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Abstract

Test ideals play a crucial role in the theory of tight closure developed by Melvin Hochster
and Craig Huneke. Recently, Karen Smith showed that test ideals are closely related to certain
multiplier ideals that arise in vanishing theorems in algebraic geometry. In this paper we develop
a generalization of the notion of test ideals: for complete local rings R and S, where S is a
module-finite extension of R, we define a module of relative test elements T(S,R) which is a
submodule of Homg(S,R). (© 2001 Elsevier Science B.V. All rights reserved.

MSC: 13A35; 13H10

1. Introduction

Throughout this paper, all rings are commutative, Noetherian, and contain a field
of characteristic p > 0. The theory of tight closure was developed by Hochster and
Huneke in [3]. Tight closure is a closure operation on ideals, i.e., for an ideal / of a
ring R, the tight closure of / is a possibly larger ideal denoted by /*. The test ideal
is the ideal consisting of elements which, for every ideal /, multiply elements of I*
into the ideal /. A study of test ideals led to the uniform Artin—Rees theorems of
Huneke [7] and their importance is also highlighted by the recent work [12] where it
is established that for certain local rings of characteristic zero, the multiplier ideal (as
defined in [9]) is a universal test ideal.

Let R and S be complete local rings where S is a module-finite extension of the
subring R. We shall define the module of relative test elements T(S,R) as a submodule
of the module of R-linear homomorphisms Homg(S, R). This gives a generalization of
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test ideals in the following sense: for a complete local ring S, the module 7(S,S)
is isomorphic to the test ideal of S. While we do not pursue it here the theory can
also be developed when R and S are N-graded rings over a perfect (or F-finite) field
Ry=Sy=K.

If the subring R of S is Gorenstein, then Homg(S, R) = wg, the canonical module of S,
and 7(S,R) may be viewed as a submodule of wg. We show that 7'(S,R) does not de-
pend on a specific choice of the Gorenstein subring R and is, in fact, the parameter test
module defined in [11]. This is an F-submodule of wy in the terminology of Smith [11],
and consequently has suitable localization properties.

2. Notation and definitions

Let R be a Noetherian ring of characteristic p > 0. The letter e denotes a variable
nonnegative integer, and ¢ its eth power, g= p°. A reduced ring R, is said to be F-finite
if RY/7, the ring obtained by adjoining all pth roots of elements of R, is module-finite
over R. A finitely generated algebra R over a field K is F-finite precisely when K'/7
is a finite field extension of K.

We shall denote by R° the complement of the union of the minimal primes of R. An
ideal I=(x1,...,x,) CR is said to be a parameter ideal if the images of xi,...,x, form
part of a system of parameters in the local ring Rp for every prime ideal P containing /.

We shall denote by F' the Frobenius endomorphism of R and by F*, its eth iteration.
For an ideal /=(x1,...,x,) C R, we use /9! to denote ¢ (I)R=(x{,...,x}) where g=p°.
For an R-module M, the R-module structure of F¢(M) is given by r'(r @m)=r'r @ m,
and ¥ ® rm = r'r! ® m. For R-modules N C M, we use N}{}” to denote Im(F¢(N) —
Fé(M)). We say that u € Ny, the tight closure of N in M, if there exists ¢ € R’
such that cu? € N/{}] for all ¢ = p*>0. If Nj; =N we say that N is a tightly closed
submodule of M.

It is worth recording the case when M =R and N =1 is an ideal of R. For an
clement x of R, we say that x € [* if there exists ¢ € R such that cx? € 119 for all
qg=p°>0.

For R-modules N CM we define N;/%, the finitistic tight closure of N in M, as
the union of the modules (M’ N N);,, where the union is taken over all the finitely
generated submodules M’ of M.

A ring R is weakly F-regular if every ideal of R is tightly closed, and is F-regular if
every localization is weakly F-regular. An F-rational ring is one in which all parameter
ideal are tightly closed.

The test ideal of the ring R is defined as

TR = ﬂ Anng0},,
M

where M runs through all finitely generated R-modules. If a local ring (R,m) is ap-
proximately Gorenstein, i.e., has a sequence of m-primary irreducible ideals {/;} cofinal



A.K. Singh/!Journal of Pure and Applied Algebra 158 (2001) 101-109 103

with the powers of m, then
= U I).
t

It should be mentioned that an excellent reduced ring is approximately Gorenstein.

We say that an element ¢ € R® is a test element if for all ideals I of R, we have
c*ClI.

