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1. Introduction

Throughout our discussion, all rings are commutative, Noetherian and
have an identity element. The notion of the tight closure of an ideal was
developed by M. Hochster and C. Huneke in [HH1] and has yielded many
elegant and powerful results in commutative algebra. The theory leads to
the notion of F–rational rings, defined by R. Fedder and K.-i. Watanabe as
rings in which parameter ideals are tightly closed, see [FW]. Over a field of
characteristic zero, rings of F–rational type are now known to be precisely
those having rational singularities by the work of K. E. Smith and N. Hara,
see [Sm, Ha].

We begin by recalling a theorem of Hochster and Huneke which states that
a local ring (R,m) which is a homomorphic image of a Cohen–Macaulay
ring is F–rational if and only if it is equidimensional and has a system
of parameters which generates a tightly closed ideal, [HH2, Theorem 4.2
(d)]. This leads to the question of whether a local ring in which a single
system of parameters generates a tightly closed ideal must be equidimen-
sional (and hence F–rational), #19 of Hochster’s “Twenty Questions” in
[Ho]. Rephrased, can a non–equidimensional ring have a system of param-
eters which generates a tightly closed ideal – we show it cannot for some
classes of non–equidimensional rings.

A key point is that in equidimensional rings, tight closure has the so–
called “colon capturing” property. This property does not hold in non–
equidimensional rings. A study of these issues leads to a new closure opera-
tion, that we call NE closure. This closure does possess the colon capturing
property even in non–equidimensional rings, and agrees with tight closure
when the ring is equidimensional. We shall show that an excellent local ring
R is F–rational if and only if it has a system of parameters which generates
an NE–closed ideal.

2. Notation and terminology

Let R be a Noetherian ring of characteristic p > 0. We shall always use
the letter e to denote a variable nonnegative integer, and q to denote the
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e th power of p, i.e., q = pe. For an ideal I = (x1, . . . , xn) ⊆ R, we let
I [q] = (xq

1, . . . , x
q
n). We shall denote by Ro the complement of the union of

the minimal primes of R. For an ideal I ⊆ R and an element x of R, we say
that x ∈ I∗, the tight closure of I, if there exists c ∈ Ro such that cxq ∈ I [q]

for all q = pe � 0. If I = I∗, we say I is tightly closed.

An ideal I ⊆ R is said to be a parameter ideal if I = (x1, . . . , xn) such
that the images of x1, . . . , xn form a system of parameters in RP , for every
prime P containing I. The ring R is said to be F–rational if every parameter
ideal of R is tightly closed.

We next recall some well known results.

Theorem 2.1.
(1) An F–rational ring R is normal. If in addition R is assumed to be the
homomorphic image of a Cohen–Macaulay ring, then R is Cohen–Macaulay.
(2) A local ring (R, m) which is the homomorphic image of a Cohen–
Macaulay ring is F–rational if and only if it is equidimensional and the
ideal generated by one system of parameters is tightly closed.
(3) Let P1, . . . , Pn be the minimal primes of the ring R. Then for an ideal
I ⊆ R and x ∈ R, we have x ∈ I∗ if and only if for 1 ≤ i ≤ n, its image x

is in (IR/Pi)∗, the tight closure here being computed in the domain R/Pi.

Proof. (1) and (2) are part of [HH2, Theorem 4.2] and (3) is observed as
[HH1, Proposition 6.25 (a)]. �

3. Main results

Lemma 3.1. Let P1, . . . , Pn be the minimal primes of the ring R. Then for
a tightly closed ideal I, we have I =

⋂n
i=1(I + Pi).

Proof. That I ⊆
⋂n

i=1(I + Pi), is trivial. For the other containment note
that if x ∈

⋂n
i=1(I +Pi), then x ∈ (IR/Pi)∗ for 1 ≤ i ≤ n. Now by Theorem

2.1 (3), we get that x ∈ I∗ = I. �

The following theorem, although it has some rather strong hypotheses,
does show that no ideal generated by a system of parameters is tightly closed
in the non–equidimensional rings

R = K[[X1, . . . , Xn, Y1, . . . , Ym]]/(X1, . . . , Xn) ∩ (Y1, . . . , Ym)

where m,n ≥ 1 and m 6= n.

