
Math. Proc. Camb. Phil. Soc. (1999), 127, 201

Printed in the United Kingdom # 1999 Cambridge Philosophical Society

201

1-Gorenstein splinter rings of characteristic p are F-regular

B ANURAG K. SINGH†

Department of Mathematics, University of Michigan, Ann Arbor, U.S.A.

e-mail : singh6!math.uiuc.edu

(Received 5 May 1998; revised 8 October 1998)

1. Introduction

A Noetherian integral domain R is said to be a splinter if it is a direct summand,

as an R-module, of every module-finite extension ring (see [Ma]). In the case that R

contains the field of rational numbers, it is easily seen that R is splinter if and only

if it is a normal ring, but the notion is more subtle for rings of characteristic p" 0.

It is known that F-regular rings of characteristic p are splinters and Hochster and

Huneke showed that the converse is true for locally excellent Gorenstein rings

[HH4]. In this paper we extend their result by showing that 1-Gorenstein splinters

are F-regular. Our main theorem is:

T 1±1. Let R be a locally excellent 1-Gorenstein integral domain of

characteristic p" 0. Then R is F-regular if and only if it is a splinter.

These issues are closely related to the question of whether the tight closure I* of an

ideal I of a characteristic p domain agrees with its plus closure, i.e. I+¯ IR+fR,

where R+ denotes the integral closure of R in an algebraic closure of its fraction field.

We always have the containment I+X I* and Smith showed that equality holds if

I is a parameter ideal in an excellent domain R (see [Sm1]). An excellent domain R

of characteristic p is splinter if and only if for all ideals I of R, we have I+¯ I.

For an excellent local domain R of characteristic p, Hochster and Huneke showed

that R+ is a big Cohen–Macaulay algebra, see [HH2]. For further work on R+ and

plus closure see [Ab, AH]. Our main references for the theory of tight closure are

[HH1, HH3, HH4].

Although tight closure is primarily a characteristic p notion, it has strong

connections with the study of singularities of algebraic varieties over fields of

characteristic zero. For 1-Gorenstein rings essentially of finite type over a field of

characteristic zero, it is known that F-regular type is equivalent to log-terminal

singularities (see [Ha, Sm2, Sm3, Wa]). Consequently our main theorem offers a

characterization of log-terminal singularities in characteristic zero, see Corollary 3±3.

2. Preliminaries

By the canonical ideal of a Cohen–Macaulay normal domain (R,m), we shall mean

an ideal of R which is isomorphic to the canonical module of R. We next record some

results that we shall use later in our work.
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L 2±1. Let (R,m) be a Cohen–Macaulay local domain with canonical ideal J. Fix

a system of parameters y
"
,… , y

d
for R and let s `J be an element which represents a socle

generator in J}(y
"
,… , y

d
). Then for t `., the element s(y

"
Iy

d
)t−" is a socle generator in

J}(yt

"
,… , yt

d
)J. The ideals I

t
¯ (yt

"
,…yt

d
)J :

R
s form a family of irreducible ideals which

are confinal with the powers of the maximal ideal m of R.

Proof. See the proof of [HH4, theorem 4±6].

L 2±2. Let R be a Cohen–Macaulay normal domain with canonical ideal J. Pick

y
"
1 0 in J. Then there exists an element y

#
not in any minimal prime of y

"
and γ `J

such that yi

#
J(i)XγiR for all positive integers i.

Proof. This is [Wi, lemma 4±3].

L 2±3. Let (R,m) be a normal local domain and J an ideal of pure height one,

which has order n when regarded as an element of the divisor class group Cl (R). Then for

0! i!n, we have J(i)J(n−i)XJ(n)m.

Proof. Let J(n)¯αR. Clearly J(i)J(n−i)XαR and it suffices to show that

J(i)J(n−i)£αR. If J(i)J(n−i)¯αR, then J(i) is an invertible fractional ideal and so

must be a projective R-module. Since R is local, J(i) is a free R-module, but

this is a contradiction since J(i) cannot be principal for 0! i!n.

Discussion 2±4. Let (R,m) be a 1-Gorenstein Cohen–Macaulay normal local

domain, with canonical ideal J. Let n denote the order of J as an element of the

divisor class group Cl (R) and pick α `R such that J(n)¯αR. Consider the subring

R[JT,J(#)T#,…] of R[T] and let

S¯R[JT,J(#)T#,…]}(αTn®1).

Note that S has a natural :}n:-grading where [S]
!
¯R and for 0! i!n we have

[S]
i
¯J(i)Ti. We claim that the ideal

G¯mJTJ(#)T#IJ(n−")Tn−"

is a maximal ideal of S. Since each J(i) is an ideal of R, we need only verify that

J(i)TiGXG for 0! i!n®1, but this follows from Lemma 2±3. Note furthermore

that GnXmS.

