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Abstract

Given a local domain (R, m) of prime characteristic that is a homomorphic image of a Gorenstein ring,
Huneke and Lyubeznik proved that there exists a module-finite extension domain S such that the induced
map on local cohomology modules an(R) — H]’;I(S) is zero for each i < dim R. We prove that the
extension S may be chosen to be generically Galois, and analyze the Galois groups that arise.
© 2011 Elsevier Inc. All rights reserved.

MSC: primary 13D45; secondary 13A35, 14B15, 14F17

Keywords: Characteristic p methods; Local cohomology; Big Cohen—Macaulay algebras; Integral ring extensions;
Galois extensions

1. Introduction

Let R be a commutative Noetherian integral domain. We use R™ to denote the integral closure
of R in an algebraic closure of its fraction field. Hochster and Huneke proved the following:
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Theorem 1.1. (See [8, Theorem 1.1].) If R is an excellent local domain of prime characteristic,
then each system of parameters for R is a regular sequence on R, i.e., R™ is a balanced big
Cohen—Macaulay algebra for R.

It follows that for a ring R as above, and i < dim R, the local cohomology module H,"n(RJr)
is zero. Hence, given an element [5] of H@I(R), there exists a module-finite extension domain S
such that [n] maps to O under the induced map H&(R) — H&(S). This was strengthened by
Huneke and Lyubeznik, albeit under mildly different hypotheses:

Theorem 1.2. (See [10, Theorem 2.1].) Let (R, m) be a local domain of prime characteristic
that is a homomorphic image of a Gorenstein ring. Then there exists a module-finite extension
domain S such that the induced map

HL (R) — HL(S)
is zero for each i < dim R.

By a generically Galois extension of a domain R, we mean an extension domain S that is
integral over R, such that the extension of fraction fields is Galois; Gal(S/R) will denote the
Galois group of the corresponding extension of fraction fields. We prove the following:

Theorem 1.3. Let R be a domain of prime characteristic.

(1) Let a be an ideal of R and [n] an element of Hcit(R)nil (see Section 2.3). Then there exists
a module-finite generically Galois extension S, with Gal(S/R) a solvable group, such that
[n] maps to O under the induced map Hé(R) — HA(S).

(2) Suppose (R, m) is a homomorphic image of a Gorenstein ring. Then there exists a module-
finite generically Galois extension S such that the induced map HTin(R) — H&(S) is zero
for eachi < dim R.

Set RSP to be the R-algebra generated by the elements of R™ that are separable over frac(R).
Under the hypotheses of Theorem 1.3(2), RTP is a separable balanced big Cohen—Macaulay
R-algebra; see Corollary 3.3. In contrast, the algebra R*, i.e., the purely inseparable part of R,
is not a Cohen—Macaulay R-algebra in general: take R to be an F'-pure domain that is not Cohen—
Macaulay; see [8, p. 77].

For an N-graded domain R of prime characteristic, Hochster and Huneke proved the exis-
tence of a Q-graded Cohen—Macaulay R-algebra RTOR see Theorem 5.1. In view of this and
the preceding paragraph, it is natural to ask whether there exists a Q-graded separable Cohen—
Macaulay R-algebra; in Example 5.2 we show that the answer is negative.

In Example 5.3 we construct an N-graded domain of prime characteristic for which no
module-finite Q-graded extension domain is Cohen—Macaulay.

We also prove the following results for closure operations; the relevant definitions may be
found in Section 2.1.

Theorem 1.4. Let R be an integral domain of prime characteristic, and let a be an ideal of R.

(1) Given an element z € af’, there exists a module-finite generically Galois extension S,

with Gal(S/R) a solvable group, such that 7 € aS.
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(2) Given an element 7 € a™, there exists a module-finite generically Galois extension S such
that z € aS.

In Example 4.1 we present a domain R of prime characteristic where z € a™ for an element z
and ideal a, and conjecture that z ¢ aS for each module-finite generically Galois extension S
with Gal(S/R) a solvable group. Similarly, in Example 4.3 we present a 3-dimensional ring R
where we conjecture that H%(R) — H%(S ) is nonzero for each module-finite generically Ga-
lois extension S with Gal(S/R) a solvable group.

Remark 1.5. The assertion of Theorem 1.2 does not hold for rings of characteristic zero: Let

(R, m) be a normal domain of characteristic zero, and S a module-finite extension domain. Then
the field trace map tr: frac(S) —> frac(R) provides an R-linear splitting of R C S, namely

tr:S — R.

[frac(S) : frac(R)]

It follows that the induced maps on local cohomology Ht';l(R) — H,’;.L (S) are R-split. A varia-
tion is explored in [15], where the authors investigate whether the image of H‘il(R) in HQ(R*‘)
is killed by elements of R™ having arbitrarily small positive valuation. This is motivated by
Heitmann’s proof of the direct summand conjecture for rings (R, m) of dimension 3 and mixed
characteristic p > 0 [5], which involves showing that the image of

HZ(R) — HL(RT)
is killed by p!/" for each positive integer 7.

Throughout this paper, a local ring refers to a commutative Noetherian ring with a unique
maximal ideal. Standard notions from commutative algebra that are used here may be found
in [2]; for more on local cohomology, consult [11]. For the original proof of the existence of big
Cohen—-Macaulay modules for equicharacteristic local rings, see [6].

2. Preliminary remarks

2.1. Closure operations

Let R be an integral domain. The plus closure of an ideal a is the ideal a™ = aR* N R.
When R is a domain of prime characteristic p > 0, we set

R® = U Rl/pe,
e>0

which is a subring of R*. The Frobenius closure of an ideal a is the ideal al = aR> N R.
Alternatively, set

alPl = (a”e |a €a).

Then a¥ = (r € R | r?* € al?’ for some e € N).
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2.2. Solvable extensions

A finite separable field extension L/K is solvable if Gal(M/K) is a solvable group for some
Galois extension M of K containing L. Solvable extensions form a distinguished class, i.e.,

(1) for finite extensions K € L € M, the extension M /K is solvable if and only if each of M /L
and L/K is solvable;

(2) for finite extensions L/K and M /K contained in a common field, if L/K is solvable, then
so is the extension LM /M.

A finite separable extension L/K of fields of characteristic p > 0 is solvable precisely if it is
obtained by successively adjoining

(1) roots of unity;
(2) roots of polynomials 7" — a for n coprime to p;
(3) roots of Artin—Schreier polynomials, TP — T — a;

see, for example, [12, Theorem VI.7.2].
2.3. Frobenius-nilpotent submodules

Let R be aring of prime characteristic p. A Frobenius action on an R-module M is an additive
map F: M — M with F(rm) =rP F(m) for each r € R and m € M. In this case, ker F is
a submodule of M, and we have an ascending sequence

kelngkerF2 gkerF3 C.eel

The union of these is the F-nilpotent submodule of M, denoted My;. If R is local and M is
Artinian, then there exists a positive integer e such that F¢(My;) = 0; see [13, Proposition 4.4]
or [4, Theorem 1.12].

3. Proofs
We record two elementary results that will be used later:

Lemma 3.1. Let K be a field of characteristic p > 0. Let a and b be elements of K where a is
nonzero. Then the Galois group of the polynomial

T? +aT —b
is a solvable group.

Proof. Form an extension of K by adjoining a primitive p — 1 root of unity and an element ¢
that is a root of TP”~! — a. The polynomial T” 4+ aT — b has the same roots as

() -(0)-&

which is an Artin—Schreier polynomial in 7/c. O
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Lemma 3.2. Let R be a domain, and p a prime ideal. Given a domain S that is a module-finite
extension of Ry, there exists a domain T, module-finite over R, with T, = S.

Proof. Given s; € S, there exists 7; € R \ p such that r;s; is integral over R. If s, ..., s, are
generators for S as an R-module, set T = R[ris1,...,rs,]. O

Proof of Theorem 1.3. Since solvable extensions form a distinguished class, (1) reduces by
induction to the case where F'([n]) = 0. Compute H/ (R) using a Cech complex C®(x; R), where
X =X, ..., X, are nonzero elements generating the ideal a; recall that C*(x; R) is the complex

n
0— R — @Rx,. — @inxj — -+ —> Ry, — 0.
i=0 i<j

Consider a cycle n in Ci(x; R) that maps to [n] in H(’;(R). Since F([n]) =0, the cycle F(n) is
a boundary, i.e., F (1) = d(x) for some a € C'~!(x; R).