Theorem 3.2. Let (R, m) be a non–equidimensional local ring, with the
minimal primes partitioned into the sets {Pi} and {Qj}, such that dim R =
dim R/Pi > dim R/Qj, for all i and j. Let P and Q be the intersections,
P =

⋂
Pi and Q =

⋂
Qj. If I ⊆ P + Q is an ideal of R which is generated
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by a system of parameters, then I cannot be tightly closed. In particular,
if P + Q = m, then no ideal of R generated by a system of parameters is
tightly closed.

Proof. Suppose not, let I = (p1 + q1, . . . , pn + qn) be a tightly closed ideal
of R, where p1 + q1, . . . , pn + qn is a system of parameters with pi ∈ P and
qi ∈ Q. Note that we have

(I + P ) ∩ (I + Q) ⊆ (∩(I + Pi)) ∩ (∩(I + Qj)) = I

using Lemma 3.1. Consequently (I + P ) ∩ (I + Q) ⊆ I, and so pi, qi ∈ I.
In particular, pi = r1(p1 + q1) + · · · + rn(pn + qn). We first note that if
ri /∈ m then qi ∈ (p1 + q1, . . . , pi−1 + qi−1, pi, pi+1 + qi+1, . . . , pn + qn), but
then pi ∈ P is a parameter, which is impossible since dim R = dim R/P .
Hence ri ∈ m, and so 1 − ri is a unit. From this we may conclude that
pi ∈ (p1 + q1, . . . , pi−1 + qi−1, qi, pi+1 + qi+1, . . . , pn + qn), and so the ideal I

may be written as I = (p1 + q1, . . . , pi−1 + qi−1, qi, pi+1 + qi+1, . . . , pn + qn).
Proceeding this way, we see that I = (q1, . . . , qn), i.e., I ⊆ Q. But then

each Qj = m, a contradiction. �

Remark 3.3. We would next like to discuss briefly the case where the non–
equidimensional local ring (R,m) is of the form R = S/(P ∩ Q) where S

is a regular local ring with primes P and Q of different height. Then R

has minimal primes P and Q where, without loss of generality, dim R =
dim R/P > dim R/Q. If I is an ideal of S whose image I in R is a tightly
closed ideal, we see that I + (P ∩ Q) = (I + P ) ∩ (I + Q) by Lemma 3.1,
and so it would certainly be enough to show that this cannot hold when I

is generated by a system of parameters for R. One can indeed prove this
in the case S/P is Cohen–Macaulay, and S/Q is a discrete valuation ring,
which is Theorem 3.6 below. However if we drop the hypothesis that S/P

be Cohen–Macaulay, this is no longer true: see Example 3.8.

Lemma 3.4. If I, P , and Q are ideals of S, satisfying the condition that
I + (P ∩Q) = (I + P ) ∩ (I + Q), then I ∩ (P + Q) = (I ∩ P ) + (I ∩Q).

Proof. Let i = p + q ∈ I ∩ (P + Q), where p ∈ P and q ∈ Q. Then
i− p = q ∈ (I + P ) ∩ (I + Q) = I + (P ∩Q) and so i− p = q = ĩ + r where
ĩ ∈ I and r ∈ P ∩Q. Finally note that i = (i − ĩ) + ĩ ∈ (I ∩ P ) + (I ∩Q),
since i− ĩ = p + r ∈ I ∩ P and ĩ = q − r ∈ I ∩Q. �

Lemma 3.5. Let M be an S–module and N , a submodule. If x1, . . . , xn are
elements of S which form a regular sequence on M/N , then

(x1, . . . , xn)M ∩N = (x1, . . . , xn)N.

