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Abstract. Let I be a divisorial ideal of a strongly F-regular ring.

K.-i. Watanabe raised the question whether the symbolic Rees algebfa—=
@nzol(m is Cohen-Macaulay whenever it is Noetherian. We develop the
notion of multi-symbolic Rees algebras and use this to showRhék) is in-

deed Cohen-Macaulay whenever a certain auxiliary ring is finitely generated
over A.

1 Introduction

In [Wa] K.-i. Watanabe raised the issue whether for a divisorial idexla
strongly F-regular ring A, the symbolic Rees algebr& (I) =

@D,>o I™MU™ is Cohen-Macaulay whenever it is Noetherian. Watanabe
showed that this is true whehis an anti-canonical ideali.e., an ideal

of pure height one which represents the inverse of the class of the canonical
module ofA in the divisor class grou@1(A). In this paper we work in the
more general setting of multi-symbolic Rees algebras and as a corollary of
our main result, Theorem 5.1, we obtain the following positive answer to
Watanabe’s question:

Theorem 1.1 Let(A, m) be a strongly F-regular ring with canonical ideal
w. Given an ideall of A of pure height one, choosg of pure height one
such that ] + [J] + [w] = 0 in CI(A). If the multi-symbolic Rees algebra
Rs(I,J) is finitely generated oved, thenR (1) is Cohen-Macaulay.

The hypothesis that is strongly F-regular is indeed used in an essential
way: Watanabe has constructed an example of an F-rationalringh a
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divisorial ideall such that the symbolic Rees algef®a(!) is not Cohen-
Macaulay, see [Wa, Example 4.4].

In general, of course, the symbolic Rees algeRial) for a divisorial
idealI of a normal ringA need not be Noetherian, e.g.Afis the coordinate
ring of an elliptic curve, and is a prime ideal of height one, which has
infinite order in the divisor class groufil(A). However if we specialize
to the case whed is F-rational, a two-dimensional example is easily ruled
out since, by a result of J. Lipman, [Li], the divisor class group of a two
dimensional rational singularity (and hence by [Sm2] of a two dimensional
F-rational ring) is a torsion group. In dimension three the hypothesisithat
has rational singularities is no longer sufficient: S. D. Cutkosky has shown
that a symbolic Rees algebra over a three dimensional ring with rational
singularities need not be Noetherian, see [Cu, Theorem 6]. It should be
noted that ifA is a Gorenstein ring of dimension three o¢ewith rational
singularities, then symbolic Rees algebras at divisorial idealsané finitely
generated by [Ka, Theorem 6.1].

2 Preliminaries

Throughout our discussion all rings are commutative and have a unit ele-
ment. Unless stated otherwise, we shall assume our rings contain &field
of characteristip > 0. We use the letter to denote a variable nonnegative
integer, and; to denote the th power ofp. We denote by the Frobenius
endomorphism ofi, i.e., F'(a) = aP. For a reduced ringl of characteristic
p > 0, A4 shall denote the ring obtained by adjoining @th roots of
elements ofd. The ringA is said to beF-finiteif A!/? is module-finite over
A. Note that a finitely generated algebfeover a fieldK is F-finite if and
only if K1/? is a finite field extension ok

In the notation( A, m), the ring A is either a Noetherian local ring with
maximal idealm, or anN-graded ring with homogeneous maximal ideal
m = ®;~0A; which is finitely generated over a fieldy) = K.

By a normal domain, we shall mean a Noetherian domain which is inte-
grally closed in its field of fractions.

Our references for the theory of tight closure are [HH1], [HH2], [HH3],
and [HH4]. We next recall some definitions and well known facts.

Definition 2.1 A ring A is said to be F-pure if for allA-modulesM, the
Frobenius homomorphisi : M — F(M) is injective.

An F-finite domainA is strongly F-regular if for every nonzero element
¢ € A, there exists; = p° such that thed-linear inclusionA — A/4
sendingl to ¢!/4 splits as a map ofi-modules.
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Regular rings are strongly F-regular, and strongly F-regular rings are
Cohen-Macaulay. I is a strongly F-regular ring and is a subring which
is a direct summand dB as anA-module, them is also strongly F-regular.

Let (4, m) be an F-finite local domain, and |& = E4(A/m) denote
the injective hull of the residue field/m. K. E. Smith has shown that is
strongly F-regular if and only if the zero submodulefofs tightly closed,
see [Sml, Proposition 7.1.2]. Hence(ife¢ FE is a socle generato# is
strongly F-regular if and only if for every nonzero element R, there
exists a positive integersuch thatF¢(¢) # 0.