Let K1y i be the square-free monomials of degree i — 2 in the elements x1, ..., x,, and
regard C'x:R)=C"Y(xp, ..., xn: R) as

Ry @ @ Ry, @ Ci_l(xl, oo X R).

There exist a power g of the characteristic p of R, and elements by, ..., b, in R, such that o can
be written in the above direct sum as

o= e AE T
(xop1)? (xomm)4

Consider the polynomials

TP +x{T —b; fori=1,...,m,

and let L be a finite extension field where these have roots ?1, . . ., t,, respectively. By Lemma 3.1,
we may assume L is Galois over frac(R) with the Galois group being solvable. Let S be
a module-finite extension of R that contains ?{, ..., %,, and has L as its fraction field; if R is
excellent, we may take S to be the integral closure of R in L.

In the module C:~!(x; S) one then has

P+ xlt th+xlt
=<1 01""’m 0m’*""’*>=F(ﬁ)+y’

(xom1)? (xopm)?

where
1 Im
/3=< ,0,...,0)
(xopu1)9/P (xXopm)4/P

and

(t] b >
Y= —F,. 0, — %, ..., %
ui i
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are elements of
C (X 8) = S ® -+ ® Sugpyy ®CT (1,0, X5 S).
Since F(n) = 0(F(B) + y), we have
F(n—a(B) =3(y).
But [n] =[n —3(B)] in Hé(S), so after replacing n we may assume that
F(n) =03(y).

Next, note that y is an element of Ci_l(l, X1,...,%xn; S), viewed as a submodule of Ci_l(x; S).
There exits ¢ in C’_z(l, X1, ..., Xn; S) such that

n tm
3(C)=<—,...,—,*,...,*).
K q

1 Mm

Since

Fm =3(y —3(0)),

after replacing y we may assume that the first m coordinate entries of y are 0, i.e., that

c1 C
y = 0,...,0,—,...,—),
( 22 TP

where Q is a power of p, the ¢; belong to S, and Ay, ..., A; are the square-free monomials of
degree i — 1 in xy, ..., x,.

The coordinate entries of d(y) include each c; /AiQ. Since d(y) = F(n), each ¢; /k? is a p-th
power in frac(S); it follows that each ¢; has a p-th root in frac(S). After enlarging S by adjoining
each cil/p, we see that y = F(£) for an element £ of C'~!(x; §). But then

F(n) =8(F(§))=F(3(5).

Since the Frobenius action on C! (x; S) is injective, we have n = d(£), which proves (1).

For (2), it suffices to construct a module-finite generically separable extension S such
that H,’;1 (R) — HT’;I(S) is zero for i < dim R; to obtain a generically Galois extension, en-
large S to a module-finite extension whose fraction field is the Galois closure of frac(S) over
frac(R).

We use induction on d = dim R, as in [10]. If d = 0, there is nothing to be proved; if d =1,
the inductive hypothesis is again trivially satisfied since Hg(R) =0.Fixi <dimR. Let (A, 9N)
be a Gorenstein local ring that has R as a homomorphic image, and set

M =ExtdmA=I (R, A).

Let p1, ..., ps be the elements of the set Assg M ~ {9}.
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Let g be a prime ideal of R that is not maximal. Since R is catenary, one has
dim R =dim Ry +dim R/q.
Thus, the condition i < dim R may be rewritten as
i —dimR/q < dim Rq.

Using the inductive hypothesis and Lemma 3.2, there exists a module-finite extension R’ of R
such that frac(R’) is a separable field extension of frac(Rq) = frac(R), and the induced map

i—dimR/q

HqRq

(Rq) —> H;;j”“"/q(R;) (3.2.1)
is zero. Taking the compositum of finitely many such separable extensions inside a fixed algebraic
closure of frac(R), there exists a module-finite generically separable extension R’ of R such that
the map (3.2.1) is zero when q is any of the primes p1 R, ..., ps R. We claim that the image of the
induced map H";I(R) — H,’;1 (R’) has finite length.

