (6.8)

then tight closure commutes with localization for all ideals in Noetherian rings of char-

acteristic p > 0. �

These issues are, of course, the source of our interest in associated primes of

Frobenius powers of ideals. It should be mentioned that the situation for ordinary pow-

ers is well understood:
⋃

n Ass R/an is finite for any Noetherian ring R, see [2, 26]. How-

ever, for Frobenius powers, Katzman showed that the maximal elements of
⋃

q Ass R/a[q]

need not form a finite set, thereby settling Question 6.3(1). We recall the example from

[18], discussed earlier in Remark 2.7: if

A =
K[t, x, y](

xy(x − y)(x − ty)
) , (6.9)

then the set
⋃

q Ass R/(xq, yq) is infinite. In this example (xq, yq)∗ = (x, y)q for all q = pe,

and so, in contrast,
⋃

q Ass A/(xq, yq)∗ is finite.
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Remark 6.5. In Theorem 5.1, we constructed an F-regular ring S for which the set

Ass H3
(x,y,z)(S) is infinite. By Proposition 2.1, we have

Ass H3
(x,y,z)(S) ⊆

⋃
q=pe

Ass
S(

xq, yq, zq
) , (6.10)

and it follows that
⋃

q Ass S/(xq, yq, zq) must be infinite. Since S is F-regular, we have

(xq, yq, zq)∗ = (xq, yq, zq) for all q = pe, and so
⋃

q Ass S/(xq, yq, zq)∗ is infinite. The ques-

tion remains whether
⋃

q Ass R/(a[q])∗ has finitely many maximal elements for arbitrary

rings R of characteristic p > 0, and we next show that this has a negative answer as well,

thereby settling Question 6.3(2).

Theorem 6.6. Let K be a field of characteristic p > 0, and consider

R =
K[t, u, v,w, x, y, z](

u2x2 + v2y2 + tuxvy + tw2z2
) . (6.11)

Then R is an F-regular ring, and the set

⋃
e∈N

Ass
R(

xpe
, ype

, zpe
) =

⋃
e∈N

Ass
R(

xpe
, ype

, zpe
)∗ (6.12)

has infinitely many maximal elements. �

Proof. By Lemma 5.3, the hypersurface (5.1) is F-regular, and therefore so is its localiza-

tion

Ss =

K

[
t

s
, u, v,w, x, y, z, s,

1

s

]
(

u2x2 + v2y2 +
t

s
uxvy +

t

s
w2z2

) . (6.13)

The ring Ss has a Z-grading, where deg s = 1, deg 1/s = −1, and the remaining generators

t/s, u, v, w, x, y, and z have degree 0. By [10, Proposition 4.12] a direct summand of an

F-regular ring is F-regular, and so R ∼= [Ss]0 is F-regular.

For q = pe, consider the ideals of R:

aq =
(
xq, yq, zq

)
R :R tquvq−2x2yq−1zq−1. (6.14)
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Let R0 = K[t]. As in the proof of Theorem 5.1, we may use Proposition 2.2 and Lemma

4.4(3) to verify that

aq ∩ R0 =
(
xq, yq, zq

)
R :R0

tq(ux)(vy)q−2xyzq−1

=
(
xq−1, yq−1, z

)
R :R0

tq(ux)(vy)q−2

= Pq−2 :R0
tq,

(6.15)

where the Pi are the polynomials defined recursively in Section 3. In particular, this

shows that aq 
= R for q  0. It is immediately seen that x, y, z ∈ √
aq, and we claim

that u, v,w ∈ √
aq. To see that u ∈ aq, note that

u
(
tquvq−2x2yq−1zq−1

)
= tq

(
u2x2

)
vq−2yq−1zq−1 ∈ (yq, zq

)
. (6.16)

Next, observe that

(vy)2 ∈ ux(ux, vy)R + zR, (6.17)

and so

(vy)q−1 ∈ (ux)q−2(ux, vy)R + zR. (6.18)

Using this,

v
(
tquvq−2x2yq−1zq−1

)
= tq(vy)q−1ux2zq−1 ∈ (xq, zq

)
, (6.19)

and so v ∈ aq. Finally, it is easily verified that wq−1 ∈ aq, that is,

wq−1
(
stquvq−2x2yq−1zq−1

) ∈ (xq, yq, zq
)

(6.20)

since tq(wz)q−1 ∈ (xq−2, y). We have now established

Min
(
aq

)
= Min

(
(u, v,w, x, y, z)R +

(
Pq−2 :R0

tq
)
R
)
, (6.21)

and so the minimal primes of aq are maximal ideals of R. By Lemma 3.3, the union⋃
q Min(aq) is an infinite set, and so we conclude that

⋃
q Ass R/(xq, yq, zq) has infinitely

many maximal elements. �
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Remark 6.7. We would like to point out that the ring R in Theorem 6.6 is a unique fac-

torization domain if K = Z/pZ, where p is a prime with p ≡ 3 mod 4 or, more generally,

if K does not contain a square root of −1. In this case, the polynomial u2x2 + v2y2 is ir-

reducible, so f = uxvy + w2z2 ∈ R is a prime element. The ring Rf is a localization of

K[u, v,w, x, y, z], hence is a unique factorization domain. By Nagata’s theorem, it follows

that R is a unique factorization domain.

For examples which do not depend on the field K, the interested reader may verify

that

S =
K(r)[t, u, v,w, x, y, z](

u2x2 + v2y2 + tuxvy + rw2z2
) (6.22)

is an F-regular unique factorization domain for which the set

⋃
e∈N

Ass
S(

xpe
, ype

, zpe
) =

⋃
e∈N

Ass
S(

xpe
, ype

, zpe
)∗ (6.23)

has infinitely many maximal elements.

