A Computation of Tight Closure in Diagonal H ypersurfaces

A nurag K. Singh
Department of Mathematics, University of Michigan, East Hall, 525 East University Avenue, Ann Arbor, Michigan 48109-1109

Communicated by Craig Huneke
R eceived A ugust 26, 1997

1. INTRODUCTION

The aim of this paper is to settle a question about the tight closure of the ideal $\left(x^{2}, y^{2}, z^{2}\right)$ in the ring $R=K[X, Y, Z] /\left(X^{3}+Y^{3}+Z^{3}\right)$ where K is a field of prime characteristic $p \neq 3$. (Lower case letters denote the images of the corresponding variables.) M. McDermott has studied the tight closure of various irreducible ideals in R and has established that $x y z \in\left(x^{2}, y^{2}, z^{2}\right)^{*}$ when $p<200$, see [Mc c . The general case however existed as a classic example of the difficulty involved in tight closure computations, see also [Hu, E xample 1.2]. We show that $x y z \in\left(x^{2}, y^{2}, z^{2}\right)^{*}$ in arbitrary prime characteristic p, and furthermore establish that $x y z \in$ $\left(x^{2}, y^{2}, z^{2}\right)^{F}$ whenever R is not F -pure, i.e., when $p \equiv 2 \bmod 3$. We move on to generalize these results to the diagonal hypersurfaces $R=$ $K\left[X_{1}, \ldots, X_{n}\right] /\left(X_{1}^{n}+\cdots+X_{n}^{n}\right)$.

These issues relate to the question whether the tight closure I^{*} of an ideal I agrees with its plus closure, $I^{+}=I R^{+} \cap R$, where R is a domain over a field of characteristic p and R^{+}is the integral closure of R in an algebraic closure of its fraction field. In this setting, we may think of the Frobenius closure of I as $I^{F}=I R^{\infty} \cap R$ where R^{∞} is the extension of R obtained by adjoining p^{e} th roots of all nonzero elements of R for $e \in \mathbb{N}$. It is not difficult to see that $I^{+} \subseteq I^{*}$, and equality in general is a formidable open question. It should be mentioned that in the case when I is an ideal generated by part of a system of parameters, the equality is a result

[^0]of K . Smith, see $[\mathrm{Sm}]$. In the above ring $R=K[X, Y, Z] /\left(X^{3}+Y^{3}+Z^{3}\right)$ where K is a field of characteristic $p \equiv 2 \bmod 3$, if one could show that $I^{*}=I^{F}$ for an ideal I, a consequence of this would be $I^{F} \subseteq I^{+} \subseteq I^{*}=I^{F}$, by which $I^{+}=I^{*}$. M cD ermott does show that $I^{*}=I^{F}$ for large families of irreducible ideals and our result $x y z \in\left(x^{2}, y^{2}, z^{2}\right)^{F}$, we believe, fills in an interesting remaining case.

2. DEFINITIONS

Our main reference for the theory of tight closure is $[\mathrm{HH}]$. We next recall some basic definitions.

Let R be a Noetherian ring of characteristic $p>0$. We shall always use the letter e to denote a variable nonnegative integer, and q to denote the e th power of p, i.e., $q=p^{e}$. We shall denote by F, the Frobenius endomorphism of R, and by F^{e}, its e th iteration, i.e., $F^{e}(r)=r^{q}$. For an ideal $I=\left(x_{1}, \ldots, x_{n}\right) \subseteq R$, we let $I^{[q]}=\left(x_{1}^{q}, \ldots, x_{n}^{q}\right)$. N ote that $F^{e}(I) R=$ $I^{[q]}$, where $q=p^{e}$, as always.

We shall denote by R° the complement of the union of the minimal primes of R.

Definition 2.1. A ring R is said to be F-pure if the Frobenius homomorphism $F: M \rightarrow M \otimes_{R} F(R)$ is injective for all R-modules M.