Using local duality over A, it suffices to show that

M =Ext{™ 47 (R', A) — Ext™ A (R, A) =M
has finite length. This, in turn, would follow if
My, =Ext{" 7 (R), Ap) — Ex(E T (Ry, Ap) = My

is zero for each prime ideal p in Assg M ~ {91}. Using local duality over Ay, it suffices to verify
the vanishing of

Hdim Ap—dim A+i

dim Ay —dim A+i / ,/
oR, (Ry) —> H,p " (Ry)

PRy
for each p in Assg M ~ {901}. This, however, follows from our choice of R’ since
dimAp, —dimA+i =i —dimA/p=i —dimR/pR.

What we have arrived at thus far is a module-finite generically separable extension R’ of R
such that the image of H’ (R) — H.. (R’) has finite length; in particular, this image is finitely
generated. Working with one generator at a time and taking the compositum of extensions,
given [n] in an(R’ ), it suffices to construct a module-finite generically separable extension S
of R’ such that [] maps to 0 under H! (R') — HL (S).

By Theorem 1.2, there exists a module-finite extension Ry of R’ such that [] maps to O under
the map H,’;1 (R — an (Ry). Setting R; to be the separable closure of R’ in Ry, the image
of [n]in H\;(Rz) lies in H,’; (R2)ni1- The result now follows by (1). O

Corollary 3.3. Let (R,m) be a local domain of prime characteristic that is a homomorphic
image of a Gorenstein ring. Then H. (R*5P) =0 for each i < dim R.

Moreover, each system of parameters for R is a regular sequence on RT5P, i.e., RT5%P js
a separable balanced big Cohen—Macaulay algebra for R.
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Proof. Theorem 1.3(2) implies that Hlﬁl (RT°P) = 0 for each i < dim R. The proof that this
implies the second statement is similar to the proof of [10, Corollary 2.3]. O

Proof of Theorem 1.4. Let p be the characteristic of R. If z € a¥ | then there exists a prime
power g = p° with z¢ € al?]. In this case, z9/? belongs to the Frobenius closure of al/P), and

(z9/P)" e (a[q/p])lpl'

Since solvable extensions form a distinguished class, we reduce to the case e =1, i.e., ¢ = p.
There exist nonzero elements, ag, ..., a,, € a and by, ..., b, € R with

m
Zp = Zbiaﬂ
i=0

Consider the polynomials
TP +afT —b; fori=1,....m,

and let L be a finite extension field where these have roots 71, ... ., #,, respectively. By Lemma 3.1,
we may assume L is Galois over frac(R) with the Galois group being solvable. Set

1 m
th=— - tia; |. 3.3.1
0 P (Z ; 1“1) ( )

Taking p-th powers, we have

1 m m 1 m m
P _ P _ r.r)_ o P\, P _ P
Iy =—>5 Zblai Zti a; | =bo+ 5 Z(bl 4 )ai —bo—l—Zt,ai .
o \i=o i=1 o i i=1

Thus, o belongs to the integral closure of R[fq, ..., t,,] inits field of fractions. Let S be a module-
finite extension of R that contains 7y, ..., t,;, and has L as its fraction field; if R is excellent, we
may take S to be the integral closure of R in L. Since (3.3.1) may be rewritten as

m
Z=Zfiai,
i=0

it follows that z € aS, completing the proof of (1).

Assertion (2) follows from [17, Corollary 3.4], though we include a proof using (1). There
exists a module-finite extension domain 7" such that z € a7. Decompose the field extension
frac(R) C frac(T') as a separable extension frac(R) C frac(T) followed by a purely inseparable
extension frac(T") C frac(T). Let Ty be the integral closure of R in frac(T).

Since T is a purely inseparable extension of Tp, and z € a7, it follows that z belongs to the
Frobenius closure of the ideal a7y. By (2) there exists a generically separable extension Sy of Ty
with z € aSp. Enlarge Sy to a generically Galois extension S of R. This concludes the argument
in the case R is excellent; in the event that S is not module-finite over R, one may replace it by
a subring satisfying z € aS and having the same fraction field. O
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The equational construction used in the proof of Theorem 1.4(1) arose from the study of
symplectic invariants in [16].

4. Some Galois groups that are not solvable

Let R be a domain of prime characteristic, and let a be an ideal of R. If z is an element of af,
Theorem 1.4(1) states that there exists a solvable module-finite extension S with z € aS. In the
following example one has z € a™, and we conjecture z ¢ aS for any module-finite generically
Galois extension S with Gal(S/R) solvable.

Example 4.1. Leta, b, c1, ¢ be algebraically independent over I ,, and set R be the hypersurface

Fp(a,b,c1,c2)lx,y,z]
(27" + 1 (xy)PP =Pzl + o (xy)P* =1z + axP® + byr?)

We claim z € (x, y)T. Let u, v be elements of R that are, respectively, roots of the polynomials
TP 4 e1yP "PTP 4 coy?’~IT + a, @.1.1)
and
T + clxpzpr” + czxleT +b.

Set S to be the integral closure of R in the Galois closure of frac(R)(u, v) over frac(R). Then
(z —ux —vy)/xy is an element of S, since it is a root of the monic polynomial

TP 4 e1TP + o T.

It follows that z € (x, y)S.
We next show that Gal(S/R) is not solvable for the extension S constructed above. Since u is
aroot of (4.1.1), u/y is aroot of

2 a
cq ) —. 1.
N 4.1.2)
y

The polynomial (4.1.2) is irreducible over F, (c1, ¢2,a/ ypz), and hence over the purely transcen-
dental extension I, (c1, ¢2,a, x, y, z) = frac(R). Since frac(S) is a Galois extension of frac(R)
containing a root of (4.1.2), it contains all roots of (4.1.2). As (4.1.2) is separable, its roots are
distinct; taking differences of roots, it follows that frac(S) contains the p2 distinct roots of

TP 4 ¢TP + T, (4.1.3)

We next verify that the Galois group of (4.1.3) over frac(R) is GL2 (F,).

Quite generally, let L be a field of characteristic p. Consider the standard linear action of
GL,(IF,) on the polynomial ring L[x1, x2]. The ring of invariants for this action is generated
over L by the Dickson invariants c1, c2, which occur as the coefficients in the polynomial
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2
[T T —ax—p)=7" +aT’ +arl,
a,felF,

see [3] or [1, Chapter 8]. Hence the extension L(x1, x2)/L(c1, c2) has Galois group GLo (F ).
It follows from the above that if ¢y, ¢, are algebraically independent elements over a field L
of characteristic p, then the polynomial

TP 4 e1T? + e>T € L(cy, ¢2)[T]

has Galois group GL,(F)).

The group PSL,(FF)) is a subquotient of GL,(F,), and, we conjecture, a subquotient of
Gal(S/R) for any module-finite generically Galois extension S of R with z € aS. For p > 5,
the group PSL,(IF ;) is a nonabelian simple group; thus, conjecturally, Gal(S/R) is not solvable
for any module-finite generically Galois extension S with z € aS.

Example 4.2. Extending the previous example, let a, b, ¢y, ..., ¢, be algebraically independent
elements over [F, and set R to be the polynomial ring F,(a, b, c1, ..., cy)[x, y, z] modulo the
principal ideal generated by

n—2 _n—

1 n
+ o) T

n—1 n—

n n 2 n n n
2 e +oo e o ax? + by 7

Then z € (x, y)™; imitate the previous example with u, v being roots of

n—2 n—2

79 4oy =470 4 ey I ta,

n—1

an +Clyqn_q

and

n—2 n—2

+ czxq”—q T 4. +cnxq"_1T +0.

n—1

n n_ n—1
T4 4 x4 4" 4

If S is any module-finite generically Galois extension of R with z € aS, we conjecture that
frac(S) contains the splitting field of

T 4,79 471" 4. 4 ¢,T. 4.2.1)

Using a similar argument with Dickson invariants, the Galois group of (4.2.1) over frac(R)
is GL, (FF). Its subquotient PSL,, (IF,) is a nonabelian simple group for n > 3, and for n =2,
q =4

Likewise, we record conjectural examples R where H;(R) — an(S) is nonzero for each
module-finite generically Galois extension S with Gal(S/R) solvable:

Example 4.3. Let a, b, c|, c; be algebraically independent over IF,, and consider the hypersur-
face

_ Fpa,b,c1,c)lx,y,72]
(22P° 4 1 (xy)P*=PZ2P + co (xy)P* 122 + axP® + byP”)
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Let (R, m) be the Rees ring A[xt, yt, zt] localized at the maximal ideal x, y, z, xt, yt, zt. The
elements x, yt, y 4+ xt form a system of parameters for R, and the relation

