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Abstract

We prove that the F-signature of an affine semigroup ring of positive characteristic is always a
rational number, and describe a method for computing this number. We use this method to determine
the F-signature of Segre products of polynomial rings, and of Veronese subrings of polynomial rings.
Our technique involves expressing the F-signature of an affine semigroup ring as the difference of
the Hilbert-Kunz multiplicities of two monomial ideals, and then using Watanabe’s result that these
Hilbert-Kunz multiplicities are rational numbers.
© 2004 Elsevier B.V. All rights reserved.

MSC:13A35; 13D40; 14M12

1. Introduction

Let (R,m) be a Cohen–Macaulay local or graded ring of characteristicp>0, such that
the residue fieldR/m is perfect. We assume thatR is reduced and F-finite. Throughoutq
shall denote a power ofp, i.e.,q = pe for e ∈ N. Let

R1/q ≈ Raq ⊕ Mq,

whereMq is anR-module with no free summands. The numberaq is unchanged when
we replaceR by itsm-adic completion, and hence is well-defined by the Krull–Schmidt
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theorem. In[7] Huneke and Leuschke define theF-signatureof Ras

s(R) = lim
q→∞

aq

qdimR
,

provided this limit exists. In this note we study the F-signature of normal monomial rings,
and our main result is

Theorem 1. Let K be a perfect field of positive characteristic,andR be a normal subring of
a polynomial ringK[x1, . . . , xn] which is generated, as a K-algebra, by monomials in the
variablesx1, . . . , xn. Then the F-signatures(R) exists and is a positive rational number.
Moreover, s(R) depends only on the semigroup of monomials generating R and not on

the characteristic of the perfect field K.

We also develop a general method for computings(R) for monomial rings, and use it to
determine the F-signature of Segre products of polynomial rings, and of Veronese subrings
of polynomial rings.
In general, it seems reasonable to conjecture that the limits(R) exists and is a ratio-

nal number. Huneke and Leuschke proved that the limit exists ifR is a Gorenstein ring,
[7, Theorem 11]. They also proved that a ringR is weakly F-regular whenever the limit is
positive, and this was extended by Aberbach and Leuschke in[2].

Theorem 2. (Huneke and Leuschke[7], Aberbach and Leuschke[2]). Let (R,m) be an
F-finite reducedCohen–Macaulay ring of characteristicp>0.ThenR is strongly F-regular
if and only if

lim sup
q→∞

aq

qdimR
>0.

Further results on the existence of the F-signature are obtained by Aberbach and Enescu
in the recent preprint[1]. Also, the work of Watanabe and Yoshida[12] and Yao[13] is
closely related to the questions studied here.
Wementioned thatagradedR-moduledecompositionofR1/q wasusedbyPeskine–Szpiro,

Hartshorne and Hochster, to construct small Cohen–Macaulay modules forR in the case
whereR is anN-graded ring of dimension three, finitely generated over a fieldR0 of char-
acteristicp>0, see[5, Section 5 F]. The relationship between theR-module decomposition
of R1/q and the singularities ofRwas investigated by Smith and Van den Bergh in[9].

2. Semigroup rings

The semigroup of nonnegative integers will be denoted byN. Let x1, . . . , xn be vari-
ables over a fieldK. By amonomialin the variablesx1, . . . , xn, we will mean an element
x
h1
1 · · · xhnn ∈ K[x1, . . . , xn] wherehi ∈ N. We frequently switch between semigroups
of monomials inx1, . . . , xn and subsemigroups ofN

n, where we identify a monomial
x
h1
1 · · · xhnn with (h1, . . . , hn) ∈ Nn. A semigroupM of monomials isnormalif it is finitely
generated, andwhenevera, b andcaremonomials inM such thatabk=ck for some positive
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integerk, then there exists amonomial� ∈ M with �k=a. It is well-known that a semigroup
M of monomials is normal if and only if the subringK[M] ⊆ K[x1, . . . , xn] is a normal
ring, see[3, Proposition 1].
A semigroupM of monomials isfull if whenevera, b andc are monomials such that

ab = c andb, c ∈ M, thena ∈ M. By Hochster[3, Proposition 1], a normal semigroup of
monomials is isomorphic (as a semigroup) to a full semigroup of monomials in a possibly
different set of variables.

Lemma 3. Let A = K[x1, . . . , xn] be a polynomial ring over a field K, andR ⊆ A be
a subring generated by a full semigroup of monomials. Letm denote the homogeneous
maximal ideal of R, and assume that R contains a monomial� in which each variablexi
occurs with positive exponent. For positive integers t, let at denote the ideal of R generated
by the monomials in R which do not divide�t .

(1) The idealsat are irreducible andm-primary, and the image of�t generates the socle
of the ringR/at .

(2) The idealsat form a non-increasing sequencea1 ⊇ a2 ⊇ a3 ⊇ . . .which is cofinal with
the sequencem ⊇ m2 ⊇ m3 ⊇ . . . .

(3) Let M be a finitely generated R-module with no free summands. Then�tM ⊆ atM for
all t � 0.

(4) Let K be a perfect field of characteristicp>0,andR1/q ≈ Raq ⊕Mq be an R-module
decomposition ofR1/q whereMq has no free summands. Then

aq = �

(
R

a
[q]
t :R�tq

)
for all t � 0.

Proof. (1) It suffices to considert =1 anda=a1. Every non-constant monomial inRhas a
suitably high power which does not divide�, soa ism-primary. If� ∈ R is anymonomial of
positive degree, then�� ∈ a, and som ⊆ a:R�. Also� /∈ a, so we conclude thata:R� =m.
Sincea is a monomial ideal, the socle ofR/a is spanned by the images of somemonomials.
If � ∈ R is a monomial whose image is a nonzero element of the socle ofR/a, then� = ��
for a monomial� ∈ R. If � ∈ m then� ∈ m� ⊆ a, a contradiction. Consequently we must
have� = 1, i.e.,� = �.
(2) Since eachxi occurs in� ∈ R with positive exponent andR is generated by a full

semigroup of monomials, we see that

at ⊆ (xt+11 , . . . , xt+1n )A ∩ R.

It follows that{at }t∈N is cofinal with the sequence of ideals{mt }t∈N.
(3) For an arbitrary elementm ∈ M, consider the homomorphism� : R → M given by

r �→ rm. Since the moduleM has no free summands,� is not a split homomorphism. By
Hochster[4, Remark 2], there existst0 ∈ N such that�t0m ∈ at0M, equivalently, such that
the induced map

�t0
: R/at0 → M/at0M
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is not injective. If�t : R/at → M/atM is injective for somet� t0, then it splits since
R/at is a Gorenstein ring of dimension zero; however this implies that the map

�t0
: R/at

⊗
R/at

R/at0 → M/atM
⊗

R/at
R/at0

splits as well, which is a contradiction. Consequently�t (�t ) = 0, and hence�tm ∈ atM
for all t � t0. The moduleM is finitely generated, and so we must have�tM ⊆ atM for
all t � 0.
(4) For any idealb ⊆ R, we have

R1/q

bR1/q
∼=
(
R

bR

)aq
⊕ Mq

bMq

and so

�

(
R

b[q]

)
= �

(
R1/q

bR1/q

)
= aq�

(
R

b

)
+ �

(
Mq

bMq

)
.

Using this for the idealsat andat + �tR and taking the difference, we get

aq

[
�

(
R

at

)
− �

(
R

at + �tR

)]
+ �

(
Mq

atMq

)
− �

(
Mq

atMq + �tMq

)
= �

(
R

a
[q]
t

)
− �

(
R

a
[q]
t + �tqR

)
= �

(
R

a
[q]
t :R�tq

)

By (3) �tMq ⊆ atMq for all t � 0, and the result follows.�

Lemma 4. Let K be a perfect field of characteristicp>0, and R be a subring ofA =
K[x1, . . . , xn] generated by a full semigroup of monomials with the property that for every
i with 1� i�n, there exists a monomialai ∈ A in the variablesx1, . . . , x̂i , . . . , xn such
thatai/xi = �i/�i for monomials�i , �i ∈ R. Let�0 ∈ R be a monomial in which eachxi
occurs with positive exponent, and set� = �0�1 · · ·�n. For t�1, let at be the ideal of R
generated by monomials in R which do not divide�t . Then, for every prime powerq = pe

and integert�1,we have

a
[q]
t :R�tq =m[q]

A ∩ R

wheremA = (x1, . . . , xn)A is the maximal ideal of A. If R1/q ≈ Raq ⊕Mq is an R-module
decomposition ofR1/q whereMq has no free summands, then

aq = �

(
R

a
[q]
t :R�tq

)
= �

(
R

m
[q]
A ∩ R

)
for all q = pe and t�1.

Proof. By Lemma 3(4), it suffices to prove that

a
[q]
t :R�tq =m[q]

A ∩ R for all q = pe and t�1.
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Given a monomialr ∈ a[q]
t :R�tq , there exists a monomial� ∈ R which does not divide�t

for whichr�tq ∈ �qR. Since�t /� is an element of the fraction field ofRwhich is not inR,
we must have�t /� /∈A and so�A:A�t ⊆ mA. Taking Frobenius powers over the regular
ringA, we get

�qA:A�tq ⊆ m
[q]
A

and hencer ∈ m[q]
A ∩ R. This shows thata[q]

t :R�tq ⊆ m
[q]
A ∩ R.

For the reverse inclusion, consider a monomialbx
q
i ∈ R whereb ∈ A. Then

bx
q
i �

tq = ba
q
i

(
�t�i
�i

)q
,

wherebaqi and�
t�i/�i are elements ofR. It remains to verify that�

t�i/�i ∈ at , i.e., that
it does not divide�t in R. Since

�t

�t�i/�i
= ai

xi
,

this follows immediately. �

Lemma 5. LetR′ be a normal monomial subring of a polynomial ring over a field K.Then
R′ is isomorphic to a subringRof a polynomial ringA=K[x1, . . . , xn]whereR is generated
by a full semigroup of monomials, and for every1� i�n, there exists a monomialai ∈ A

in the variablesx1, . . . , x̂i , . . . , xn, for whichai/xi is an element of the fraction field of R.

Proof. LetM ⊆ Nr be the subsemigroup corresponding to the inclusion of ringsR′ ⊆
K[y1, . . . , yr ]. Let W ⊆ Qr denote theQ-vector space spanned byM, andW ∗ =
HomQ(W,Q) be its dual vector space. Then

U = {w∗ ∈ W ∗ : w∗(m)�0 for all m ∈ M}
is a finite intersection of half-spaces inW ∗. Let w∗

1, . . . , w
∗
n ∈ U be a minimalQ+-

generating set forU, whereQ+ denotes the nonnegative rationals. Replacing eachw∗
i by

a suitable positive multiple, we may ensure thatw∗
i (m) ∈ N for all m ∈ M, and also that

w∗
i (M)�aZ for any integera�2. It is established in[3, Section 2]that the mapT : W →

Qn given by

T = (w∗
1, . . . , w

∗
n)

takesM to an isomorphic copyT (M) ⊆ Nn, which is a full subsemigroup ofNn. Let
R ⊆ A = K[x1, . . . , xn] be the monomial subring corresponding toT (M) ⊆ Nn.
Fix i with 1� i�n. Sincew∗

i (M)�aZ for any integera�2, the fraction field ofR
contains an elementxh11 · · · xhnn such thath1, . . . , hn ∈ Z andhi = −1. Also, there exists
m ∈ M such thatw∗

i (m) = 0 andw∗
j (m) �= 0 for all j �= i. ConsequentlyR contains a

monomial� = x
s1
1 · · · xsnn with si = 0 andsj >0 for all j �= i. For a suitably large integer

t�1, the element
x
h1
1 · · · xhnn �t = ai/xi
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belongs to the fraction field ofR where ai ∈ A is a monomial in the variables
x1, . . . , x̂i , . . . , xn. �

Proof of Theorem 1. By Lemma 5, we may assume thatR is a monomial subring
of A = K[x1, . . . , xn] satisfying the hypotheses of Lemma 4. For the choice of� as in
Lemma 4, the idealsa[q]

t :R�tq do not depend ont ∈ N. Settinga= a1 we get

aq = �

(
R

a[q]:R�q

)
= �

(
R

a[q]

)
− �

(
R

a[q] + �qR

)
,

i.e.,aq , as a function ofq=pe, is a difference of twoHilbert–Kunz functions. Letd=dimR.
By Monsky[8] the limits

eHK (a) = lim
q→∞

1

qd
�

(
R

a[q]

)
and eHK (a+ �R) = lim

q→∞
1

qd
�

(
R

a[q] + �qR

)
exist, and by Watanabe[11] they are rational numbers. Consequently the limit

lim
q→∞

aq

qd
= eHK (a) − eHK (a+ �R)

exists and is a rational number. The ringRis F-regular, so the positivity ofs(R) follows from
the main result of[2]; as an alternative proof, we point out that� /∈ a∗, and consequently
eHK (a)> eHK (a+ �R) by Hochster and Huneke[6, Theorem 8.17].
ByWatanabe[11] theHilbert–KunzmultiplicitieseHK (a)andeHK (a+�R)donot depend

on the characteristic of the fieldK, and so the same is true fors(R). �

Remark 6. Let (R,m,K) be a local or graded ring of characteristicp>0, and let� ∈
ER(K) be a generator of the socle of the injective hull ofK. In [12] Watanabe andYoshida
define the minimal relative Hilbert–Kunz multiplicity ofR to be

mHK (R) = lim inf
e→∞

�(R/annR(F e(�)))
pde

,

whered = dimR. They computemHK (R) in the caseR is the Segre product of polynomial
rings [12, Theorem 5.8]. Their work is closely related to our computation ofs(R) in the
example below.

3. Examples

Example 7. LetK be a perfect field of positive characteristic, and consider integersr, s�2.
LetRbe the Segre product of the polynomial ringsK[x1, . . . , xr ] andK[y1, . . . , ys], i.e.,
R is subring ofA = K[x1, . . . , xr , y1, . . . , ys] generated overK be the monomialsxiyj
for 1� i�r and 1�j�s. It is well-known thatR is isomorphic to the determinantal ring
obtained by killing the size two minors of anr × s matrix of indeterminates, and that the
dimension of the ringR is d = r + s − 1. Lemma 4 enables us to compute not just the
F-signatures(R), but also a closed-form expression for the numbersaq .



A.K. Singh / Journal of Pure and Applied Algebra 196 (2005) 313–321 319

The ringsR ⊆ A satisfy the hypotheses of Lemma 4, and so

aq = �

(
R

m
[q]
A ∩ R

)
= �

(
K[x1, . . . , xr ]
(x

q
1 , . . . , x

q
r )
#
K[y1, . . . , ys]
(y

q
1 , . . . , y

q
s )

)
,

where # denotes the Segre product. The Hilbert–Poincaré series of these rings are

Hilb

(
K[x1, . . . , xr ]
(x

q
1 , . . . , x

q
r )

, u

)
= (1− uq)r

(1− u)r
, Hilb

(
K[y1, . . . , ys]
(y

q
1 , . . . , y

q
s )

, v

)
= (1− vq)s

(1− v)s

and soaq is the sum of the coefficients ofuivi in the polynomial

(1− uq)r

(1− u)r
(1− vq)s

(1− v)s
∈ Z[u, v].

Thereforeaq equals the constant term of the Laurent polynomial

(1− uq)r

(1− u)r
(1− u)−q)s

(1− u−1)s
= us(1− uq)r+s

usq(1− u)r+s
∈ Z[u, u−1],

and hence the coefficient ofus(q−1) in

(1− uq)r+s

(1− u)r+s
=
[
r+s∑
i=0

(−1)i
(
r + s

i

)
uiq

]∑
n�0

(
d + n

d

)
un

 .

Consequently we get

aq =
s∑

i=0
(−1)i

(
r + s

i

)(
d + s(q − 1) − iq

d

)

=
s∑

i=0
(−1)i

(
d + 1
i

)(
q(s − i) + d − s

d

)
,

where we follow the convention that

(
m

n

)
= 0 unless 0�n�m. This shows that the

F-signature ofR is

s(R) = lim
q→∞

aq

qd
= 1

d!
s∑

i=0
(−1)i

(
d + 1
i

)
(s − i)d .

We point out thats(R) = A(d, s)/d! where the numbers

A(d, s) =
s∑

i=0
(−1)i

(
d + 1
i

)
(s − i)d

are theEulerian numbers, i.e., the number of permutations ofdobjects withs−1descents;
more precisely,A(d, s) is the number of permutations� = a1a2 · · · ad ∈ Sd whosedescent
set

D(�) = {i : ai > ai+1}



320 A.K. Singh / Journal of Pure and Applied Algebra 196 (2005) 313–321

has cardinalitys − 1, see[10, Section 1.3]. These numbers satisfy the recursion
A(d, s) = sA(d − 1, s) + (d − s + 1)A(d − 1, s − 1) whereA(1,1) = 1.

Example 8. LetK be a perfect field of positive characteristic. For integersn�1 andd�2,
letRbe thenthVeronese subring of the polynomial ringA=K[x1, . . . , xd ], i.e.,Ris subring
of A which is generated, as aK-algebra, by the monomials of degreen. In the cased = 2
andp�n, theF -signature ofR is s(R) = 1/n, as worked out in[7, Example 17].
It is readily seen that the ringsR ⊆ A satisfy the hypotheses of Lemma 4, and therefore

aq = �

(
R

m
[q]
A ∩ R

)
.

Consequentlyaq equals the sum of the coefficients of 1, tn, t2n, . . . in

Hilb

(
K[x1, . . . , xd ]
(x

q
1 , . . . , x

q
d )

, t

)
= (1− tq)d

(1− t)d
= (1+ t + t2+ · · · + tq−1)d .

Let f (m) be the sum of the coefficients of powers oftn in

(1+ t + t2+ · · · + tm−1)d .

A routine computation using, for example, induction ond, gives usf (n) = nd−1, and it
follows that

f (kn) = kdf (n) = kdnd−1.

To obtain bounds foraq = f (q), choose integerski with k1n�q�k2n where 0� |q −
kin|�n − 1. Thenf (k1n)�f (q)�f (k2n), and hence(

q − n + 1
n

)d
nd−1�kd1n

d−1�aq �kd2n
d−1�

(
q + n − 1

n

)d
nd−1.

Consequently,

aq = qd

n
+ O(qd−1),

ands(R) = 1/n .
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