It is not known if the test ideal commutes with localization and completion in general,
but several strong positive results are now available: in [10] Smith showed that if R is
a complete local Gorenstein ring with test ideal 7, then the test ideal of a localization
Rp is TRp. In [2] Aberbach and MacCrimmon showed that the same result is true if
R is a reduced Q-Gorenstein local ring. More recently, Lyubeznik and Smith proved
that if a ring R is Cohen-Macaulay with only isolated non-Gorenstein points, or if it
has only isolated singularities, or if it is N-graded over a field, then test elements of
R continue to be test elements after localization and completion, see [8].

Our references for the theory of tight closure are [3—6]. We next record some well
known facts about local cohomology and canonical modules.

Let (R,m,K) be a local ring of dimension with a system of parameters xi,...,x .
The local cohomology module H%(R) of R may be identified with

T R
1 (!, .. XDR’
where the maps in the direct are induced by multiplication by the element xj - - - x4.
Let Egr = Er(K) denote the injective hull of the residue field K as an R-module. If R
is a complete local ring, then we may define the canonical module of R to be

wg = Homg(H3(R), Er)
and we then have
Homg(wg, Er) = HY(R).

If, in addition, R is normal then H,ﬁ,[(a)R) =~ Ep.
For a local inclusion (R,m,K) < (S,n,L) where S is module-finite over the subring
R, the module Homg(S, wg) is isomorphic to the canonical module of the ring S.

3. The module of relative test elements

Throughout this paper (R,m,K) and (S,n,L) will be complete local rings where S
is module-finite over the subring R. We shall also assume that these rings are reduced
and F-finite. In this setting we shall define the module of relative test elements as a
submodule of Homg(S, R), the S-module consisting of R-linear homomorphism from S
to the ring R.

Let Er denote the injective hull of the residue field K as an R-module. Then Eg =
Homg(S, Er) is the injective hull of L as an S-module. The following isomorphisms
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are easily verified:
Homg(Er ®r S, Homg(S, Ez)) = Homg(Er @r S ®s S, Er)
= Hompg(ER ®r S, ER)
= Homg(S, Homg(Er, ER))
=~ Homg(S, R).

Under these isomorphism, a map ¢ € Homg(S,R) corresponds to the map d; €
Homg(Er @z S,Homp(S, Er)) where, for elements s and s’ € S and e € E, we have

(d(e @ 5))(s") = p(ss)e € Eg.
Consider the inclusion

* [
OER%RS CEr @RS,

where 02}{ %R s denotes the finitistic tight closure of the zero submodule of the S-module,
Er ®g S. Applying the functor ¥ = Homg( ,Es), we get a surjection

Homg(S, R) > (05/%, ¢)V.

and the module of relative test elements T(S,R) is defined as the kernel of this sur-
jection:

T(S,R) = {¢ € Homg(S,R): $(0;/% <)=0}.

Proposition 1. For complete local reduced rings R and S where S is module-finite

over the subring R, the following are equivalent characterizations of the module of

relative test elements: _

(1) T(S,R) = {¢ € Homg(S,R): ¢(03/% ¢)=0},

(2) T(S,R)={¢ € Homp(S,R): p((IS)*) C 1 for all ideals I CR}, and

(3) T(S,R)={¢ € Homg(S,R): ¢((I:S)*) CI; where {I,} is a sequence of m-primary
irreducible ideals of R cofinal with the powers of m.

Proof. Since R is an excellent reduced ring, it is approximately Gorenstein, and there
exists a sequence {I;} of m-primary irreducible ideals cofinal with the powers of the
maximal ideal. Since R/I, = Anng,(];), we may write Ex = lim R/I,. Note that

(p(smod 1,))(s") = ¢(ss’)mod I,.

The condition qg(OZ Zak ¢)=0 is therefore equivalent to the condition that ¢((/,S)*)C 1,
for all £ > 1. It remains to show that this implies ¢((ZS)*)C/ for all ideals / CR.

Let ¢ € Homg(S, R) be a homomorphism which satisfies ¢((Z:S)*) C I, for all £ > 1.
If there exists an element x € R and an ideal / such that x € (IS)* but ¢(x) & I then
we may choose / to be maximal with respect to this property, i.e., ¢p(x) € J for every
ideal J strictly bigger than /. Note that this implies ¢(x)m C I and consequently that
Rp(x) = R/m. In other words, the R/I-linear inclusion

R/m — R/I where 1 ¢(x)
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is an essential extension. It follows that / must be m-primary and so we may pick ¢
such that [, C/. Let r € R be the preimage of a socle generator in R/I,. There is a
homomorphism R/m — R/I, under which 1 — 7. Since R/I, is injective when regarded
as a module over itself, we get a homomorphism o : R/I — R/I,. Let a(1) =/ € R/I,
where 4 € R.