Z2t~(y+xt)=zzt2~x+zz-yt

defines an element [n] of H,%l(R). We conjecture that if S is any module-finite generically Galois
extension such that [] maps to O under the induced map H%(R) — H%(S), then frac(S)
contains the splitting field of

TP +¢TP + o7,
and hence that Gal(S/R) is not solvable if p > 5.
5. Graded rings and extensions

Let R be an N-graded domain that is finitely generated over a field Ry. Set RTOR to be the
Qx0-graded ring generated by elements of R™ that can be assigned a degree such that they
then satisfy a homogeneous equation of integral dependence over R. Note that [RTOR], is the
algebraic closure of the field Ry. One has the following:

Theorem 5.1. (See [8, Theorem 6.1].) Let R be an N-graded domain that is finitely generated
over a field Ry of prime characteristic. Then each homogeneous system of parameters for R is
a regular sequence on RTOR,

Let R be as in the above theorem. Since RTOR and R*5¢P are Cohen—-Macaulay R-algebras,
it is natural to ask whether there exists a (Q-graded separable Cohen—Macaulay R-algebra. The
answer to this is negative:

Example 5.2. Let R be the Rees ring

Falx, y, z]
m [)C t, yt , Zt ]
with the N-grading where the generators x, y, z, xt, yf, zt have degree 1. Set B to be the
R-algebra generated by the homogeneous elements of R+OR that are separable over frac(R). We
prove that B is not a balanced Cohen—Macaulay R-module.

The elements x, yt, y + xt constitute a homogeneous system of parameters for R since the
radical of the ideal that they generate is the homogeneous maximal ideal of R, and dim R = 3.
Suppose, to the contrary, that they form a regular sequence on B. Since

Pt (y+xt) =227 x4+ 2%y,
it follows that z2¢ € (x, yt) B. Thus, there exist elements u, v € By with

Z2t=u-x+v~yt. (5.2.1)
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Since z° = x3 + y3, we also have z° = x/xz + y./yz in RTOR, and hence

Pt =1x7-x + /Y2 yt. (5.2.2)

Comparing (5.2.1) and (5.2.2), we see that

(u+1t/xz)-x =W+ yz) -yt

in RTOR_ But x, yr is a regular sequence on RTOR 5o there exists an element ¢ in [RTOR] with
u +ty/xz=cyt and v + /yz = cx. Since [RTOR]y = F,, it follows that ¢ € R, and hence that
/Y7 € B. This contradicts the hypothesis that elements of B are separable over frac(R).

The above argument shows that any graded Cohen—Macaulay R-algebra must contain the

elements ,/yz and ¢/xz.

We next show that no module-finite Q-graded extension domain of the ring R in Example 5.2
is Cohen—Macaulay.

Example 5.3. Let R be the Rees ring from Example 5.2, and let S be a graded Cohen—Macaulay
ring with R € § € RTOR, We prove that S is not finitely generated over R.

By the previous example, S contains ,/yz and ¢,/xz. Using the symmetry between x, y, z, it
follows that ./xy, /xz,t. /Xy, t./yz are all elements of S. We prove inductively that S contains

xlfz/q(yz)]/q, ylfz/q(xz)l/q, zlfz/q(xy)l/q,

x4 (y)l4, ty! =24 (xg)V4, 17! 729 (xy)/4, (5.3.1)

for each ¢ =2¢ with e > 1. The case e = 1 has been settled.
Suppose S contains the elements (5.3.1) for some g = 2¢. Then, one has

xl_z/q(yZ)l/q . tyl—Z/q(xz)l/q - (y+xt)

=1x Ty )9 iy T ()9 x 4 xRy 12 ()l ey
Using as before that x, yz, y + x¢ is a regular sequence on S, we conclude
xl_z/q(yz)l/q _tyl—Z/q(xz)l/q =u-x+v-yt
for some u, v € S;. Simplifying the left-hand side, the above reads
tey)! Va2 =y x vyt (5.3.2)
Taking g-th roots in
P =xJ/xz+ vz
and multiplying by 7 (xy)'~1/7 yields

t(xy)l—l/qZZ/q — lyl—l/tI(xz)l/ZQ Cx +x1—1/Q(yZ)1/24 - yI. (5.3.3)
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Comparing (5.3.2) and (5.3.3), we see that
(u+ 1y V4 (x0)2)  x = (v x7 Vi (yr) 2 -y,
so there exists ¢ in [RTOR]y = F, with
u+ty! =V (x)V2 = eyt and v 4 x4 (yz)/2 = cx.

It follows that ry!~1/9(xz)!/24 and x'~1/4(yz)!/%4 are elements of S. In view of the symmetry
between x, y, z, this completes the inductive step. Setting

we have proved that
04 € frac(S) for each qg=2°

We claim 0'/2 does not belong to frac(R). Indeed if it does, then (xy)!/? belongs to frac(R),
and hence to R, as R is normal; this is readily seen to be false. The extension

frac(R) C frac(R)(6'/7)
is purely inseparable, so the minimal polynomial of 6/7 over frac(R) has the form 7€ — 92/4
for some Q = 2£. Since #1/2 ¢ frac(R), we conclude that the minimal polynomial is 77 — 6.
Hence
[frac(R)(9'/7) : frac(R)] =q for each g =2°.

It follows that [frac(S) : frac(R)] is not finite.

Theorems 1.2 and 1.3(2) discuss the vanishing of the image of Ht’;l(R) for i < dimR. In the
case of graded rings, one also has the following result for Hff1 (R).

Proposition 5.4. Let R be an N-graded domain that is finitely generated over a field Ry of prime
characteristic. Set d = dim R. Then [Héli(R)]>0 maps to zero under the induced map

HE(R) —> HE (RTOR).

Hence, there exists a module-finite Q-graded extension domain S of R such that the induced map
[HE(R)]5g —> HE(S) is zero.

Proof. Let F¢: H]ﬁ(R) — Hf]i(R) denote the e-th iteration of the Frobenius map. Suppose
[n] € [HZ (R)],, for some n > 0. Then F*([n]) belongs to [Hgl(R)]npe foreach e. As [H‘fl(R)]>0
has finite length, there exists e >> 1 and homogeneous elements ry, ..., r, € R such that

F(Inl) +riF (In)) + - +reln] = 0. (5.4.1)
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We imitate the equational construction from [10]: Consider a homogeneous system of parameters
X =Xx1,...,Xq, and compute H} (R) as the cohomology of the Cech complex C*(x; R) below:

d
0 R DRy DRy Ry 0
i=1 i<j

This complex is Z-graded; let n be a homogeneous element of C%(x; R) that maps to [7]
in Hti(R). Eq. (5.4.1) implies that

FE) +rF i+ +ren
is a boundary in C%x; R), say it equals d () for a homogeneous element o of C%1(x; R). Solv-
ing integral equations in each coordinate of C¢~!(x; R), there exists a module-finite extension
domain S and 8 in C91(x; S) with
FCB)+rF B+ +ref=c.
Moreover, we may assume S is a normal ring. Since n — 9(8) is an element on frac(S) satisfying
TP 41 TP 4. 1T =0,

it belongs to S. But then n — 9(8) maps to zero in H\i(S). Thus, each homogeneous element of
the module [Hgl(R)]>0 maps to 0 in HZ (RTCR),
For the final statement, note that [Htﬁ(R)]}0 has finite length. O

The next example illustrates why Proposition 5.4 is limited to [Hr‘{l(R)]>0.
Example 5.5. Let K be a field of prime characteristic, and take R to be the semigroup ring
R:K[xln-xd,xf,...,xg].

It is easily seen that R is normal, and that [H,i(R)]n is nonzero for each integer n < 0. We claim
that the induced map

HEL(R) — HE(S)

is injective for each module-finite extension ring S. For this, it suffices to check that R is a
splinter ring, i.e., that R is a direct summand of each module-finite extension ring; the splitting
of R C S then induces an R-splitting of HZ (R) — HZ(S).

To check that R is splinter, note that normal affine semigroup rings are weakly F-regular
by [7, Proposition 4.12], and that weakly F'-regular rings are splinter by [9, Theorem 5.25]. For
more on splinters, we point the reader towards [14,9,18].
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