For an element x of R and an ideal I, we say that $x \in I^{F}$, the Frobenius closure of I, if there exists $q=p^{e}$ such that $x^{q} \in I^{[q]}$. A normal domain R is F-pure if and only if for all ideals I of R, we have $I^{F}=I$.

We say that $x \in I^{*}$, the tight closure of I, if there exists $c \in R^{\circ}$ such that $c x^{q} \in I^{[q]}$ for all $q=p^{e} \gg 0$.

It is easily verified that $I \subseteq I^{F} \subseteq I^{*}$. Furthermore, I^{*} is always contained in the integral closure of I and is frequently much smaller.

3. PRELIMINARY COMPUTATIONS

We record some determinant computations we shall find useful. Note that for integers n and m where $m \geq 1$, we shall use the notation

$$
\binom{n}{m}=\frac{(n)(n-1) \cdots(n-m+1)}{(m)(m-1) \cdots(1)} .
$$

Lemma 3.1.

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{ccc}
\binom{n}{a+k} & \binom{n}{a+k-1} & \cdots \\
\binom{n}{a+k-1} & \binom{n}{a+k} & \cdots
\end{array}\binom{n}{a+2 k}\right. \\
& \binom{n}{a+2 k-1} \\
& \\
& =\frac{\binom{n}{a+1}}{\binom{n}{a+k}\binom{n+1}{a+k} \cdots\binom{n+k}{a+k}} \\
& \binom{a+k}{a+k}\left(\begin{array}{c}
n \\
a+k+1 \\
a+k
\end{array}\right) \cdots\binom{a+2 k}{a+k}
\end{aligned}
$$

Proof. This is evaluated in [M u, p. 682] as well as [R o].
Lemma 3.2. Let $F(n, a, k)$ denote the determinant of the matrix

$$
M(n, a, k)=\left(\begin{array}{cccc}
\binom{n}{a} & \binom{n}{a+1} & \cdots & \binom{n}{a+k} \\
\binom{n+2}{a+1} & \binom{n+2}{a+2} & \cdots & \binom{n+2}{a+k+1} \\
\binom{n+2 k}{a+k} & \binom{n+2 k}{a+k+1} & \cdots & \binom{n+2 k}{a+2 k}
\end{array}\right) .
$$

Then for $k \geq 1$ we have

$$
\frac{F(n, a, k)}{F(n+2, a+2, k-1)}=\binom{n}{a} \prod_{s=1}^{k} \prod_{r=1}^{k} \frac{s(s+2 a-n)}{(a+r)(n-a+r)}
$$

Hence

$$
\begin{aligned}
F(n, a, k)= & \frac{\binom{n}{a}\binom{n+2}{a+2} \cdots\binom{n+2 k}{a+2 k}}{\binom{a+k}{k}\binom{a+k+1}{k-1} \cdots\binom{a+2 k-1}{1}} \\
& \cdot \frac{\binom{2 a-n+k}{k}\binom{2 a-n+k+1}{k-1} \cdots\binom{2 a-n+2 k-1}{1}}{\binom{n-a+k}{k}\binom{n-a+k-1}{k-1} \cdots\binom{n-a+1}{1}}
\end{aligned}
$$

Proof. We shall perform row operations on $M(n, a, k)$ in order to get zero entries in the first columns from the second row onwards, starting with the last row and moving up. M ore precisely, from the ($r+1$)st row, subtract the r th row multiplied by $\binom{n+2 r}{a+r} /\binom{n+2 r-2}{a+r-1}$ starting with $r=k$, and continuing until $r=2$. The ($r+1, s+1$)st entry of the new matrix, for $r \geq 1$, is

$$
\begin{gathered}
\binom{n+2 r}{a+r+s}-\frac{\binom{n+2 r}{a+r}}{\binom{n+2 r-2}{a+r-1}}\binom{n+2 r-2}{a+r-1+s} \\
=\frac{s(s+2 a-n)}{(a+r)(n-a+r)}\binom{n+2 r}{a+r+s}
\end{gathered}
$$

