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Abstract

Given a local domain (R,m) of prime characteristic that is a homomorphic image of a Gorenstein ring,
Huneke and Lyubeznik proved that there exists a module-finite extension domain S such that the induced
map on local cohomology modules Hi

m(R) −→ Hi
m(S) is zero for each i < dimR. We prove that the

extension S may be chosen to be generically Galois, and analyze the Galois groups that arise.
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1. Introduction

Let R be a commutative Noetherian integral domain. We use R+ to denote the integral closure
of R in an algebraic closure of its fraction field. Hochster and Huneke proved the following:
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Theorem 1.1. (See [8, Theorem 1.1].) If R is an excellent local domain of prime characteristic,
then each system of parameters for R is a regular sequence on R+, i.e., R+ is a balanced big
Cohen–Macaulay algebra for R.

It follows that for a ring R as above, and i < dimR, the local cohomology module Hi
m(R+)

is zero. Hence, given an element [η] of Hi
m(R), there exists a module-finite extension domain S

such that [η] maps to 0 under the induced map Hi
m(R) −→ Hi

m(S). This was strengthened by
Huneke and Lyubeznik, albeit under mildly different hypotheses:

Theorem 1.2. (See [10, Theorem 2.1].) Let (R,m) be a local domain of prime characteristic
that is a homomorphic image of a Gorenstein ring. Then there exists a module-finite extension
domain S such that the induced map

Hi
m(R) −→ Hi

m(S)

is zero for each i < dimR.

By a generically Galois extension of a domain R, we mean an extension domain S that is
integral over R, such that the extension of fraction fields is Galois; Gal(S/R) will denote the
Galois group of the corresponding extension of fraction fields. We prove the following:

Theorem 1.3. Let R be a domain of prime characteristic.

(1) Let a be an ideal of R and [η] an element of Hi
a(R)nil (see Section 2.3). Then there exists

a module-finite generically Galois extension S, with Gal(S/R) a solvable group, such that
[η] maps to 0 under the induced map Hi

a(R) −→ Hi
a(S).

(2) Suppose (R,m) is a homomorphic image of a Gorenstein ring. Then there exists a module-
finite generically Galois extension S such that the induced map Hi

m(R) −→ Hi
m(S) is zero

for each i < dimR.

Set R+sep to be the R-algebra generated by the elements of R+ that are separable over frac(R).
Under the hypotheses of Theorem 1.3(2), R+sep is a separable balanced big Cohen–Macaulay
R-algebra; see Corollary 3.3. In contrast, the algebra R∞, i.e., the purely inseparable part of R+,
is not a Cohen–Macaulay R-algebra in general: take R to be an F -pure domain that is not Cohen–
Macaulay; see [8, p. 77].

For an N-graded domain R of prime characteristic, Hochster and Huneke proved the exis-
tence of a Q-graded Cohen–Macaulay R-algebra R+GR, see Theorem 5.1. In view of this and
the preceding paragraph, it is natural to ask whether there exists a Q-graded separable Cohen–
Macaulay R-algebra; in Example 5.2 we show that the answer is negative.

In Example 5.3 we construct an N-graded domain of prime characteristic for which no
module-finite Q-graded extension domain is Cohen–Macaulay.

We also prove the following results for closure operations; the relevant definitions may be
found in Section 2.1.

Theorem 1.4. Let R be an integral domain of prime characteristic, and let a be an ideal of R.

(1) Given an element z ∈ aF , there exists a module-finite generically Galois extension S,
with Gal(S/R) a solvable group, such that z ∈ aS.
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(2) Given an element z ∈ a+, there exists a module-finite generically Galois extension S such
that z ∈ aS.

In Example 4.1 we present a domain R of prime characteristic where z ∈ a+ for an element z

and ideal a, and conjecture that z /∈ aS for each module-finite generically Galois extension S

with Gal(S/R) a solvable group. Similarly, in Example 4.3 we present a 3-dimensional ring R

where we conjecture that H 2
m(R) −→ H 2

m(S) is nonzero for each module-finite generically Ga-
lois extension S with Gal(S/R) a solvable group.

Remark 1.5. The assertion of Theorem 1.2 does not hold for rings of characteristic zero: Let
(R,m) be a normal domain of characteristic zero, and S a module-finite extension domain. Then
the field trace map tr : frac(S) −→ frac(R) provides an R-linear splitting of R ⊆ S, namely

1

[frac(S) : frac(R)] tr :S −→ R.

It follows that the induced maps on local cohomology Hi
m(R) −→ Hi

m(S) are R-split. A varia-
tion is explored in [15], where the authors investigate whether the image of Hi

m(R) in Hi
m(R+)

is killed by elements of R+ having arbitrarily small positive valuation. This is motivated by
Heitmann’s proof of the direct summand conjecture for rings (R,m) of dimension 3 and mixed
characteristic p > 0 [5], which involves showing that the image of

H 2
m(R) −→ H 2

m

(
R+)

is killed by p1/n for each positive integer n.

Throughout this paper, a local ring refers to a commutative Noetherian ring with a unique
maximal ideal. Standard notions from commutative algebra that are used here may be found
in [2]; for more on local cohomology, consult [11]. For the original proof of the existence of big
Cohen–Macaulay modules for equicharacteristic local rings, see [6].