In particular, if I and J are ideals of S and I is generated by elements
which form a regular sequence on S/J , then I ∩ J = IJ .
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Proof. We shall proceed by induction on n, the number of elements. If
n = 1, the result is simple. For the inductive step, note that if we have
u = x1m1 + · · · + xkmk ∈ (x1, . . . , xk)M ∩ N with mi ∈ M , then since xk

is not a zero divisor on the module M/((x1, . . . , xk−1)M + N), we get that
mk ∈ (x1, . . . , xk−1)M + N . Consequently, u ∈ (x1, . . . , xk−1)M + xkN . �

Theorem 3.6. Let S = K[[X1, . . . , Xn, Y ]] with ideal Q = (X1, . . . , Xn)S,
and ideal P satisfying the condition that S/P is Cohen–Macaulay. Then if
R = S/(P ∩Q) is a non–equidimensional ring, no ideal of R generated by a
system of parameters can be tightly closed.

Proof. Let I be an ideal of S generated by elements which map to a system
of parameters in R. If the image of I is a tightly closed ideal in R, we have
(I + P )∩ (I + Q) = I + (P ∩Q) as ideals of S, by Lemma 3.1. Any element
of the maximal ideal of S, up to multiplication by units, is either in Q, or
is of the form Y h + q, where q ∈ Q. Since I cannot be contained in Q,
one of its generators has the form Y h + q. Choosing the generator amongst
these which has the least such positive value of h, and subtracting suitable
multiples of this generator, we may assume that the other generators are
in Q. We then have I = (Y h + q1, q2, . . . , qd)S, where qi ∈ Q, h > 0,
and d = dim R = dim S/P . By a similar argument we may write P as
P = (Y t + r1, r2, . . . , rk)S, where ri ∈ Q. Since we are assuming that the
image of I is a tightly closed ideal in R, Theorem 3.2 shows that I is not
contained in P + Q, and so we conclude h < t.

We then have Y t + Y t−hq1 ∈ I ∩ (P + Q), and so by Lemma 3.4

Y t + Y t−hq1 ∈ (I ∩ P ) + (I ∩Q).

By Lemma 3.5, I ∩ P = IP and consequently

Y t ∈ IP + Q = (Y t + r1)(Y h + q1) + Q = Y t+h + Q.

However this is impossible since h > 0. �

Remark 3.7. Note that in the proof above we used that if I is a tightly
closed ideal, we must have I +(P ∩Q) = (I +P )∩ (I +Q), and then showed
that this cannot hold when I is generated by a system of parameters for R

in the case S/P is Cohen–Macaulay, and S/Q is a discrete valuation ring.
When S/P is not Cohen–Macaulay, this approach no longer works as seen
from the following example.

Example 3.8. Let S = K[[T,X, Y, Z]], and consider the two prime ideals
Q = (T,X, Y ) and P = (TY −XZ, T 2X − Z2, TX2 − Y Z, X3 − Y 2). Then
S/Q is a discrete valuation ring, although S/P is not Cohen–Macaulay. To



TIGHT CLOSURE IN NON–EQUIDIMENSIONAL RINGS 5

see this, observe that

S/P ∼= K[[U2, U3, UT, T ]] ⊆ K[[T,U ]]

where T and U are indeterminates and x 7→ U2, y 7→ U3, z 7→ UT and
t 7→ T . (Lower case letters denote the images of the corresponding variables.)

Then R = S/(P ∩ Q) is a non–equidimensional ring and the image of
I = (Z,X − T ) in R is I = (z, x − t) which is generated by a system of
parameters for R. We shall see that I + (P ∩Q) = (I + P ) ∩ (I + Q).

Since I + Q = (T,X, Y, Z) is just the maximal ideal of S, we get that
(I + P ) ∩ (I + Q) = I + P = (Z,X − T,XY, X3, Y 2). It can be verified
(using Macaulay, or even otherwise) that

P ∩Q = (TY −XZ, TX2 − Y Z, X3 − Y 2, T 3X − TZ2)

and so

I + (P ∩Q) = (Z,X − T,XY, X3, Y 2) = (I + P ) ∩ (I + Q).