We have only one nonzero entry in the first column, namely $\left({ }_{a}^{n}\right)$ and so we examine the matrix obtained by deleting the first row and column. Factoring out $s(s+2 a-n)$ from each column for $s=1, \ldots, k$ and $1 /(a+r)(n$ $-a+r$) from each row for $r=1, \ldots, k$, we see that

$$
\begin{aligned}
\operatorname{det} M(n, a, k)= & \binom{n}{a} \prod_{s=1}^{k} \prod_{r=1}^{k} \frac{s(s+2 a-n)}{(a+r)(n-a+r)} \\
& \times \operatorname{det} M(n+2, a+2, k-1) .
\end{aligned}
$$

The required result immediately follows.
Lemma 3.3. Consider the polynomial ring $T=K\left[A_{1}, \ldots, A_{m}\right]$ where $I_{r, i}$ denotes the ideal $I_{r, i}=\left(A_{1}^{i}, \ldots, A_{r}^{i}\right) T$ for $r \leq m$. Then

$$
\left(A_{1} \cdots A_{r-1}\right)^{\alpha}\left(A_{1}+\cdots+A_{r-1}\right)^{\beta} \in I_{r-1, \alpha+\gamma}+\left(A_{1}+\cdots+A_{r-1}\right)^{\alpha+\gamma} T
$$

for positive integers α, β, and γ implies

$$
\left(A_{1} \cdots A_{r}\right)^{\alpha}\left(A_{1}+\cdots+A_{r}\right)^{\beta+\gamma-1} \in I_{r, \alpha+\gamma}+\left(A_{1}+\cdots+A_{r}\right)^{\alpha+\gamma} T .
$$

Proof. Consider the binomial expansion of $\left(A_{1} \cdots A_{r}\right)^{\alpha}\left(A_{1}\right.$ $\left.+\cdots+A_{r}\right)^{\beta+\gamma-1}$ into terms of the form $\left(A_{1} \cdots A_{r-1}\right)^{\alpha}\left(A_{1}\right.$ $\left.+\cdots+A_{r-1}\right)^{\beta+\gamma-1-j} A_{r}^{\alpha+j}$. Such an element is clearly in $I_{r, \alpha+\gamma}$ whenever
$j \geq \gamma$, and so assume $\gamma>j$. Now

$$
\begin{aligned}
\left(A_{1}\right. & \left.\cdots A_{r-1}\right)^{\alpha} A_{r}^{\alpha+j}\left(A_{1}+\cdots+A_{r-1}\right)^{\beta+\gamma-1-j} \\
& \in I_{r, \alpha+\gamma}+A_{r}^{\alpha+j}\left(A_{1}+\cdots+A_{r-1}\right)^{\alpha+2 \gamma-1-j} T \\
& \subseteq I_{r, \alpha+\gamma}+\left(A_{1}+\cdots+A_{r-1}, A_{r}\right)^{2 \alpha+2 \gamma-1} T \\
& \subseteq I_{r, \alpha+\gamma}+\left(A_{1}+\cdots+A_{r}\right)^{\alpha+\gamma} T
\end{aligned}
$$

4. TIGHT CLOSURE

We now prove the main theorem.
Theorem 4.1. Let $R=K\left[X_{1}, \ldots, X_{n}\right] /\left(X_{1}^{n}+\cdots+X_{n}^{n}\right)$ where $n \geq 3$ and K is a field of prime characteristic p where $p \nmid n$. Then

$$
\left(x_{1} \cdots x_{n}\right)^{n-2} \in\left(x_{1}^{n-1}, \ldots, x_{n}^{n-1}\right)^{*} .
$$

N ote that there are infinitely many $e \in \mathbb{N}$ such that $p^{e}=q \equiv 1 \bmod n$. By [HH, Lemma 8.16], it suffices to work with powers of p of this form, and show that for all such q we have

$$
\left(x_{1} \cdots x_{n}\right)^{(n-2) q+1} \in\left(x_{1}^{(n-1) q}, \ldots, x_{n}^{(n-1) q}\right) .
$$

Letting $q=n k+1$, it suffices to show

$$
\left(x_{1} \cdots x_{n}\right)^{(n-2) n k} \in\left(x_{1}^{(n-1) n k}, \ldots, x_{n}^{(n-1) n k}\right)
$$

Let $A_{1}=x_{1}^{n}, \ldots, A_{n}=x_{n}^{n}$ and note that $A_{1}+\cdots+A_{n}=0$. In this notation, we aim to show

$$
\left(A_{1} \cdots A_{n}\right)^{(n-2) k} \in\left(A_{1}^{(n-1) k}, \ldots, A_{n}^{(n-1) k}\right) .
$$

Our task is then effectively reduced to working in the polynomial ring $K\left[A_{1}, \ldots, A_{n-1}\right] \cong K\left[A_{1}, \ldots, A_{n}\right] /\left(A_{1}+\cdots+A_{n}\right)$ where we need to $\operatorname{show}\left(A_{1} \cdots A_{n-1}\left(A_{1}+\cdots+A_{n-1}\right)\right)^{(n-2) k} \in 2 I_{n-1,(n-1) k}+\left(A_{1}+\cdots+\right.$ $\left.A_{n-1}\right)^{(n-1) k}$. By repeated use of Lemma 3.3, it suffices to show

$$
\left(A_{1} A_{2}\right)^{(n-2) k}\left(A_{1}+A_{2}\right)^{k} \in\left(A_{1}^{(n-1) k}, A_{2}^{(n-1) k},\left(A_{1}+A_{2}\right)^{(n-1) k}\right) .
$$

We have now reduced our problem to a statement about a polynomial ring in two variables. The required result follows from the next lemma.

Lemma 4.2. Let $K[A, B]$ be a polynomial ring over a field K of characteristic $p>0$ and e be a positive integer such that $q=p^{e} \equiv 1 \bmod n$. If $q=n k+1$, we have

$$
(A, B)^{(2 n-3) k} \subseteq I=\left(A^{(n-1) k}, B^{(n-1) k},(A+B)^{(n-1) k}\right) .
$$

In particular, $(A B)^{(n-2) k}(A+B)^{k} \in I$.
Proof. Note that I contains the following elements: $(A+B)^{(n-1) k} \times$ $A^{k} B^{(n-3) k},(A+B)^{(n-1) k} A^{k-1} B^{(n-3) k+1}, \ldots,(A+B)^{(n-1) k} B^{(n-2) k}$. We take the binomial expansions of these elements and consider them modulo the ideal $\left(A^{(n-1) k}, B^{(n-1) k}\right)$. This shows that the following elements are in I :

$$
\begin{aligned}
& \left(\begin{array}{c}
\binom{n-1}{k} k
\end{array}\right) A^{(n-1) k} B^{(n-2) k}+\cdots+\binom{(n-1) k}{2 k} A^{(n-2) k} B^{(n-1) k}, \\
& \left(\begin{array}{c}
\binom{n-1) k}{k-1} A^{(n-1) k} B^{(n-2) k}+\cdots+\binom{(n-1) k}{2 k-1} A^{(n-2) k} B^{(n-1) k}, ~, ~
\end{array}\right. \\
& \left(\begin{array}{c}
\binom{n-1) k}{0} A^{(n-1) k} B^{(n-2) k}+\cdots+\binom{(n-1) k}{k} A^{(n-2) k} B^{(n-1) k} . ~ . ~ . ~ . ~
\end{array}\right.
\end{aligned}
$$

The coefficients of $A^{(n-1) k} B^{(n-2) k}, A^{(n-1) k-1} B^{(n-2) k+1}, \ldots, A^{(n-2) k} B^{(n-1) k}$ form the matrix

$$
\left(\begin{array}{clll}
\binom{(n-1) k}{k} & \binom{(n-1) k}{k+1} & \cdots & \binom{(n-1) k}{2 k} \\
\binom{(n-1) k}{k-1} & \binom{(n-1) k}{k} & \ldots & \binom{(n-1) k}{2 k-1} \\
& \cdots & \cdot \\
\binom{(n-1) k}{0} & \binom{(n-1) k}{1} & \cdots & \binom{(n-1) k}{k}
\end{array}\right) .
$$

To show that all monomials of degree $(2 n-3) k$ in A and B are in I, it suffices to show that this matrix is invertible. Since $q=n k+1$ we have $\left(\left(n-\underset{k}{1) k+r)}=(-1)^{k}(2 k-r)\right.\right.$ for $0 \leq r \leq k$, and so by Lemma 3.1, the deter-
minant of this matrix is

$$
\begin{aligned}
& \frac{\binom{(n-1) k}{k}}{\binom{k}{k}\binom{n+1}{k} \cdots\binom{2 k}{k}} \\
& \quad=(-1)^{k(k+1)} \frac{\binom{2 k}{k}\binom{2 k-1}{k} \cdots\binom{k}{k}}{\binom{k}{k}}\binom{k+1}{k} \ldots\binom{2 k}{k}
\end{aligned}
$$

W ith this we complete the proof that $\left(x_{1} \cdots x_{n}\right)^{n-2} \in\left(x_{1}^{n-1}, \ldots, x_{n}^{n-1}\right)^{*}$.

5. FROBENIUS CLOSURE

Let $R=K\left[X_{1}, \ldots, X_{n}\right] /\left(X_{1}^{n}+\cdots+X_{n}^{n}\right)$ as before, where the characteristic of K is $p+n$.

Lemma 5.1. Let $R=K\left[X_{1}, \ldots, X_{n}\right] /\left(X_{1}^{n}+\cdots+X_{n}^{n}\right)$ where K is a field of characteristic p. Then R is F-pure if and only if $p \equiv 1 \bmod n$.

Proof. This is Proposition 5.21(c) of [HR].
The main result of this section is the following theorem.
Theorem 5.2. Let $R=K\left[X_{1}, \ldots, X_{n}\right] /\left(X_{1}^{n}+\cdots+X_{n}^{n}\right)$ where K is a field of characteristic p. Then

$$
\left(x_{1} \cdots x_{n}\right)^{n-2} \in\left(x_{1}^{n-1}, \ldots, x_{n}^{n-1}\right)^{F}
$$

if and only if $p \not \equiv 1 \bmod n$.
One implication follows from Lemma 5.1, and so we need to consider the case $p \not \equiv 1 \bmod n$.
The case $n=3$ seems to be the most difficult, and we handle that first. Let $R=K[X, Y, Z] /\left(X^{3}+Y^{3}+Z^{3}\right)$ where $p \equiv 2 \bmod 3$. We need to show that $x y z \in\left(x^{2}, y^{2}, z^{2}\right)^{F}$.

Let $A=y^{3}, B=z^{3}$, and so $A+B=-x^{3}$. We first show that when $p=2$, we have $x y z \in\left(x^{2}, y^{2}, z^{2}\right)^{F}$ by establishing that $(x y z)^{8} \in$ $\left(x^{2}, y^{2}, z^{2}\right)^{[8]}$. Note that is suffices to show that $(x y z)^{6} \in\left(x^{15}, y^{15}, z^{15}\right)$, or in other words that $(A B(A+B))^{2} \in\left(A^{5}, B^{5},(A+B)^{5}\right)$, but this is easily seen to be true.

We may now assume $p=6 m+5$ where $m \geq 0$. We shall show that in this case $(x y z)^{p} \in\left(x^{2}, y^{2}, z^{2}\right)^{[p]}$, i.e., that

$$
(x y z)^{6 m+5} \in\left(x^{12 m+10}, y^{12 m+10}, z^{12 m+10}\right) .
$$

Note that to establish this, it suffices to show

$$
(x y z)^{6 m+3} \in\left(x^{12 m+9}, y^{12 m+9}, z^{12 m+9}\right),
$$

i.e., that $(A B(A+B))^{2 m+1} \in\left(A^{4 m+3}, B^{4 m+3},(A+B)^{4 m+3}\right)$.

Lemma 5.3. Let $K[A, B]$ be a polynomial ring over a field K of characteristic $p=6 m+5$ where $m \geq 0$. Then we have

$$
(A B(A+B))^{2 m+1} \in I=\left(A^{4 m+3}, B^{4 m+3},(A+B)^{4 m+3}\right) .
$$

Proof. To show that $(A B(A+B))^{2 m+1} \in I$, we shall show that the following terms grouped together symmetrically from its binomial expansion,

$$
\begin{gathered}
f_{1}=(A B)^{3 m+1}(A+B), f_{3}=(A B)^{3 m}\left(A^{3}+B^{3}\right), \ldots, \\
f_{2 m+1}=(A B)^{2 m+1}\left(A^{2 m+1}+B^{2 m+1}\right),
\end{gathered}
$$

are all in the ideal I. Note that I contains the elements $(A B)^{m}(A+$ $B)^{4 m+3},(A B)^{m-1}(A+B)^{4 m+5}, \ldots,(A B)(A+B)^{6 m+1},(A+B)^{6 m+3}$. We consider the binomial expansions of these elements modulo $\left(A^{4 m+3}\right.$, $B^{4 m+3}$), and get the following elements in I :

$$
\begin{gathered}
\binom{4 m+3}{2 m+2} f_{1}+\binom{4 m+3}{2 m+3} f_{3}+\cdots+\binom{4 m+3}{3 m+2} f_{2 m+1} \\
\binom{4 m+5}{2 m+3} f_{1}+\binom{4 m+5}{2 m+4} f_{3}+\cdots+\binom{4 m+5}{3 m+3} f_{2 m+1} \\
\cdots \\
\binom{6 m+3}{3 m+2} f_{1}+\binom{6 m+3}{3 m+3} f_{3}+\cdots+\binom{6 m+3}{4 m+2} f_{2 m+1}
\end{gathered}
$$

The coefficients of $f_{1}, f_{3}, \ldots, f_{2 m+1}$ arising from these terms form the matrix

$$
\left(\begin{array}{llll}
\binom{4 m+3}{2 m+2} & \binom{4 m+3}{2 m+3} & \ldots & \binom{4 m+3}{3 m+2} \\
\binom{4 m+5}{2 m+3} & \binom{4 m+5}{2 m+4} & \ldots & \binom{4 m+5}{3 m+3} \\
& \ldots & \\
\binom{6 m+3}{3 m+2} & \binom{6 m+3}{3 m+3} & \ldots & \binom{6 m+3}{4 m+2}
\end{array}\right) .
$$

We need to show that this matrix is invertible, but in the notation of Lemma 3.2, its determinant is $F(4 m+3,2 m+2, m)$ and is easily seen to be nonzero.

The above lemma completes the case $n=3$. We may now assume $n \geq 4$ and $p=n k+\delta$ for $2 \leq \delta \leq n-1$. If $k=0$, i.e., $2 \leq p \leq n-1$, we have

$$
\begin{aligned}
\left(x_{1} \cdots x_{n}\right)^{(n-2) p} & =-\left(x_{1} \cdots x_{n-1}\right)^{(n-2) p} x_{n}^{(n-2) p-n}\left(x_{1}^{n}+\cdots+x_{n-1}^{n}\right) \\
& \in\left(x_{1}^{(n-1) p}, \ldots, x_{n-1}^{(n-1) p}\right) .
\end{aligned}
$$

In the remaining case, we have $n \geq 4$ and $k \geq 1$. To prove that ($x_{1} \cdots$ $\left.x_{n}\right)^{n-2} \in\left(x_{1}^{n-1}, \ldots, x_{n}^{n-1}\right)^{F}$, we shall show

$$
\left(x_{1} \cdots x_{n}\right)^{(n-2) p} \in\left(x_{1}^{(n-1) p}, \ldots, x_{n}^{(n-1) p}\right)
$$

This would follow if we could show

$$
\left(x_{1} \cdots x_{n}\right)^{(n-2) n k} \in\left(x_{1}^{(n-1) n k+n}, \ldots, x_{n}^{(n-1) n k+n}\right) .
$$

A s before, let $A_{1}=x_{1}^{n}, \ldots, A_{n}=x_{n}^{n}$. It suffices to show that

$$
\left(A_{1} \cdots A_{n}\right)^{(n-2) k} \in\left(A_{1}^{(n-1) k+1}, \ldots, A_{n}^{(n-1) k+1}\right) .
$$

By Lemma 3.3, this reduces to showing

$$
\begin{aligned}
\left(A_{1} A_{2}\right)^{(n-2) k}\left(A_{1}+A_{2}\right)^{k} & \in I \\
& =\left(A_{1}^{(n-1) k+1}, A_{2}^{(n-1) k+1},\left(A_{1}+A_{2}\right)^{(n-1) k+1}\right) .
\end{aligned}
$$

The only remaining ingredient is the following lemma.
Lemma 5.4. Let $K[A, B]$ be a polynomial ring over a field K of characteristic $p>0$ where $p=n k+\delta$ and where $n \geq 4, k \geq 1$, and $2 \leq \delta \leq n-1$.

Then

$$
(A, B)^{(2 n-3) k} \subseteq I=\left(A^{(n-1) k+1}, B^{(n-1) k+1},(A+B)^{(n-1) k+1}\right)
$$

In particular, $(A B)^{(n-2) k}(A+B)^{k} \in I$.
Proof. N ote that I contains the elements $(A+B)^{(n-1) k+1} A^{k} B^{(n-3) k-1}$, $(A+B)^{(n-1) k+1} A^{k-1} B^{(n-3) k}, \ldots,(A+B)^{(n-1) k+1} B^{(n-2) k-1}$. We take the binomial expansions of these elements and consider them modulo the ideal $\left(A^{(n-1) k+1}, B^{(n-1) k+1}\right)$. This shows that the following elements are in I :

$$
\begin{gathered}
\binom{(n-1) k+1}{k+1} A^{(n-1) k} B^{(n-2) k}+\cdots+\binom{(n-1) k+1}{2 k+1} A^{(n-2) k} B^{(n-1) k} \\
\binom{(n-1) k+1}{k} A^{(n-1) k} B^{(n-2) k}+\cdots+\binom{n-1) k+1}{2 k} A^{(n-2) k} B^{(n-1) k} \\
\cdots \\
\binom{(n-1) k+1}{1} A^{(n-1) k} B^{(n-2) k}+\cdots+\binom{(n-1) k+1}{k+1} A^{(n-2) k} B^{(n-1) k}
\end{gathered}
$$

The coefficients of $A^{(n-1) k} B^{(n-2) k}, A^{(n-1) k-1} B^{(n-2) k+1}, \ldots, A^{(n-2) k} B^{(n-1) k}$ form the matrix

$$
\left(\begin{array}{llll}
\binom{(n-1) k+1}{k+1} & \binom{(n-1) k+1}{k+2} & \cdots & \binom{(n-1) k+1}{2 k+1} \\
\binom{(n-1) k+1}{k} & \binom{(n-1) k+1}{k+1} & \ldots & \binom{(n-1) k+1}{2 k} \\
\binom{(n-1) k+1}{1} & \binom{(n-1) k+1}{2} & \cdots & \binom{(n-1) k+1}{k+1}
\end{array}\right) .
$$

To show that all monomials of degree $(2 n-3) k$ in A and B are in I, it suffices to show that this matrix is invertible. The determinant of this matrix is

$$
\frac{\binom{(n-1) k+1}{k+1}\binom{(n-1) k+2}{k+1} \cdots\binom{n k+1}{k+1}}{\binom{k+1}{k+1}\binom{k+2}{k+1} \cdots\binom{2 k+1}{k+1}}
$$

which is easily seen to be nonzero since the characteristic of the field is $p=n k+\delta$ where $2 \leq \delta \leq n-1$.

Remark 5.5. It is worth noting that $x y z \in\left(x^{2}, y^{2}, z^{2}\right)^{*}$ in the ring $R=K[X, Y, Z] /\left(X^{3}+Y^{3}+Z^{3}\right)$ is, in a certain sense, unexplained. Under mild hypotheses on a ring, tight closure has a "colon-capturing" property: for x_{1}, \ldots, x_{n} part of a system of parameters for an excellent local (or graded) equidimensional ring A, we have (x_{1}, \ldots, x_{n-1}): $x_{n} \subseteq$ $\left(x_{1}, \ldots, x_{n-1}\right)^{*}$ and various instances of elements being in the tight closure of ideals are easily seen to arise from this colon-capturing property.

To illustrate our point, we recall from [Ho, E xample 5.7] how $z^{2} \in(x, y)^{*}$ in the ring R above is seen to arise from colon-capturing. Consider the Segre product $T=R \# S$ where $S=K[U, V]$. Then the elements $x v-y u$, $x u$ and $y v$ form a system of parameters for the ring T. This ring is not Cohen-M acaulay as seen from the relation on the parameters

$$
(z u)(z v)(x v-y u)=(z v)^{2}(x u)-(z u)^{2}(y v) .
$$

The colon-capturing property of tight closure shows

$$
(z u)(z v) \in(x u, y v):_{T}(x v-y u) \subseteq(x u, y v)^{*} .
$$

There is a retraction $R \otimes_{K} S \rightarrow R$ under which $U \mapsto 1$ and $V \mapsto 1$. This gives us a retraction from $T \rightarrow R$ which, when applied to $(z u)(z v) \in$ $(x u, y v)^{*}$, shows $z^{2} \in(x, y)^{*}$ in R.

REFERENCES

[HH] M. Hochster and C. H uneke, Tight closure, invariant theory, and the Briançon-Skoda theorem, J. Amer. Math. Soc. 3 (1990), 31-116.
[H o] M. H ochster, Tight closure in equal characteristic, big Cohen-M acaulay algebras, and solid closure, Contemp. Math. 159 (1994), 173-196.
[H R] M. H ochster and J. R oberts, The purity of the Frobenius and local cohomology, Adv. in Math. 21 (1976), 117-172.
[Hu] C. H uneke, Tight closure, parameter ideals and geometry, in "Commutative A Igebra," Birkhäuser, B asel, in press.
[Mc] M. McDermott, "Tight Closure, Plus Closure and Frobenius Closure in Cubical Cones," Thesis, Univ. of M ichigan, 1996.
[Mu] T. M uir, "A Treatise on the Theory of Determinants" (revised and enlarged by W. H. M etzler), L ongmans, G reen, N ew Y ork/London, 1933.
[R o] P. R oberts, A computation of local cohomology, Contemp. Math. 159 (1994), 351-356.
[Sm] K. E. Smith, Tight closure of parameter ideals, Invent. Math. 115 (1994), 41-60.

[^0]: E-mail: binku@ math.Isa.umich.edu