l—¢(x)
0 R/m R/

1—7
R/,

Since A/ CI, and x € (IS)*, we get Ax € ([,S)*. By our hypothesis on ¢, ¢p(ix) =
A¢(x) € I,. However, the commutativity of the above diagram tells us that A¢p(x)=7r=0
in R/I;, a contradiction since 7 is the socle generator in R/l;,. [J

It follows immediately from the above proposition that for a complete local reduced
ring S, after identifying Homg(S,S) with the ring S, the module 7(S,S) is precisely
the test ideal of S. We next record some observations about the module of relative test
elements:

Proposition 2. Let R and S be complete local reduced rings where the ring S is

module-finite over its subring R.

(1) If s denotes the test ideal of S, then ts Homg(S,R) C T(S,R).

(2) If ¢ € T(S,R) then ¢(1) is an element of tg, the test ideal of R.

(3) Assume that R is a direct summand of S as an R-module. Then ¢ € 1z if and
only if there exists ¢ € T(S,R) with ¢(1)=c.

(4) The ring R is weakly F-regular if and only if there exists an element ¢ € T(S,R)
with ¢(1)=1.

Proof. (1) Let c€tg and ¢ € Homg(S,R). If x € (IS)* for an ideal / of R, then
cx € IS and consequently

(ch)x) = ¢(cx) € pUIS) S 1.

Hence c¢ € T(S,R).

(2) If x € I* then x € (IS)* and so for ¢ € T(S,R) we have ¢(1)x = ¢p(x) € 1.
Consequently ¢(x) € 1z.

(3) If R is a direct summand of S, we have an inclusion i : Ex — Er ®z S where
i:e— e® 1. Applying the functor ¥ = Homg( ,Eg), we get a map Homp(S,R) — R
and it is easily verified that this map takes a homomorphism ¢ € Homg(S,R) to the
element ¢(1) € R. We first show that

0314, (i(ER) Ci(05).
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To see this, choose d € R which is a test element for the ring R as well as for the
ring S. Let u® 1 € Oyg ¢ Ni(N) where N is a finitely generated submodule of Er
which contains the element u. Then

dw) =0 in FYN @z S)
and so u ® 1 € i(0y). »
If an element ¢ € R is in 1z, then ¢ € AnnR(Og‘”), and so

c € Anng(0/% ¢ N i(ER)).

Consequently, ¢ kills the kernel of the homomorphism
. (g, —i)
0/ @ Eg————Eg ®g S.

Applying the functor v

morphism

= Homg( ,Es) we see that ¢ kills the cokernel of the homo-
RIS TINY
Homg(S, R)————(0x,,s) " X R.

Hence, there exists a homomorphism ¢ € Homg(S, R) with

(¢pmod T'(S,R), p(1)) = ¢(0, 1),

ie., ¢ € T(S,R) and ¢(1)=c.

(4) If R is weakly F-regular, then it is a direct summand of the module-finite
extension ring S by Theorem 5.25 of Hochster and Huneke [5]. The result then follows
from (2) and (3) above. [

4. The case of a Gorenstein subring

We examine the case when the subring R is assumed to be Gorenstein. This hypothe-
sis gives us an isomorphism Homg(S, R) = wg, where wy is the canonical module of S.
Note that

Er @ S = HI(R) @z S = HI(S),

where d is the dimension of the ring S. Let xy,...,x; be a system of parameters for
the ring S. If the ring S is normal then

. ws
H(wg) = lim ———————
n(@s) am (xf,...,x)ws
is isomorphic to Eg, the injective hull of the residue field of S. There is a natural action
of ws on HY(S) given by the pairing wg x HY(S) — Es. Taking wg to be Homg(S, R),
we have

T(S,R) = Ker(wg — (O;,;,(S))V) = Anng,0fy(s).-

Note that as a submodule of a fixed canonical module wg, the module 7'(S,R) does not
depend on the choice of the Gorenstein subring R and in fact T(S,R) is precisely the
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parameter test module defined in [11]. We shall say that for a complete local normal
domain S, the parameter test module is

T6(S) = AnanOI*,”d(s).

In the discussion above, we have established:

Proposition 3. Let (R,m,K)C(S,n,L) be complete local rings of dimension d where
the ring S is Cohen—Macaulay and normal and is module-finite over the Gorenstein
subring R. Then, the module T(S,R) of relative test elements, as a submodule of the
canonical module of S, is Tg(S) = AnanO]*{g(S).

Since OJ*W(S) is a submodule of HY(S) stable under the action of the Frobenius, in

the terminonlogy of Smith [11] its annihilator 7¢(S) in wg is an F-submodule of wg.
Using the results of Smith [11] we see that 7¢(S) has suitable localization properties.

Proposition 4. Let S be a complete local domain of dimension d which is Cohen—
Macaulay and normal. If P is a prime ideal of the ring S, then

T6(S) ®@s Sp = Ts(Sp).

Proof. If ¢ € TG(S) we first show that ¢/1 € TG(Sp) = Anny, 01*1"(Sp)' Let the prime
ideal P have height i. If

z x4 x! . z x! xt *
[1 + <11,...,1)} S OH,(SP), we then have 1 € ((11,...,1> Sp> .

By Aberbach et al. [1, Theorem 6.9], tight closure commutes with localization for
ideals generated by a regular sequence, and so there exists an element u € S — P such
that uz € (x},...,x!)S*. Hence, for all # > 1, we have uz € (x},...,x\,x ... x{)S*.
Since ¢ € Tg(S), this gives us

cuz € (x,...,xt,x L xos  for all H > 1,

and consequently that cuz € (x!,...,x!)ws. Hence,

c z x} xt . ;
1 X T+ 107 Sp| =0 under the pairing ws, X H'(Sp) — Es,.

To show the inclusion T¢(Sp)CT6(S) ®s Sp, we first note that by Smith
[11, Lemma 2.1] we have

T6(S) ®s Sp = Anny,, (Homs, (Homg(034(s), Es ), Es(S/P))).-
Hence, it suffices to establish the inclusion

HomSP(HomS(O};g(S), Es),Es(S/P)) C 0is,)-
This is proved in [11, Equation 5.2.2]. [

We next obtain a corollary analogous to Smith [11, Proposition 6.1].
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Corollary 5. Let S be a complete local domain which is Cohen—Macaulay and normal,
and let xi,...,x; be a system of parameters for S. If we consider the module of rel-
ative test elements Tg(S) as a submodule of the canonical module o, then Tg(S) is
not contained in (xy,...,xq)o. In particular if S is Gorenstein, the test ideal is not
contained in any parameter ideal.

Proof. The ring S is module finite over the regular ring K[[xi,...,x;s]], and so by
Proposition 2, there exists ¢ € Tg(S) with ¢(1) = 1. But this means that ¢ &
(x1,...,xg)w. If § is Gorenstein, recall that we may identify T5(S)C w with 753 CS,
and the result follows. O

Proposition 2(1) shows that tswg C Tg(S). If S is an F-rational ring which is not
F-regular, then 7¢(S) = ws and so tswg C Tg(S). If the ring S is Gorenstein then
we may take ws and we have T5(S) = 5, as is recorded in Proposition 7. We next
present an example below where although the ring S is not Gorenstein, it turns out
that tswg = Tg(S).

Example 6. Let 4 = K[[X, Y, Z]]/(X* + Y* + Z*) where the characteristic of the field
K is a prime integer p > 3. Using lower-case letters to denote corresponding images,
let S be the subring of T generated by the elements x2,xy,xz, y*, yz,z%. The ring S is

not F-rational and 0};2(3) is spanned by the following three elements of H2(S),

m = [2xy + (2, yH)S], n2 =[x + (x%, y*)S] and 13 = [y + (x%,))S].

It is not hard to see that the ideal wg = (x?,xy,x2)S is a canonical module for S — the
corresponding computations in the graded case can be performed using the fact that
the canonical module wg of the Veronese subring S = 7 is the Veronese submodule
w(Tz), where wy is the graded canonical module of 7. We shall compute 75(S) as an
ideal contained in (x2,xy,xz)S.

The test ideal of A is m?% = (x?,xy,xz, ¥, yz,2z2)4 and since the ring S is a direct
summand of 4, it is easy to verify that its test ideal is t5 = (x%,xy,xz, 2, yz,z%)S.

A routine computation shows that
A _ 2 3 A _ 2 3
nn(/)snl - (x »x}’»xz )$ m'lwsﬂz - (x 9xzyxy )
and Ann,, 13 = (xy,xz,x*). Consequently, we have

4 3 3 2.2 .2 2.2 3 2 2 3
T6(S) = (x",x° y,X°2,x" y*,x" yz,x°z°,xy° ,xy"z,xyz",X2" ) = T5Ws.

Proposition 7. Let (S,n,L) be complete local normal Gorenstein ring. Then Tg(S) is
isomorphic to the test ideal tg.

Proof. Since S is Gorenstein, we have an isomorphism wg = S and consequently

To(S) = Anng0pg, = Amns0;/ =75 [
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