For the ring R, although it does not follow from any of the earlier results,
we can show that no system of parameters generates a tightly closed ideal.

We can actually prove the graded analogue of Theorem 3.6 without the
requirement that S/P is Cohen–Macaulay.

Theorem 3.9. Let S = K[X1, . . . , Xn, Y ] with ideal Q = (X1, . . . , Xn)S,
and P a homogeneous unmixed ideal with dim S/P ≥ 2. Then no homoge-
neous system of parameters of the ring R = S/(P ∩ Q) generates a tightly
closed ideal.

Proof. Let I be an ideal of S generated by homogeneous elements which
map to a system of parameters in R, and assume that the image of I is a
tightly closed ideal of R.

As in the proof of Theorem 3.6, there is no loss of generality in taking
as homogeneous generators for I, the elements Y h + q1, q2, . . . , qd where
qi ∈ Q, and h > 0, and for P the elements Y t + r1, r2, . . . , rk, where ri ∈ Q.
One can easily formulate a graded analogue of Theorem 3.2 and then since
we are assuming that the image of I is a tightly closed ideal in R, it follows
that I is not contained in P + Q. Hence we conclude h < t.

The assumption implies that

Y t + r1 ∈ (I + P ) ∩ (I + Q) = I + (P ∩Q) = I + (r2, . . . , rk) + (Y t + r1)Q

and so Y t + r1 ∈ I + (r2, . . . , rk). Hence

I + (P ∩Q) = I + P = I + (r2, . . . , rk).
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If S/P is Cohen–Macaulay, the proof is identical to that of Theorem 3.6,
and so we may assume S/P is not Cohen–Macaulay. Consequently (IS/P )∗

is strictly bigger that IS/P . Let F ∈ S be a homogeneous element such
that its image is in (IS/P )∗ but not in IS/P . Note that if F ∈ I + Q, then
F ∈ (IR)∗, and so F ∈ I + P , a contradiction. Hence we conclude that
F /∈ I + Q = (Y h, X1, . . . , Xn) and so F = Y i + G where i < h and G ∈ Q.

Next note that Y h−iF = Y h + GY h−i ∈ I + (P ∩ Q) = I + (r2, . . . , rk),
and so GY h−i − q1 ∈ (q2, . . . , qd, r2, . . . , rk). We then have

F ∈ (IS/P )∗ = ((Y h+GY h−i, q2, . . . , qd)S/P )∗ = (Y h−iF, q2, . . . , qd)S/P )∗.

By a degree argument, we see that F ∈ ((q2, . . . , qd)S/P )∗. However this
means that F is in the radical of the ideal (q2, . . . , qd)S/P , which contradicts
the fact that (FY h−i, q2, . . . , qd) = IS/P is primary to the homogeneous
maximal ideal of S/P . �

4. NE closure

For Noetherian rings of characteristic p we shall define a new closure
operation on ideals, the NE closure, which will agree with tight closure
when the ring is equidimensional. In non–equidimensional local rings, tight
closure no longer has the so–called colon–capturing property, and the main
point of NE closure is to recover this property. This often forces the NE
closure of an ideal to be larger than its tight closure and at times even
larger than its radical, see Example 5.5. More precisely let (R,m) be an
excellent local ring with a system of parameters x1, . . . , xn. Then when R

is equidimensional we have (x1, . . . , xk) : xk+1 ⊆ (x1, . . . , xk)∗, but this does
not hold in general. The NE closure (denoted by IF for an ideal I ⊆ R)
will have the property that (x1, . . . , xk) : xk+1 ⊆ (x1, . . . , xk)F.

Definition 4.1. We shall say that a minimal prime ideal P of a ring R is
absolutely minimal if dim R/P = dim R. When Spec R is connected, R•

shall denote the complement in R of the union of all the absolutely minimal
primes. If R =

∏
Ri, we define R• =

∏
R•

i . The NE closure IF of an ideal
I is given by

IF = {x ∈ R : there exists c ∈ R• with cx[q] ∈ I [q] for all q � 0}.