Definition 2.2 Let A be a normal domain anélan ideal of pure height one.
ThenI(™ denotes the: th symbolic power of the ided, i.e., the reflexive
hull of ™. If F is the set of minimal primes &f we have

1™ — (ﬂ I”Ap> N A.

PcF

3 Multi-symbolic Rees algebras

Let (A, m) be a Noetherian normal local domain, ah@n ideal of pure
height one. The symbolic Rees algebra

R(I) =P 1T C A[U]
n>0

is an objectthat has been studied extensively. We generalize this construction

to afinite family of ideald, I, . . ., I, each of pure height one, by defining
RoIi, Iy, ..., I)= P AL L™ U Ug2 - U
ni,...,n €N
as a subring of the polynomial ring[Uy,...,Ux]. Here* denotes the

dualHom4(—, A). In this notation(/{"* - - - I;'*)** is the reflexive hull of
JEERTR

Proposition 3.1 Let (A, m) be a normal domain andy, ..., I; be ide-
als of A of pure height one. Then the multi-symbolic Rees algdbra

Rs(I1,..., 1) is a Krull domain. Hence the rind3 is a normal domain
whenever it is Noetherian.

Proof. Let F be the set of all minimal prime ideals &, .. ., I;. We then
have

Ro(ILy,... . I}) = (ﬂ A[IlApUl,...,IkApUk]> NA[UL,..., U]
PeF

which, being a finite intersection of Krull domains, is a Krull domaim
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Proposition 3.2 Let (A, m) be a normal domain, and,, ..., I; be ide-

als of A of pure height one such that the multi-symbolic Rees algebra
B = Rs(I1,Is,...,Ix—1) is Noetherian. Letl;, = (I;B)** denote the
reflexivization ofl; B as a B-module, i.e.;” denotesHompg(—, B). Then
there is a natural isomorphism

Ro(ly) =Bo Lo [[” @ 2RI, I, ..., I)).

Proof. There is a natural inclusion
Bo LUB®IPUIB® --- — Ry(L, ..., Iy).

To obtain the isomorphism asserted, we need to verify that a refléxive
module is reflexive when considered asAsmodule. For this it suffices to
verify that B is a reflexiveA-module, but this follows sincé is a direct
sum of reflexived-modules. O

This gives us the immediate corollary:

Corollary 3.3 Let(A, m) be a normal domain, andi, . .., I; ideals ofA

of pure height one such th& = R (I3, Io, . . ., I};) is Noetherian. Thei
arises by a successive construction of symbolic Rees algebras starting with
the ring A.

Theorem 3.4 Let (A, m) be a normal domain, andy, ..., I; be ideals
of A of pure height one such that the multi-symbolic Rees algébra
Rs(I1, Iy, ..., I) is Noetherian. Then the inclusiod C B satisfies
Samuel's PDE condition, i.e., for a height one priffe€ Spec B, we
haveheight(P N A) < 1. This gives a natural map of divisor class groups,
i: Cl(A) — CI(B), which is an isomorphism.

Furthermore ifA and B are homomorphic images of regular local rings
andw, andwp denote the canonical modules.4fand B respectively, we
have the relation

lwp] = i(lwal + [L] + - + [Ix]).

Proof. The corresponding statements for symbolic Rees algebras (i.e., the
casek = 1) are covered by [GHNV, Lemma 4.3 (2), Proposition 4.4, The-
orem 4.5], see also [ST, Proposition 2.6]. The assertions here follow by
combining these results with Corollary 3.3 abovél



Rees algebras 339

Determining when symbolic Rees algebras are Cohen-Macaulay is a
subtle issue: as remarked earlier, Watanabe has constructed examples where
A'is aring with rational singularities ands an anti-canonical ideal, but the
symbolic Rees rin@ (1) is not Cohen-Macaulay. However if the divisorial
ideals Iy, ..., I; have finite order as elements of the divisor class group
Cl(A), we have the following extension of [GHNV, Theorem 4.1]:

Theorem 3.5 Let (A, m) be a normal domain, and,, . .., I} be ideals of
pure height one which have finite order as elements of the divisor class
groupCl(A). Then the multi-symbolic Rees algetBta= R (11, ..., I}) is
Cohen-Macaulay if and only if for alt; € N the ideals(/7"* - - - I,'*)** are
maximal Cohen-Macaulag-modules.

Proof. Leta,; denote the order df;] in C1(A), and fix elements; such that
Ii(‘“) = x;A, for1 < i < k. The elements, U, ..., z,U* form part of

a system of parameters fét, and it is easily verified that this is a regular
sequence oii. Next note that

B/(za U™, ..., 5xU%) = @ (LY L) Uy - U»

0<n;;<a;

and soB is a Cohen-Macaulay ring if and only every system of param-
eters forA is a regular sequence on the ide@l§' 152 - - - I;*)** for all
niy,...,npy €N, O

4 Examples

Example 4.1Consider the subring = K[ax, ay, bz, by] of the polynomial
ring K[a, b, z, y] and the height one prime ideals = (ax, ay) andQ; =
(azx,bx) wherel < i < nandl < j < m. Then the multi-symbolic Rees
algebra

B=A(Py,...,P,,Q1,...,Qm)

is isomorphic to the Segre product of two polynomial rings,
K[X1, ..., Xni2l#K[Y1, ..., Yimya).
We haveCl(A) = CI(B) = Z, and
[ws] = i(n[P] +m[Q]) = i((n — m)[P]).

In particular,B is Gorenstein if and only ifh = m.
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Example 4.2Let A = K[X1, ..., X,,]™ denote the: th Veronese subring
of the polynomial ringK Xy, ..., X,,]. We compute all multi-symbolic
Rees algebras over the ridg The divisor class group ofisCl(A) = Z/nZ
and we fix as a generator, the height one prime ideal

P = (XlK[Xl,,Xm])ﬂA

Divisorial ideals of4 are of the formP() up to isomorphism, and the multi-
symbolic Rees algebrd(P(®1) ... P(@)) is determined by thé-tuple
of integersyy, . . ., ay. We claim thatd(P(@1) . .| P(ex)) is isomorphic to
then th Veronese subring of the polynomial ring

K[X17 e 7X’m7X:(LX1U1’ Tt 7X1akUk']

where the variable#, . . ., U have weight zero. To see this, note that by
definition we have

A(p(cn)’ o 7p(ak)) — @ p(n1a1+~~-+nkak)U{n . U]:Lk

n; >0

and that a monomial i1, . . ., X,,, is an element oP (11t +nkak) pre.
cisely if it is a multiple of X" whose degree is a multiple of
n.

5 An application to tight closure theory

Let(A, m) be a strongly F-regular domain with canonical modulén [Wa]
Watanabe showed that the anti-canonical symbolic Rees al@&lii is
Cohen-Macaulay (in fact, strongly F-regular) whenever it is Noetherian,
and raised the question whether this is true for an arbitrary ileabure
height one. As an application of the construction of multi-symbolic Rees
algebras, we show th&®, (1) is strongly F-regular, and in particular is
Cohen-Macaulay, whenever a certain auxiliary algebra is finitely generated
over A. Our main theorem is:

Theorem 5.1 Let (A, m) be an F-finite normal ring with canonical ideal
w. Given an ideall of A of pure height one, choosg of pure height one
such that[I] + [J] 4+ [w] = 0 in the divisor class groug’l(A4). Assume
that the multi-symbolic Rees algebR (1, J) is finitely generated oved.

If Ais F-pure, then the ring®R (1) andR (I, J) are also F-pure. IfA is
strongly F-regular, theriR (1) andR (I, J) are strongly F-regular, and in
particular, are Cohen-Macaulay.



Rees algebras 341

Proof. Let B = R (I) = ®;>0IWU* and.J = (JB)** where* denotes
Homp(—,B).If R =R,(I,J) C A[U, V], by Proposition 3.2 we have

R=R,J)=BoJoJPao...
Settingd = dim A, we havedim R = d + 2. Consider the maximal ideal
of B,
m=m+IU+IDU? +...
and the maximal ideal aoR,
M=m+JV+JOVZ4....

In[Wa, Theorem 2.2] Watanabe has computed the highest local conomology
module of a symbolic Rees ring, and furthermore determined the Frobenius
action on it. Using this we have

Hyt*(R) = P HLH (V).
3<0
Again using Watanabe'’s result we get

Hy*(R) = P HLIDIOUVI.
i<0,j<0

By Theorem 3.4 and the fact that] + [J] + [w] = 0 in CI(A) we see
that R = A(I,J) is quasi-Gorenstein, i.e., has a trivial canonical module.
HenceHg;{Q(R) is the injective hull ofR /90, and so the strong F-regularity
or F-purity of R can be determined by studying the action of the Frobenius
on H3?(R).

Let ¢ be a socle generator df? (w). Then the socle OH%J{Q(R) is
generated byU ~'V~1. If Ais F-pure, therf’(¢) # 0 and so

FEUT'WVHY=F(QU PV #£0,

by which R is F-pure. Consequentl = R(I), being a direct summand
of R, is also F-pure.