3. The main result

Proof of Theorem 1±1. The property of being a splinter localizes, as does the

property of being 1-Gorenstein. Hence if the splinter ring R is not F-regular, we may

localize at a prime ideal P `SpecR which is minimal with respect to the property that

R
P

is not F-regular. After a change of notation, we have a splinter (R,m) which has

an isolated non F-regular point at the maximal ideal m. This shows that R has an m-

primary test ideal. However since R is a splinter it must be F-pure and so the test

ideal is precisely the maximal ideal m. Note that by [Sm1, theorem 5±1] parameter

ideals of R are tightly closed and R is indeed F-rational.

Let dimR¯ d. Choose a system of parameters for R as follows: first pick a nonzero

element y
"
`J. Then, by Lemma 2±2, pick y

#
not in any minimal prime of y

"
such that

yi

#
J(i)XγiR for a fixed element γ `J, for all positive integers i. Extend y

"
, y

#
to a full

system of parameters y
"
,… , y

d
for R. Since y

"
`J, there exists u `R such that s¯uy

"

is a socle generator in J}(y
"
,… , y

d
)J. Let Y denote the product y

"
…y

d
.
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Consider the family of ideals ²I
c
´
c`. as in Lemma 2±1. If R is not F-regular, there

exists an irreducible ideal I
c
¯ (yc

"
,… , yc

d
)J :

R
s which is not tightly closed, specifically

Yc−" ` I$
c
. Consequently sYc−" ` (yc

"
,… , yc

d
)J* and sYc−" ` (yc

"
,… , yc

d
)JS* and so

sTYc−" ` (yc

"
,… , yc

d
)JTS*X (yc

"
,… , yc

d
)S*.

We shall first imitate the proof of [Sm1, lemma 5±2] to obtain from this an

‘equational condition’. Let z¯ sTYc−" and x
i
¯ yc

i
for 1% i% d. We then have z `

(x
"
,… , x

d
)S*. Consider the maximal ideal G¯mJTJ(#)T#IJ(n−")Tn−" of S

and the highest local cohomology module

Hd
G(S)¯ lim

MN
S}(xi

"
,… , xi

d
),

where the maps in the direct limit system are induced by multiplication by x
"
Ix

d
.

Since the test ideal of R is m, if Q
!

is a power of p greater than n, we have

GQ!zq ` (xq

"
,… , xq

d
)S for all q¯pe.

Let η denote [z(x
"
,… , x

d
)S] viewed as an element of Hd

G(S) and N be the S-

submodule of Hd
G(S) spanned by all Fe(η) where e `.. Since Hd

G(S) is an S-module with

DCC, there exists e
!
such that the submodules generated by Fe!(N) and Fe«(N) agree

for all e«& e
!
. Hence there exists an equation of the form

Fe!(η)¯ a
"
Fe"(η)Ia

k
Fek(η),

with a
"
,… , a

k
`S and e

!
! e

"
% e

#
%I% e

k
. If some a

i
is not a unit, we may use

suitably high Frobenius iterations on the equation above and the fact that for Q
!
&n

we have GQ!Fe(η)¯ 0 for all e `., to replace the above equation by one in which

the coefficients which occur are indeed units. Hence we have an equation Fe(η)¯
a
"
Fe"(η)Ia

k
Fek(η) where e! e

"
% e

#
%I% e

k
and a

"
,… , a

k
are units. Let

q¯pe, q
i
¯pei for 1% i% k and X¯ x

"
Ix

d
. Rewriting our equation we have

[zqXqk−q(xqk
"

,… , xqk
d

)S]¯ a
"
[zq"Xqk−q"(xqk

"
,… , xqk

d
)S]

Ia
k
[zqk(xqk

"
,… , xqk

d
)S],

i.e. [zqXqk−q®a
"
zq"Xqk−q"®I®a

k
zqk(xqk

"
,… , xqk

d
)S]¯ 0. Since the ring S may not

necessarily be Cohen–Macaulay, we cannot assume that the maps in the direct limit

system lim
U

S}(xi

"
,… , xi

d
) are injective. However for a suitable positive integer b we

do obtain the equation

(zXb−")Q ` (xbQ

"
,… , xbQ

d
, zXbQ−", zpXbQ−p,… , zQ/pXbQ−Q/p)S,

where Q¯ q
k
. Going back to the earlier notation and setting t¯ bc, we have

(sTYt−")Q ` (ytQ

"
,… , ytQ

d
, sTYtQ−", (sT)pYtQ−p,… , (sT)Q/pYtQ−Q/p)S.

Note that 1}T¯αTn−" `S and, multiplying the above by 1}TQ, we get

(sYt−")Q ` 0ytQ

"

1

TQ
,… , ytQ

d

1

TQ
, sYtQ−"

1

TQ−"
, spYtQ−p

1

TQ−p
,… , sQ/pYtQ−Q/p

1

TQ−Q/p1S.

Since (sYt−")Q ` [S]
!
¯R, we may intersect the ideal above with R to obtain

(sYt−")Q ` (ytQ

"
J(Q),… , ytQ

d
J(Q), sYtQ−"J(Q−"), spYtQ−pJ(Q−p),… , sQ/pYtQ−Q/pJ(Q−Q/p))R.
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Replacing s¯uy
"

above, we get

(uy
"
Yt−")Q ` (ytQ

"
J(Q),… , ytQ

d
J(Q), (uy

"
)YtQ−"J(Q−"),

(uy
"
)pYtQ−pJ(Q−p),… , (uy

"
)Q/pYtQ−Q/pJ(Q−Q/p)R.

Let Z¯Y}y
"
¯ y

#
Iy

d
. We then have

(uZt−")Q ytQ

"
` (ytQ

"
J(Q), ytQ

#
,… , ytQ

d
,uytQ

"
ZtQ−"J(Q−"),

upytQ

"
ZtQ−pJ(Q−p),… ,uQ/pytQ

"
ZtQ−Q/pJ(Q−Q/p))R.

Using the fact that y
"
,… , y

d
are a system of parameters for the Cohen–Macaulay ring

R, we get

(uZt−")Q ` (J(Q), ytQ

#
,… , ytQ

d
,uZtQ−"J(Q−"),upZtQ−pJ(Q−p),… ,uQ/pZtQ−Q/pJ(Q−Q/p))R.

Consequently there exists a `J(Q), b
i
`R and c

p
e `J(Q−Q/p

e
) such that

(uZt−")Q¯ a3
d

i=#

b
i
ytQ
i

c
"
uZtQ−"c

p
upZtQ−pIc

Q/p
uQ/pZtQ−Q/p.

For 2% i% d, consider the following equations in the variables V
#
,… ,V

d
:

VQ
i

¯ b
i
c

"
V
i 0Zy

i

1tQ−t

c
p
Vp
i 0Zy

i

1tQ−tp

Ic
Q/p

VQ/p
i 0Zy

i

1tQ−tQ/p

.

Since these are monic equations defined over R, there exists a module finite normal

extension ring R
"
, with solutions v

i
of these equations. Working in the ring R

"
, let

w¯uZt−"®3
d

i=#

v
i
yt
i
.

Combining the earlier equations, we have

wQ¯ ac
"
wZtQ−tc

p
wpZtQ−tpIc

Q/p
wQ/pZtQ−tQ/p.

Multiplying this equation by yQ

#
and using the fact that yi

#
J(i)XγiR for all positive

integers i, we get

(wy
#
)Q¯ d

!
γQd

"
wy

#
γQ−"d

p
(wy

#
)pγQ−pId

Q/p
(wy

#
)Q/pγQ−Q/p.

The above equation gives an equation by which wy
#
}γ is integral over the ring R

"
.

Since R
"
is normal, we have wy

#
`γR

"
. Combining this with w¯uZt−"®3d

i=#
v
i
yt
i
, we

have

uZt−"y
#
¯wy

#
03d

i=#

v
i
yt
i1 y

#
` (J, yt+"

#
, y

#
yt

$
,… , y

#
yt
d
)R

"

and so

uZt−"y
#
` (J, yt+"

#
, y

#
yt

$
,… , y

#
yt
d
)+¯ (J, yt+"

#
, y

#
yt

$
,… , y

#
yt
d
)R.

Since y
#

is not in any minimal prime of J, we get uZt−" ` (J, yt

#
, yt

$
,… , yt

d
)R.

Multiplying this by y
"
, we get

sZt−" ` (y
"
J, y

"
yt

#
, y

"
yt

$
,… , y

"
yt
d
)RX (y

"
, yt

#
, yt

$
,… , yt

d
)J,

but this contradicts the fact that s generates the socle in J}(y
"
,… , y

d
)J.



1-Gorenstein splinter rings of characteristic p 205

C 3±1. Let (R,m) be an excellent integral domain of dimension two over a

field of characteristic p" 0. Then R is a splinter if and only if it is F-regular.

Proof. The hypotheses imply that R is F-rational, and so has a torsion divisor class

group by a result of Lipman [Li]. Hence R must be 1-Gorenstein.

Definition 3±2. Let R¯K[X
"
,… ,X

n
]}I be a domain finitely generated over a field

K of characteristic zero. We say R is of splinter type if there exists a finitely generated

:-algebra AXK and a finitely generated free A-algebra R
A

¯A[X
"
,… ,X

n
]}I

A
such

that RFR
A

C
A

K, and for all maximal ideals µ in a Zariski dense subset of SpecA,

the fibre rings R
A

C
A

A}µ (which are rings over fields of characteristic p) are splinter.

Using the equivalence of F-regular type and log-terminal singularities for rings

finitely generated over a field of characteristic zero (see [Ha, Sm3, Wa]) we obtain

the following corollary:

C 3±3. Let R be a finitely generated 1-Gorenstein domain over a field of

characteristic zero. Then R has log-terminal singularities if and only if it is of splinter

type.
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