The following proposition and its proof are analogous to the statements
for tight closure in equidimensional rings, see [HH2, Theorem 4.3].

Proposition 4.2. Let R be a complete local ring of characteristic p, with a
system of parameters x1, . . . , xn. Then
(1) (x1, . . . , xk) : xk+1 ⊆ (x1, . . . , xk)F.
(2) (x1, . . . , xk)F : xk+1 = (x1, . . . , xk)F.
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(3) If (x1, . . . , xk+1)F = (x1, . . . , xk+1), then (x1, . . . , xk)F = (x1, . . . , xk).
(4) If (x1, . . . , xn)F = (x1, . . . , xn) or (x1, . . . , xn−1)F = (x1, . . . , xn−1),
then R is Cohen–Macaulay.

Proof. (1) We may represent R as a module-finite extension of a regular
subring A of the form A = K[[x1, . . . , xn]] where K is a field. Let t be
the torsion free rank of R as an A–module, and consider At ⊆ R. Then
R/At is a torsion A–module and there exists c ∈ A, nonzero, such that
cR ⊆ At ⊆ R. We note that c cannot be in any absolutely minimal prime P

of R, since for any such P , R/P is of dimension n and is module-finite over
A/A ∩ P , and so A ∩ P = 0. Now if u ∈ (x1, . . . , xk) : xk+1 then for some
ri ∈ R, uxk+1 =

∑k
i=1 rixi. Taking qth powers, and multiplying by c we get

cuqxq
k+1 =

∑k
i=1 crq

i x
q
i . But now cuq and each of crq

i are in At and xq
i form a

regular sequence on At. Hence cuq ∈ (xq
1, . . . , x

q
k) and so u ∈ (x1, . . . , xk)F.

(2) If uxk+1 ∈ (x1, . . . , xk)F then for some c0 ∈ R•, c0(uxk+1)q ∈
(xq

1, . . . , x
q
k) for all sufficiently large q, i.e., c0u

qxq
k+1 =

∑k
i=1 rix

q
i for q � 0.

Multiplying this by our earlier choice of c, we again have a relation on xq
i ’s

with coefficients in At, namely cc0u
qxq

k+1 =
∑k

i=1 crix
q
i for q � 0, and so

cc0u
q ∈ (xq

1, . . . , x
q
k) for q � 0. Since cc0 ∈ R• we get u ∈ (x1, . . . , xk)F.

(3) Let J = (x1, . . . , xk). Then JF ⊆ (x1, . . . , xk+1) and so JF ⊆
J + xk+1R. If u ∈ JF, u = j + xk+1r for j ∈ J and r ∈ R. This means
r ∈ JF : xk+1 which equals JF by (2). Hence we get JF = J + xk+1J

F.
Now by Nakayama’s lemma we get JF = J .

(4) This follows from (2) and (3) since, under either of the hypotheses,
the system of parameters x1, . . . , xn is a regular sequence. �

The above proposition, coupled with results on F–rationality, gives us the
following theorem:

Theorem 4.3. Let R be a complete local ring of characteristic p, with a
system of parameters which generates a NE–closed ideal. Then R is F–
rational.

Proof. From the previous proposition the ring is Cohen–Macaulay, and in
particular, equidimensional. For equidimensional rings, tight closure agrees
with NE closure, and the result follows from Theorem 2.1 (2). �

We shall extend this result to excellent local rings once we develop the
theory of test elements for NE closure. The following proposition lists some
properties of NE closure.

Proposition 4.4. Let R be a ring of characteristic p, and I an ideal of R.
(1) 0F is the intersection of the absolutely minimal prime ideals of R.
(2) If I = IF then for any ideal J , (I : J)F = I : J .
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(3) If R =
∏

Ri and I =
∏

Ii, then IF =
∏

IF
i .