Next assume that is strongly F-regular. LetU" V"™ € R be a nonzero
element where € (I"J™)**. To show thatR is also strongly F-regular, it
sufficesto show thgeU" V™) F¢(¢U -1V 1) # 0for some positive integer
e. Choosing a suitable multiple, if necessary, we may assume:thain.
We may choose a canonical modulefor A such that(1.J)** = w(~1).
Thenc € (I"J™)** = w(=™), SinceA is strongly F-regular we may choose
e such thaty = p¢ > n andcF¢(¢) # 0in H% (w(9). ButthencFe(¢) # 0
as an element aff¢ (w(4=™)). Hence

UMV FECUTWVTY = eF(O)(UV)1 e HE (W) (V)

is nonzero, and s& is strongly F-regular. Hence its direct summaBids
also strongly F-regular, and therefore is Cohen-Macaulay.
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6 Reesrings

So far in our discussion, we had been considering symbolic Rees rings at
ideals of pure height one. In this section we switch to the other extreme and
consider the Rees ring at the homogeneous maximalidedbanN-graded
normal ring(A, m). (In this case the Rees rirflgy= A[mT| agrees with the
symbolic Rees ringR ;(m).) Although the relation between the properties

of A and those of? = A[mT] seems to be very mysterious, there is one
case where easy answers are available:

Proposition 6.1 Let( A, m) be anN-graded normal ring which is generated
by its degree one elements over the figljd= K. Consider the Rees ring
R = A[mT]. If Ais strongly F-regular, F-pure, or a ring of characteristic
zero with rational singularities, then the same is true far

Proof. Note thatR = A[mT] is isomorphic to the Segre produdt#B
whereB = K|S, T is a polynomial ring in two variables. Consequenfily

is a direct summand od[S, T]. If A has rational singularities, then so does
A[S, T}, and consequentl® has rational singularities (in characteridijc
by Boutot’s result, [Bo]. Similarly ifA is strongly F-regular or F-pure, the
same is true ford[S, T, and its direct summand&. O

In the following exampled is a normal monomial ring, i.e., a normal sub-
ring of a polynomial ring which is generated by monomials. Consequently
Ais strongly F-regular but we shall see that the ReesipgT] fails to be
normal.

Example 6.2Consider the monomial ring
A=K[W3X, X3, Y32, 23W, W2X?*Y?Z% C K[W,X,Y, Z|

whereK is a field. It is not difficult to see thad is isomorphic to the the
hypersurface

K[Uy, Uy, Us, Us, Uy (UZ — UrUxUsUy)

and is a normal ring. Consequently by the main result of [Ho a direct
summand of a regular ring, and so is strongly F-regular. Take the Rees ring
be R = A[mT). The elementV2X?2Y2Z%T? is in the fraction field ofR,
although it is not inR itself. However

(W2X2Y2Z%T?)? = (W3XT)(X3YT)Y3ZT)(Z*°WT) € R

and soR is not normal. Furthermore, when the characteristic of the figld
is 2, itis easily verified thafz is not F-pure, although the ring is F-pure.
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In the next exampled is an F-rational hypersurface, but the Rees ring
A[mT)], while being Gorenstein and normal, is not F-rational.

Example 6.3Let A = K[W, X,Y, Z]/(W? + X3 + Y6 4+ Z7). ThenA is
F-rational whenever the characteristic of Kis> 7. We show that the Rees
ring R = A[mT], while being Gorenstein and normal, is not F-rational.

First note that the Rees ring is Gorenstein. This holds, for example,
by [GS, Theorem 1.2] since the associated graded ring

gt (R) = KW, X,Y, Z]/(W?)

is Gorenstein withu-invarianta(gr,,,(R)) = —2.

We next examingr on the punctured spectrum. Ffre m, the local-
ization Ry = A[T7] is a polynomial ring over ;. For an elemenfT" with
f € m, note that

w T Yy =z 1

RngK ?7 ?7 ?7 ?) f7 fT7 ﬁ .

Examining these localizations gsranges through the sétv, =, y, 2z}, we
can see thakR is indeed normal.

To see thaR is not F-rational, tak¢ = z above and let/; = %, Uy = %
andUs = Y. ThenR.r = S[zT,1/2T] where

S = KUy, Us, Us, Z)/(U? +U3Z +USZ* + 7°).

It suffices to show tha$' is not F-rational. Consider the grading 8mwhere
the variabled/;, Us, Us, Z have weightdl5, 8,1, 6 respectively. The:-

invariant of S is easily computed to be(s) = 0, and soS cannot be
F-rational.
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