7 Examples of small dimension

We analyze multidiagonal matrices with d = 4 and use these computations to obtain low-

dimensional examples of integral domains of characteristic p > 0, where the set of as-

sociated primes of Frobenius powers of an ideal is infinite. The example in Theorem 4.1,

after specializing s = 1, is an integral domain of dimension four. We construct here a

hypersurface A of dimension two, which is an integral domain and has an ideal (x, y)A

for which
⋃

e Ass A/(xpe

, ype

) is infinite. In view of Proposition 3.1, to construct such an

example using Theorem 2.6, we need to consider multidiagonal matrices with d ≥ 4.

We start with the polynomial ring A0 = K[t] over a field K. Let d = 4 and consider

the matrices Mn of multidiagonal form with respect to r0 = r4 = 1, r2 = t, and r1 = r3 = 0,

that is,

Mn =



t 0 1

0 t 0 1

1 0 t 0 1

. . .
. . .

. . .
. . .

. . .

1 0 t 0 1

1 0 t 0

1 0 t


. (7.1)
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We again use the convention det M0 = 1, and have det M1 = t, det M2 = t2,

det M3 = t3 − t, and the recursion

det Mn+4 = t det Mn+3 − t det Mn+1 + det Mn ∀n ≥ 0. (7.2)

Using this, the generating function for det Mn is easily computed to be

G(x) =
∑
n≥0

(
det Mn

)
xn

=
1

1 − tx + tx3 − x4

=
1

(1 − x)(1 + x)
(
1 − tx + x2

) .
(7.3)

Set Fn(t) = det Mn, which is a monic polynomial of degree n. We need to analyze the

distinct irreducible factors of the polynomials {Fn(t)}.

Lemma 7.1. Let K be an algebraically closed field, and consider the polynomials Fn(t) =

det Mn ∈ K[t] as above.

(1) Let ξ be a nonzero element of K with ξ 
= ±1. If n is an odd integer, then

Fn

(
ξ + ξ−1

)
=

(
ξn+3 − 1

)(
ξn+1 − 1

)
ξn
(
ξ2 − 1

)2 , (7.4)

and so Fn(ξ + ξ−1) = 0 if and only if ξn+3 = 1 or ξn+1 = 1.

(2) If n is an odd integer and (n + 3)(n + 1) is invertible in K, then the polynomial

Fn(t) has n distinct roots of the form ξ + ξ−1, where ξ 
= ±1, and either

ξn+3 = 1 or ξn+1 = 1.

(3) If the characteristic of K is an odd prime p, then Fq−2(t) has q−2 distinct roots

for all q = pe. �

Proof. (1) Consider the generating function for the polynomials Fn(t):

G(x) =
∑
n≥0

Fn(t)xn =
1

(1 − x)(1 + x)
(
1 − tx + x2

) ∈ K[t][[x]]. (7.5)
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If ξ ∈ K with ξ 
= 0 and ξ 
= ±1, then

∑
n≥0

Fn

(
ξ + ξ−1

)
xn =

1

(1 − x)(1 + x)(1 − ξx)
(
1 − ξ−1x

)
=

∑
xn

2
(
2 − ξ − ξ−1

) +

∑
(−x)n

2
(
2 + ξ + ξ−1

)
+

ξ3
∑

(ξx)n(
ξ2 − 1

)(
ξ − ξ−1

) +
ξ−3

∑ (
ξ−1x

)n(
ξ−2 − 1

)(
ξ−1 − ξ

) .
(7.6)

Comparing the coefficients of xn and simplifying, we obtain the asserted formula for

Fn(ξ + ξ−1).

(2) As we observed earlier in the proof of Lemma 3.2(2), ξ + ξ−1 = η + η−1 if and

only if ξ equals η or η−1. The only common roots of the polynomials Xn+3 − 1 = 0 and

Xn+1 − 1 = 0 are ±1. Since n + 3 is invertible in the field K, the polynomial Xn+3 − 1 = 0

has n + 1 distinct roots ξ with ξ 
= ±1. These give the (n + 1)/2 distinct roots ξ + ξ−1 of

Fn(t). Similarly, the roots of Xn+1 −1 = 0 contribute (n−1)/2 other distinct roots of Fn(t).

But then we have (n+1)/2+ (n−1)/2 = n distinct roots of the degree-n polynomial Fn(t),

which, then, must be all its roots.

(3) Since n = q − 2 is odd and (n + 3)(n + 1) = (q + 1)(q − 1) is invertible in K, it

follows from (2) that Fq−2(t) has q − 2 distinct roots. �

As a consequence of Lemma 7.1, we immediately have the following lemma.

Lemma 7.2. Let K be an arbitrary field of characteristic p > 2. Then the polynomials

{Fq−2(t)}q=pe have infinitely many distinct irreducible factors. �

Theorem 7.3. Let K be an arbitrary field of characteristic p > 2, and consider the integral

domain

A =
K[t, x, y](

x4 + tx2y2 + y4
) . (7.7)

Then the set
⋃

e∈N
Ass A/(xpe

, ype

) is infinite. �

Proof. The hypersurface A arises from Theorem 2.6 using the matrices Mn of multidiag-

onal form with respect to r0 = r4 = 1, r2 = t, and r1 = r3 = 0. By Lemma 7.2, the set⋃
e Min(det Mpe−2) is infinite, and so the result follows. �
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