2. Preliminary remarks

2.1. Closure operations

Let R be an integral domain. The plus closure of an ideal a is the ideal a+ = aR+ ∩ R.
When R is a domain of prime characteristic p > 0, we set

R∞ =
⋃
e�0

R1/pe

,

which is a subring of R+. The Frobenius closure of an ideal a is the ideal aF = aR∞ ∩ R.
Alternatively, set

a[pe] = (
ape ∣∣ a ∈ a

)
.

Then aF = (r ∈ R | rpe ∈ a[pe] for some e ∈ N).
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2.2. Solvable extensions

A finite separable field extension L/K is solvable if Gal(M/K) is a solvable group for some
Galois extension M of K containing L. Solvable extensions form a distinguished class, i.e.,

(1) for finite extensions K ⊆ L ⊆ M , the extension M/K is solvable if and only if each of M/L

and L/K is solvable;
(2) for finite extensions L/K and M/K contained in a common field, if L/K is solvable, then

so is the extension LM/M .

A finite separable extension L/K of fields of characteristic p > 0 is solvable precisely if it is
obtained by successively adjoining

(1) roots of unity;
(2) roots of polynomials T n − a for n coprime to p;
(3) roots of Artin–Schreier polynomials, T p − T − a;

see, for example, [12, Theorem VI.7.2].

2.3. Frobenius-nilpotent submodules

Let R be a ring of prime characteristic p. A Frobenius action on an R-module M is an additive
map F :M −→ M with F(rm) = rpF (m) for each r ∈ R and m ∈ M . In this case, kerF is
a submodule of M , and we have an ascending sequence

kerF ⊆ kerF 2 ⊆ kerF 3 ⊆ · · · .
The union of these is the F -nilpotent submodule of M , denoted Mnil. If R is local and M is
Artinian, then there exists a positive integer e such that Fe(Mnil) = 0; see [13, Proposition 4.4]
or [4, Theorem 1.12].

3. Proofs

We record two elementary results that will be used later:

Lemma 3.1. Let K be a field of characteristic p > 0. Let a and b be elements of K where a is
nonzero. Then the Galois group of the polynomial

T p + aT − b

is a solvable group.

Proof. Form an extension of K by adjoining a primitive p − 1 root of unity and an element c

that is a root of T p−1 − a. The polynomial T p + aT − b has the same roots as(
T

c

)p

−
(

T

c

)
− b

cp
,

which is an Artin–Schreier polynomial in T/c. �
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Lemma 3.2. Let R be a domain, and p a prime ideal. Given a domain S that is a module-finite
extension of Rp, there exists a domain T , module-finite over R, with Tp = S.

Proof. Given si ∈ S, there exists ri ∈ R � p such that risi is integral over R. If s1, . . . , sn are
generators for S as an R-module, set T = R[r1s1, . . . , rnsn]. �
Proof of Theorem 1.3. Since solvable extensions form a distinguished class, (1) reduces by
induction to the case where F([η]) = 0. Compute Hi

a(R) using a Čech complex C•(x;R), where
x = x0, . . . , xn are nonzero elements generating the ideal a; recall that C•(x;R) is the complex

0 −→ R −→
n⊕

i=0

Rxi
−→

⊕
i<j

Rxixj
−→ · · · −→ Rx0···xn −→ 0.

Consider a cycle η in Ci(x;R) that maps to [η] in Hi
a(R). Since F([η]) = 0, the cycle F(η) is

a boundary, i.e., F(η) = ∂(α) for some α ∈ Ci−1(x;R).
Let μ1, . . . ,μm be the square-free monomials of degree i − 2 in the elements x1, . . . , xn, and

regard Ci−1(x;R) = Ci−1(x0, . . . , xn;R) as

Rx0μ1 ⊕ · · · ⊕ Rx0μm ⊕ Ci−1(x1, . . . , xn;R).

There exist a power q of the characteristic p of R, and elements b1, . . . , bm in R, such that α can
be written in the above direct sum as

α =
(

b1

(x0μ1)q
, . . . ,

bm

(x0μm)q
,∗, . . . ,∗

)
.

Consider the polynomials

T p + x
q

0 T − bi for i = 1, . . . ,m,

and let L be a finite extension field where these have roots t1, . . . , tm respectively. By Lemma 3.1,
we may assume L is Galois over frac(R) with the Galois group being solvable. Let S be
a module-finite extension of R that contains t1, . . . , tm, and has L as its fraction field; if R is
excellent, we may take S to be the integral closure of R in L.

In the module Ci−1(x;S) one then has

α =
(

t
p

1 + x
q

0 t1

(x0μ1)q
, . . . ,

t
p
m + x

q

0 tm

(x0μm)q
,∗, . . . ,∗

)
= F(β) + γ,

where

β =
(

t1

(x0μ1)q/p
, . . . ,

tm

(x0μm)q/p
,0, . . . ,0

)

and

γ =
(

t1

μ
q , . . . ,

tm

μ
q ,∗, . . . ,∗

)

1 m
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are elements of

Ci−1(x;S) = Sx0μ1 ⊕ · · · ