ELSEVIER

The F-signature of an affine semigroup ring

Anurag K. Singh ${ }^{1}$
School of Mathematics, Georgia Institute of Technology, 686 Cherry Street, Atlanta, GA 30332-0160, USA

Received 29 March 2004; received in revised form 18 June 2004
Communicated by A.V. Geramita
Available online 30 September 2004
Dedicated to Professor Kei-ichi Watanabe on the occasion of his 60th birthday

Abstract

We prove that the F -signature of an affine semigroup ring of positive characteristic is always a rational number, and describe a method for computing this number. We use this method to determine the F-signature of Segre products of polynomial rings, and of Veronese subrings of polynomial rings. Our technique involves expressing the F-signature of an affine semigroup ring as the difference of the Hilbert-Kunz multiplicities of two monomial ideals, and then using Watanabe's result that these Hilbert-Kunz multiplicities are rational numbers.

© 2004 Elsevier B.V. All rights reserved.
MSC: 13A35; 13D40; 14M12

1. Introduction

Let (R, \mathfrak{m}) be a Cohen-Macaulay local or graded ring of characteristic $p>0$, such that the residue field R / \mathfrak{m} is perfect. We assume that R is reduced and F -finite. Throughout q shall denote a power of p, i.e., $q=p^{e}$ for $e \in \mathbb{N}$. Let

$$
R^{1 / q} \approx R^{a_{q}} \oplus M_{q}
$$

where M_{q} is an R-module with no free summands. The number a_{q} is unchanged when we replace R by its m -adic completion, and hence is well-defined by the Krull-Schmidt

[^0]theorem. In [7] Huneke and Leuschke define the F-signature of R as
$$
s(R)=\lim _{q \rightarrow \infty} \frac{a_{q}}{q^{\operatorname{dim} R}},
$$
provided this limit exists. In this note we study the F-signature of normal monomial rings, and our main result is

Theorem 1. Let K be a perfect field of positive characteristic, and R be a normal subring of a polynomial ring $K\left[x_{1}, \ldots, x_{n}\right]$ which is generated, as a K-algebra, by monomials in the variables x_{1}, \ldots, x_{n}. Then the F-signature $s(R)$ exists and is a positive rational number.
Moreover, $s(R)$ depends only on the semigroup of monomials generating R and not on the characteristic of the perfect field K.

We also develop a general method for computing $s(R)$ for monomial rings, and use it to determine the F-signature of Segre products of polynomial rings, and of Veronese subrings of polynomial rings.

In general, it seems reasonable to conjecture that the limit $s(R)$ exists and is a rational number. Huneke and Leuschke proved that the limit exists if R is a Gorenstein ring, [7, Theorem 11]. They also proved that a ring R is weakly F-regular whenever the limit is positive, and this was extended by Aberbach and Leuschke in [2].

Theorem 2. (Huneke and Leuschke [7], Aberbach and Leuschke [2]). Let (R, \mathfrak{m}) be an F-finite reduced Cohen-Macaulay ring of characteristic $p>0$. Then R is strongly F-regular if and only if

$$
\limsup _{q \rightarrow \infty} \frac{a_{q}}{q^{\operatorname{dim} R}}>0
$$

Further results on the existence of the F-signature are obtained by Aberbach and Enescu in the recent preprint [1]. Also, the work of Watanabe and Yoshida [12] and Yao [13] is closely related to the questions studied here.

We mentioned that a graded R-module decomposition of $R^{1 / q}$ was used by Peskine-Szpiro, Hartshorne and Hochster, to construct small Cohen-Macaulay modules for R in the case where R is an \mathbb{N}-graded ring of dimension three, finitely generated over a field R_{0} of characteristic $p>0$, see [5, Section 5 F]. The relationship between the R-module decomposition of $R^{1 / q}$ and the singularities of R was investigated by Smith and Van den Bergh in [9].

2. Semigroup rings

The semigroup of nonnegative integers will be denoted by \mathbb{N}. Let x_{1}, \ldots, x_{n} be variables over a field K. By a monomial in the variables x_{1}, \ldots, x_{n}, we will mean an element $x_{1}^{h_{1}} \cdots x_{n}^{h_{n}} \in K\left[x_{1}, \ldots, x_{n}\right]$ where $h_{i} \in \mathbb{N}$. We frequently switch between semigroups of monomials in x_{1}, \ldots, x_{n} and subsemigroups of \mathbb{N}^{n}, where we identify a monomial $x_{1}^{h_{1}} \cdots x_{n}^{h_{n}}$ with $\left(h_{1}, \ldots, h_{n}\right) \in \mathbb{N}^{n}$. A semigroup M of monomials is normal if it is finitely generated, and whenever a, b and c are monomials in M such that $a b^{k}=c^{k}$ for some positive
integer k, then there exists a monomial $\alpha \in M$ with $\alpha^{k}=a$. It is well-known that a semigroup M of monomials is normal if and only if the subring $K[M] \subseteq K\left[x_{1}, \ldots, x_{n}\right]$ is a normal ring, see [3, Proposition 1].

A semigroup M of monomials is full if whenever a, b and c are monomials such that $a b=c$ and $b, c \in M$, then $a \in M$. By Hochster [3, Proposition 1], a normal semigroup of monomials is isomorphic (as a semigroup) to a full semigroup of monomials in a possibly different set of variables.

Lemma 3. Let $A=K\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring over a field K, and $R \subseteq A$ be a subring generated by a full semigroup of monomials. Let \mathfrak{m} denote the homogeneous maximal ideal of R, and assume that R contains a monomial μ in which each variable x_{i} occurs with positive exponent. For positive integers t, let \mathfrak{a}_{t} denote the ideal of R generated by the monomials in R which do not divide μ^{t}.
(1) The ideals \mathfrak{a}_{t} are irreducible and \mathfrak{m}-primary, and the image of μ^{t} generates the socle of the ring R / \mathfrak{a}_{t}.
(2) The ideals \mathfrak{a}_{t} form a non-increasing sequence $\mathfrak{a}_{1} \supseteq \mathfrak{a}_{2} \supseteq \mathfrak{a}_{3} \supseteq \ldots$ which is cofinal with the sequence $\mathfrak{m} \supseteq \mathfrak{m}^{2} \supseteq \mathfrak{m}^{3} \supseteq \ldots$.
(3) Let M be a finitely generated R-module with no free summands. Then $\mu^{t} M \subseteq \mathfrak{a}_{t} M$ for all $t \gg 0$.
(4) Let K be a perfect field of characteristic $p>0$, and $R^{1 / q} \approx R^{a_{q}} \oplus M_{q}$ be an R-module decomposition of $R^{1 / q}$ where M_{q} has no free summands. Then

$$
a_{q}=\ell\left(\frac{R}{\mathfrak{a}_{t}^{[q]}: R \mu^{t q}}\right) \quad \text { for all } t \gg 0 .
$$

Proof. (1) It suffices to consider $t=1$ and $\mathfrak{a}=\mathfrak{a}_{1}$. Every non-constant monomial in R has a suitably high power which does not divide μ, so \mathfrak{a} is \mathfrak{m}-primary. If $\alpha \in R$ is any monomial of positive degree, then $\alpha \mu \in \mathfrak{a}$, and so $\mathfrak{m} \subseteq \mathfrak{a}:{ }_{R} \mu$. Also $\mu \notin \mathfrak{a}$, so we conclude that $\mathfrak{a}:{ }_{R} \mu=\mathfrak{m}$. Since \mathfrak{a} is a monomial ideal, the socle of R / \mathfrak{a} is spanned by the images of some monomials. If $\theta \in R$ is a monomial whose image is a nonzero element of the socle of R / \mathfrak{a}, then $\mu=\beta \theta$ for a monomial $\beta \in R$. If $\beta \in \mathfrak{m}$ then $\mu \in \mathfrak{m} \theta \subseteq \mathfrak{a}$, a contradiction. Consequently we must have $\beta=1$, i.e., $\theta=\mu$.
(2) Since each x_{i} occurs in $\mu \in R$ with positive exponent and R is generated by a full semigroup of monomials, we see that

$$
\mathfrak{a}_{t} \subseteq\left(x_{1}^{t+1}, \ldots, x_{n}^{t+1}\right) A \cap R .
$$

It follows that $\left\{\mathfrak{a}_{t}\right\}_{t \in \mathbb{N}}$ is cofinal with the sequence of ideals $\left\{\mathfrak{m}^{t}\right\}_{t \in \mathbb{N}}$.
(3) For an arbitrary element $m \in M$, consider the homomorphism $\phi: R \rightarrow M$ given by $r \mapsto r m$. Since the module M has no free summands, ϕ is not a split homomorphism. By Hochster [4, Remark 2], there exists $t_{0} \in \mathbb{N}$ such that $\mu^{t_{0}} m \in \mathfrak{a}_{t_{0}} M$, equivalently, such that the induced map

$$
\bar{\phi}_{t_{0}}: R / \mathfrak{a}_{t_{0}} \rightarrow M / \mathfrak{a}_{t_{0}} M
$$

is not injective. If $\bar{\phi}_{t}: R / \mathfrak{a}_{t} \rightarrow M / \mathfrak{a}_{t} M$ is injective for some $t \geqslant t_{0}$, then it splits since R / \mathfrak{a}_{t} is a Gorenstein ring of dimension zero; however this implies that the map

$$
\bar{\phi}_{t_{0}}: R / \mathfrak{a}_{t} \bigotimes_{R / \mathfrak{a}_{t}} R / \mathfrak{a}_{t_{0}} \rightarrow M / \mathfrak{a}_{t} M \bigotimes_{R / \mathfrak{a}_{t}} R / \mathfrak{a}_{t_{0}}
$$

splits as well, which is a contradiction. Consequently $\overline{\phi_{t}}\left(\overline{\mu^{t}}\right)=0$, and hence $\mu^{t} m \in \mathfrak{a}_{t} M$ for all $t \gg t_{0}$. The module M is finitely generated, and so we must have $\mu^{t} M \subseteq \mathfrak{a}_{t} M$ for all $t \gg 0$.
(4) For any ideal $\mathfrak{b} \subseteq R$, we have

$$
\frac{R^{1 / q}}{\mathrm{~b} R^{1 / q}} \cong\left(\frac{R}{\mathrm{~b} R}\right)^{a_{q}} \oplus \frac{M_{q}}{\mathrm{~b} M_{q}}
$$

and so

$$
\ell\left(\frac{R}{\mathrm{~b}^{[q]}}\right)=\ell\left(\frac{R^{1 / q}}{\mathrm{~b} R^{1 / q}}\right)=a_{q} \ell\left(\frac{R}{\mathrm{~b}}\right)+\ell\left(\frac{M_{q}}{\mathrm{~b} M_{q}}\right) .
$$

Using this for the ideals \mathfrak{a}_{t} and $\mathfrak{a}_{t}+\mu^{t} R$ and taking the difference, we get

$$
\begin{aligned}
a_{q} & {\left[\ell\left(\frac{R}{\mathfrak{a}_{t}}\right)-\ell\left(\frac{R}{\mathfrak{a}_{t}+\mu^{t} R}\right)\right]+\ell\left(\frac{M_{q}}{\mathfrak{a}_{t} M_{q}}\right)-\ell\left(\frac{M_{q}}{\mathfrak{a}_{t} M_{q}+\mu^{t} M_{q}}\right) } \\
& =\ell\left(\frac{R}{\mathfrak{a}_{t}^{[q]}}\right)-\ell\left(\frac{R}{\mathfrak{a}_{t}^{[q]}+\mu^{t q} R}\right)=\ell\left(\frac{R}{\mathfrak{a}_{t}^{[q]}:{ }_{R} \mu^{t q}}\right)
\end{aligned}
$$

By (3) $\mu^{t} M_{q} \subseteq \mathfrak{a}_{t} M_{q}$ for all $t \gg 0$, and the result follows.
Lemma 4. Let K be a perfect field of characteristic $p>0$, and R be a subring of $A=$ $K\left[x_{1}, \ldots, x_{n}\right]$ generated by a full semigroup of monomials with the property that for every i with $1 \leqslant i \leqslant n$, there exists a monomial $a_{i} \in A$ in the variables $x_{1}, \ldots, \widehat{x_{i}}, \ldots, x_{n}$ such that $a_{i} / x_{i}=\mu_{i} / \eta_{i}$ for monomials $\mu_{i}, \eta_{i} \in R$. Let $\mu_{0} \in R$ be a monomial in which each x_{i} occurs with positive exponent, and set $\mu=\mu_{0} \mu_{1} \cdots \mu_{n}$. For $t \geqslant 1$, let \mathfrak{a}_{t} be the ideal of R generated by monomials in R which do not divide μ^{t}. Then, for every prime power $q=p^{e}$ and integer $t \geqslant 1$, we have

$$
\mathfrak{a}_{t}^{[q]}: R \mu^{t q}=\mathfrak{m}_{A}^{[q]} \cap R
$$

where $\mathfrak{m}_{A}=\left(x_{1}, \ldots, x_{n}\right) A$ is the maximal ideal of A. If $R^{1 / q} \approx R^{a_{q}} \oplus M_{q}$ is an R-module decomposition of $R^{1 / q}$ where M_{q} has no free summands, then

$$
a_{q}=\ell\left(\frac{R}{\mathfrak{a}_{t}^{[q]}: R \mu^{t q}}\right)=\ell\left(\frac{R}{\mathfrak{m}_{A}^{[q]} \cap R}\right) \quad \text { for all } q=p^{e} \text { and } t \geqslant 1 \text {. }
$$

Proof. By Lemma 3(4), it suffices to prove that

$$
\mathfrak{a}_{t}^{[q]}: R \mu^{t q}=\mathfrak{m}_{A}^{[q]} \cap R \quad \text { for all } q=p^{e} \text { and } t \geqslant 1 .
$$

Given a monomial $r \in \mathfrak{a}_{t}^{[q]}:{ }_{R} \mu^{t q}$, there exists a monomial $\eta \in R$ which does not divide μ^{t} for which $r \mu^{t q} \in \eta^{q} R$. Since μ^{t} / η is an element of the fraction field of R which is not in R, we must have $\mu^{t} / \eta \notin A$ and so $\eta A:_{A} \mu^{t} \subseteq \mathfrak{m}_{A}$. Taking Frobenius powers over the regular ring A, we get

$$
\eta^{q} A:_{A} \mu^{t q} \subseteq \mathfrak{m}_{A}^{[q]}
$$

and hence $r \in \mathfrak{m}_{A}^{[q]} \cap R$. This shows that $\mathfrak{a}_{t}^{[q]}: R \mu^{t q} \subseteq \mathfrak{m}_{A}^{[q]} \cap R$.
For the reverse inclusion, consider a monomial $b x_{i}^{q} \in R$ where $b \in A$. Then

$$
b x_{i}^{q} \mu^{t q}=b a_{i}^{q}\left(\frac{\mu^{t} \eta_{i}}{\mu_{i}}\right)^{q},
$$

where $b a_{i}^{q}$ and $\mu^{t} \eta_{i} / \mu_{i}$ are elements of R. It remains to verify that $\mu^{t} \eta_{i} / \mu_{i} \in \mathfrak{a}_{t}$, i.e., that it does not divide μ^{t} in R. Since

$$
\frac{\mu^{t}}{\mu^{t} \eta_{i} / \mu_{i}}=\frac{a_{i}}{x_{i}},
$$

this follows immediately.
Lemma 5. Let R^{\prime} be a normal monomial subring of a polynomial ring over a field K. Then R^{\prime} is isomorphic to a subring R of a polynomial ring $A=K\left[x_{1}, \ldots, x_{n}\right]$ where R is generated by a full semigroup of monomials, and for every $1 \leqslant i \leqslant n$, there exists a monomial $a_{i} \in A$ in the variables $x_{1}, \ldots, \widehat{x_{i}}, \ldots, x_{n}$, for which a_{i} / x_{i} is an element of the fraction field of R.

Proof. Let $M \subseteq \mathbb{N}^{r}$ be the subsemigroup corresponding to the inclusion of rings $R^{\prime} \subseteq$ $K\left[y_{1}, \ldots, y_{r}\right]$. Let $W \subseteq \mathbb{Q}^{r}$ denote the \mathbb{Q}-vector space spanned by M, and $W^{*}=$ $\operatorname{Hom}_{\mathbb{Q}}(W, \mathbb{Q})$ be its dual vector space. Then

$$
U=\left\{w^{*} \in W^{*}: w^{*}(m) \geqslant 0 \quad \text { for all } m \in M\right\}
$$

is a finite intersection of half-spaces in W^{*}. Let $w_{1}^{*}, \ldots, w_{n}^{*} \in U$ be a minimal $\mathbb{Q}_{+}-$ generating set for U, where \mathbb{Q}_{+}denotes the nonnegative rationals. Replacing each w_{i}^{*} by a suitable positive multiple, we may ensure that $w_{i}^{*}(m) \in \mathbb{N}$ for all $m \in M$, and also that $w_{i}^{*}(M) \nsubseteq a \mathbb{Z}$ for any integer $a \geqslant 2$. It is established in [3, Section 2] that the map $T: W \rightarrow$ \mathbb{Q}^{n} given by

$$
T=\left(w_{1}^{*}, \ldots, w_{n}^{*}\right)
$$

takes M to an isomorphic copy $T(M) \subseteq \mathbb{N}^{n}$, which is a full subsemigroup of \mathbb{N}^{n}. Let $R \subseteq A=K\left[x_{1}, \ldots, x_{n}\right]$ be the monomial subring corresponding to $T(M) \subseteq \mathbb{N}^{n}$.

Fix i with $1 \leqslant i \leqslant n$. Since $w_{i}^{*}(M) \nsubseteq a \mathbb{Z}$ for any integer $a \geqslant 2$, the fraction field of R contains an element $x_{1}^{h_{1}} \cdots x_{n}^{h_{n}}$ such that $h_{1}, \ldots, h_{n} \in \mathbb{Z}$ and $h_{i}=-1$. Also, there exists $m \in M$ such that $w_{i}^{*}(m)=0$ and $w_{j}^{*}(m) \neq 0$ for all $j \neq i$. Consequently R contains a monomial $\alpha=x_{1}^{s_{1}} \cdots x_{n}^{s_{n}}$ with $s_{i}=0$ and $s_{j}>0$ for all $j \neq i$. For a suitably large integer $t \geqslant 1$, the element

$$
x_{1}^{h_{1}} \cdots x_{n}^{h_{n}} \alpha^{t}=a_{i} / x_{i}
$$

belongs to the fraction field of R where $a_{i} \in A$ is a monomial in the variables $x_{1}, \ldots, \widehat{x_{i}}, \ldots, x_{n}$.

Proof of Theorem 1. By Lemma 5, we may assume that R is a monomial subring of $A=K\left[x_{1}, \ldots, x_{n}\right]$ satisfying the hypotheses of Lemma 4. For the choice of μ as in Lemma 4, the ideals $\mathfrak{a}_{t}^{[q]}:{ }_{R} \mu^{t q}$ do not depend on $t \in \mathbb{N}$. Setting $\mathfrak{a}=\mathfrak{a}_{1}$ we get

$$
a_{q}=\ell\left(\frac{R}{\mathfrak{a}^{[q]}: R \mu^{q}}\right)=\ell\left(\frac{R}{\mathfrak{a}^{[q]}}\right)-\ell\left(\frac{R}{\mathfrak{a}^{[q]}+\mu^{q} R}\right),
$$

i.e., a_{q}, as a function of $q=p^{e}$, is a difference of two Hilbert-Kunz functions. Let $d=\operatorname{dim} R$. By Monsky [8] the limits

$$
e_{\mathrm{HK}}(\mathfrak{a})=\lim _{q \rightarrow \infty} \frac{1}{q^{d}} \ell\left(\frac{R}{\mathfrak{a}^{[q]}}\right) \quad \text { and } \quad e_{\mathrm{HK}}(\mathfrak{a}+\mu R)=\lim _{q \rightarrow \infty} \frac{1}{q^{d}} \ell\left(\frac{R}{\mathfrak{a}^{[q]}+\mu^{q} R}\right)
$$

exist, and by Watanabe [11] they are rational numbers. Consequently the limit

$$
\lim _{q \rightarrow \infty} \frac{a_{q}}{q^{d}}=e_{\mathrm{HK}}(\mathfrak{a})-e_{\mathrm{HK}}(\mathfrak{a}+\mu R)
$$

exists and is a rational number. The ring R is F-regular, so the positivity of $s(R)$ follows from the main result of [2]; as an alternative proof, we point out that $\mu \notin \mathfrak{a}^{*}$, and consequently $e_{\mathrm{HK}}(\mathfrak{a})>e_{\mathrm{HK}}(\mathfrak{a}+\mu R)$ by Hochster and Huneke [6, Theorem 8.17].

By Watanabe [11] the Hilbert-Kunz multiplicities $e_{\mathrm{HK}}(\mathfrak{a})$ and $e_{\mathrm{HK}}(\mathfrak{a}+\mu R)$ do not depend on the characteristic of the field K, and so the same is true for $s(R)$.

Remark 6. Let (R, \mathfrak{m}, K) be a local or graded ring of characteristic $p>0$, and let $\eta \in$ $E_{R}(K)$ be a generator of the socle of the injective hull of K. In [12] Watanabe and Yoshida define the minimal relative Hilbert-Kunz multiplicity of R to be

$$
m_{\mathrm{HK}}(R)=\lim _{e \rightarrow \infty} \inf \frac{\ell\left(R / \operatorname{ann}_{R}\left(F^{e}(\eta)\right)\right)}{p^{d e}},
$$

where $d=\operatorname{dim} R$. They compute $m_{\mathrm{HK}}(R)$ in the case R is the Segre product of polynomial rings [12, Theorem 5.8]. Their work is closely related to our computation of $s(R)$ in the example below.

3. Examples

Example 7. Let K be a perfect field of positive characteristic, and consider integers $r, s \geqslant 2$. Let R be the Segre product of the polynomial rings $K\left[x_{1}, \ldots, x_{r}\right]$ and $K\left[y_{1}, \ldots, y_{s}\right]$, i.e., R is subring of $A=K\left[x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{s}\right]$ generated over K be the monomials $x_{i} y_{j}$ for $1 \leqslant i \leqslant r$ and $1 \leqslant j \leqslant s$. It is well-known that R is isomorphic to the determinantal ring obtained by killing the size two minors of an $r \times s$ matrix of indeterminates, and that the dimension of the ring R is $d=r+s-1$. Lemma 4 enables us to compute not just the F-signature $s(R)$, but also a closed-form expression for the numbers a_{q}.

The rings $R \subseteq A$ satisfy the hypotheses of Lemma 4 , and so

$$
a_{q}=\ell\left(\frac{R}{\mathfrak{m}_{A}^{[q]} \cap R}\right)=\ell\left(\frac{K\left[x_{1}, \ldots, x_{r}\right]}{\left(x_{1}^{q}, \ldots, x_{r}^{q}\right)} \# \frac{K\left[y_{1}, \ldots, y_{s}\right]}{\left(y_{1}^{q}, \ldots, y_{s}^{q}\right)}\right),
$$

where \# denotes the Segre product. The Hilbert-Poincaré series of these rings are

$$
\operatorname{Hilb}\left(\frac{K\left[x_{1}, \ldots, x_{r}\right]}{\left(x_{1}^{q}, \ldots, x_{r}^{q}\right)}, u\right)=\frac{\left(1-u^{q}\right)^{r}}{(1-u)^{r}}, \quad \operatorname{Hilb}\left(\frac{K\left[y_{1}, \ldots, y_{s}\right]}{\left(y_{1}^{q}, \ldots, y_{s}^{q}\right)}, v\right)=\frac{\left(1-v^{q}\right)^{s}}{(1-v)^{s}}
$$

and so a_{q} is the sum of the coefficients of $u^{i} v^{i}$ in the polynomial

$$
\frac{\left(1-u^{q}\right)^{r}}{(1-u)^{r}} \frac{\left(1-v^{q}\right)^{s}}{(1-v)^{s}} \in \mathbb{Z}[u, v] .
$$

Therefore a_{q} equals the constant term of the Laurent polynomial

$$
\frac{\left(1-u^{q}\right)^{r}}{(1-u)^{r}} \frac{\left.(1-u)^{-q}\right)^{s}}{\left(1-u^{-1}\right)^{s}}=\frac{u^{s}\left(1-u^{q}\right)^{r+s}}{u^{s q}(1-u)^{r+s}} \in \mathbb{Z}\left[u, u^{-1}\right],
$$

and hence the coefficient of $u^{s(q-1)}$ in

$$
\frac{\left(1-u^{q}\right)^{r+s}}{(1-u)^{r+s}}=\left[\sum_{i=0}^{r+s}(-1)^{i}\binom{r+s}{i} u^{i q}\right]\left[\sum_{n \geqslant 0}\binom{d+n}{d} u^{n}\right] .
$$

Consequently we get

$$
\begin{aligned}
a_{q} & =\sum_{i=0}^{s}(-1)^{i}\binom{r+s}{i}\binom{d+s(q-1)-i q}{d} \\
& =\sum_{i=0}^{s}(-1)^{i}\binom{d+1}{i}\binom{q(s-i)+d-s}{d},
\end{aligned}
$$

where we follow the convention that $\binom{m}{n}=0$ unless $0 \leqslant n \leqslant m$. This shows that the F -signature of R is

$$
s(R)=\lim _{q \rightarrow \infty} \frac{a_{q}}{q^{d}}=\frac{1}{d!} \sum_{i=0}^{s}(-1)^{i}\binom{d+1}{i}(s-i)^{d} .
$$

We point out that $s(R)=A(d, s) / d$! where the numbers

$$
A(d, s)=\sum_{i=0}^{s}(-1)^{i}\binom{d+1}{i}(s-i)^{d}
$$

are the Eulerian numbers, i.e., the number of permutations of d objects with $s-1$ descents; more precisely, $A(d, s)$ is the number of permutations $\pi=a_{1} a_{2} \cdots a_{d} \in S_{d}$ whose descent set

$$
D(\pi)=\left\{i: a_{i}>a_{i+1}\right\}
$$

has cardinality $s-1$, see [10, Section 1.3]. These numbers satisfy the recursion

$$
A(d, s)=s A(d-1, s)+(d-s+1) A(d-1, s-1) \quad \text { where } A(1,1)=1 .
$$

Example 8. Let K be a perfect field of positive characteristic. For integers $n \geqslant 1$ and $d \geqslant 2$, let R be the nth Veronese subring of the polynomial ring $A=K\left[x_{1}, \ldots, x_{d}\right]$, i.e., R is subring of A which is generated, as a K-algebra, by the monomials of degree n. In the case $d=2$ and $p \nmid n$, the F-signature of R is $s(R)=1 / n$, as worked out in [7, Example 17].

It is readily seen that the rings $R \subseteq A$ satisfy the hypotheses of Lemma 4, and therefore

$$
a_{q}=\ell\left(\frac{R}{\mathfrak{m}_{A}^{[q]} \cap R}\right) .
$$

Consequently a_{q} equals the sum of the coefficients of $1, t^{n}, t^{2 n}, \ldots$ in

$$
\operatorname{Hilb}\left(\frac{K\left[x_{1}, \ldots, x_{d}\right]}{\left(x_{1}^{q}, \ldots, x_{d}^{q}\right)}, t\right)=\frac{\left(1-t^{q}\right)^{d}}{(1-t)^{d}}=\left(1+t+t^{2}+\cdots+t^{q-1}\right)^{d} .
$$

Let $f(m)$ be the sum of the coefficients of powers of t^{n} in

$$
\left(1+t+t^{2}+\cdots+t^{m-1}\right)^{d}
$$

A routine computation using, for example, induction on d, gives us $f(n)=n^{d-1}$, and it follows that

$$
f(k n)=k^{d} f(n)=k^{d} n^{d-1}
$$

To obtain bounds for $a_{q}=f(q)$, choose integers k_{i} with $k_{1} n \leqslant q \leqslant k_{2} n$ where $0 \leqslant \mid q-$ $k_{i} n \mid \leqslant n-1$. Then $f\left(k_{1} n\right) \leqslant f(q) \leqslant f\left(k_{2} n\right)$, and hence

$$
\left(\frac{q-n+1}{n}\right)^{d} n^{d-1} \leqslant k_{1}^{d} n^{d-1} \leqslant a_{q} \leqslant k_{2}^{d} n^{d-1} \leqslant\left(\frac{q+n-1}{n}\right)^{d} n^{d-1} .
$$

Consequently,

$$
a_{q}=\frac{q^{d}}{n}+O\left(q^{d-1}\right),
$$

and $s(R)=1 / n$.

Acknowledgements

I would like to thank Ezra Miller for several useful discussions.

References

[1] I.M. Aberbach, F. Enescu, When does the F-signature exist? preprint.
[2] I.M. Aberbach, G.J. Leuschke, The F-signature and strong F-regularity, Math. Res. Lett. 10 (2003) 51-56.
[3] M. Hochster, Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes, Ann. of Math. 96 (2) (1972) 318-337.
[4] M. Hochster, Contracted ideals from integral extensions of regular rings, Nagoya Math. J. 51 (1973) 25-43.
[5] M. Hochster, Big Cohen-Macaulay modules and algebras and embeddability in rings of Witt vectors, Conference on Commutative Algebra-1975 Queen's Univ., Kingston, Ont., 1975, pp. 106-195. Queen's Papers on Pure and Applied Math., No. 42, Queen's Univ., Kingston, Ont., 1975.
[6] M. Hochster, C. Huneke, Tight closure, invariant theory, and the Briançon-Skoda theorem, J. Amer. Math. Soc. 3 (1990) 31-116.
[7] C. Huneke, G.J. Leuschke, Two theorems about maximal Cohen-Macaulay modules, Math. Ann. 324 (2002) 391-404.
[8] P. Monsky, The Hilbert-Kunz function, Math. Ann. 263 (1983) 43-49.
[9] K.E. Smith, M. Van den Bergh, Simplicity of rings of differential operators in prime characteristic, Proc. London Math. Soc. 75 (3) (1997) 32-62.
[10] R. Stanley, Enumerative Combinatorics, Vol. I, Wadsworth \& Brooks/Cole Advanced Books \& Software, Monterey, CA, 1986.
[11] K.-i. Watanabe, Hilbert-Kunz multiplicity of toric rings, Proc. Inst. Natural Sci., Nihon Univ. 35 (2000) 173-177.
[12] K.-i. Watanabe, K.-i. Yoshida, Minimal relative Hilbert-Kunz multiplicity, Illinois J. Math. 428 (2004) 273-294.
[13] Y. Yao, Observations on the F-signature of local rings of characteristic p, preprint.

[^0]: E-mail address: singh@math.gatech.edu (A.K. Singh).
 ${ }^{1}$ Supported in part by the National Science Foundation under Grants DMS-0070268 and DMS-0300600.