(4) For rings R and S and a homomorphism h : R → S satisfying the
condition h(R•) ⊆ S•, we have h(IF) ⊆ (IS)F.
(5) x ∈ IF if and only if x ∈ (IR/P )F for every absolutely minimal prime
ideal P of R.

Proof. (1), (2), (3) and (4) follow easily from the definitions. For (5) note
that if P is absolutely minimal, h : R → R/P meets the condition of (4),
so x ∈ IF implies that its image is in the NE closure of IR/P . For the
converse, fix for every absolutely minimal Pi, di /∈ Pi but in every other
minimal prime of R. If x ∈ (IR/Pi)F for every absolutely minimal Pi,
then there exist elements ci with cixq ∈ (IR/Pi)[q]. We can lift each ci to
ci ∈ R with ci /∈ Pi. Then cix

q ∈ I [q] + Pi for all i, for sufficiently large
q. Multiplying each of these equations with the corresponding di, we get
cidix

q ∈ I [q] + N, since diPi is a subset of every minimal prime ideal and
so is in the nilradical, N. If N[q′] = 0, taking q′ powers of these equations
gives us (cidi)q′

xq ∈ I [q] for all i, for sufficiently large q. Set c =
∑

(cidi)q′
.

By our choice of ci’s and di’s, c ∈ R•, and the above equations put together
give us cxq ∈ I [q] for all sufficiently large q. �

We note that NE closure need not be preserved once we localize, i.e., it
is quite possible that x ∈ IF, but x /∈ (IRP )F. Examples of this abound
in non–equidimensional rings, but there are some positive results about NE
closure being preserved under certain maps which we examine in the next
few propositions.

Proposition 4.5. If h : (R,m) → (S, n) is a faithfully flat homomorphism
of local rings then for an ideal I of R, if x ∈ IF, then its image h(x) is in
(IS)F. In particular if R̂ denotes the completion of R at its maximal ideal,
x ∈ IF implies x ∈ (IR̂)F.

Proof. By Proposition 4.4 (4), it suffices to check that h(R•) ⊆ S•. This is
equivalent to the assertion that the contraction of every absolutely minimal
prime of S is an absolutely minimal prime of R. Now let P be an absolutely
minimal prime of S, and p denote its contraction to R. Then since R → S

is faithfully flat, by a change of base, so is R/p → S/pS. This gives dim
S/pS = dim R/p + dim S/mS. Also, faithful flatness of h implies that dim
S = dim R + dim S/mS. But P was an absolutely minimal prime of S,
so dim S = dim S/P = dim S/pS, since pS ⊆ P . Putting these equations
together, we get dim R/p = dim R, and so p is an absolutely minimal prime
of R. �

Proposition 4.6. Let R and S be Noetherian rings of characteristic p, and
R → S a homomorphism such that for every absolutely minimal prime Q
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of S, its contraction to R, Qc, contains an absolutely minimal prime of R.
Assume one of the following holds:
(1) R is finitely generated over an excellent local ring, or is F–finite, or
(2) R is locally excellent and S has a locally stable test element, (or S is
local), or
(3) S has a completely stable test element (or S is a complete local ring).

Then if x ∈ IF for I an ideal of R, the image of x in S is in (IS)F.

Proof. It suffices to check x ∈ (IS/Q)F for every absolutely minimal primes
Q of S, by Proposition 4.4 (5). But (IS/Q)F = (IS/Q)∗ since S/Q is
equidimensional. If P ⊆ Qc is an absolutely minimal prime of R, then
x ∈ IF implies x ∈ (IR/P )F = (IR/P )∗. The result now follows by
applying [HH2, Theorem 6.24] to the map R/P → S/Q. �

5. NE–test elements

Definition 5.1. We shall say c ∈ R• is a q′–weak NE–test element for R if
for all ideals I of R and x ∈ IF, cxq ∈ I [q] for all q ≥ q′. We may often use
the phrase weak NE–test element and suppress the q′.

For a local ring (R,m), c ∈ R• is a weak completion stable NE–test element
for R if it is a weak NE–test element for R̂, the completion of R at its
maximal ideal.

Our definition of a completion stable weak NE–test element is different
from the notion of a completely stable weak test element for tight closure,
where it is required that the element serve as a weak test element in the
completion of every local ring of R. The reason for this, of course, is that
localization is no longer freely available to us, since R• often does not map
into (RP )•.

Note also that since R̂ is faithfully flat over R, a weak completion stable
NE–test element for R is also a weak NE–test element for R.

Proposition 5.2. If for every absolutely minimal prime P of R, R/P has
a weak test element, then R has a weak NE–test element.

Proof. Fix for every absolutely minimal prime Pi an element di not in Pi

but in every other minimal prime of R. Let N denote the nilradical of R and
fix q′ such that N[q′] = 0. If ci is a weak test element for R/Pi, we may pick
ci /∈ Pi which maps to it under R → R/P . We claim c =

∑
(cidi)q′

is a weak
NE–test element for R. If x ∈ IF, then x ∈ (IR/Pi)F for all Pi absolutely
minimal. Since ci is a weak test element for R/Pi, we have cixq ∈ (IR/Pi)[q]

for all i, for sufficiently large q, i.e., cix
q ∈ I [q] + Pi. Multiplying this by di,

summing over all i and taking the q′ power as in the proof of Proposition
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4.4 (5), we get that cxq ∈ I [q]. It is easy to see that c ∈ R• and so is a weak
NE–test element. �

Proposition 5.3. Every excellent local ring of characteristic p has a weak
completion stable NE–test element.

Proof. If R is an excellent local domain, it has a completely stable weak
test element, see [HH2, Theorem 6.1]. Hence each R/Pi for Pi absolutely
minimal, has a completely stable weak test element, say ci. Let ci, di, q′

and c be as in the proof of the previous proposition. If x ∈ (IR̂)F, we have
x ∈ (IR̂/PiR̂)F. Since R/Pi is equidimensional and excellent, its completion
R̂/PiR̂ is also equidimensional. (We use here the fact that the completion of
a universally catenary equidimensional local ring is again equidimensional,
[HIO, Page 142]). Hence NE closure agrees with tight closure in R̂/PiR̂, and
we get x ∈ (IR̂/PiR̂)∗. This gives cixq ∈ (IR̂/PiR̂)[q] for all i, for sufficiently
large q. As in the previous proof, we then get that cxq ∈ (IR̂)[q], and so is
a weak completion stable NE–test element. �

We can now extend Theorem 4.3 to the case where R is excellent local,
without requiring it to be complete.

Theorem 5.4. Let (R,m) be an excellent local ring of characteristic p with
a system of parameters x1, . . . , xn. Then
(1) (x1, . . . , xk) : xk+1 ⊆ (x1, . . . , xk)F.
(2) (x1, . . . , xk)F : xk+1 = (x1, . . . , xk)F.
(3) If (x1, . . . , xk+1)F = (x1, . . . , xk+1), then (x1, . . . , xk)F = (x1, . . . , xk).
(4) If (x1, . . . , xn−1)F = (x1, . . . , xn−1) then R is Cohen–Macaulay.
(5) If (x1, . . . , xn)F = (x1, . . . , xn) then R is F–rational.

Proof. Since R has a weak completion stable NE–test element, if there is
a counterexample to any of the above claims, we can preserve this while
mapping to R̂. But all of the above are true for complete local rings as
follows from Proposition 4.2 and Theorem 4.3. �

Example 5.5. Let R = K[[X, Y, Z]]/(X)∩(Y, Z). Then y, x−z is a system
of parameters for R and 0 :R (y) = (x). That tight closure fails here to
“capture colons” is seen from the fact that x /∈ 0∗ = 0. However 0F = (x),
and we certainly have 0 :R (y) ⊆ 0F.
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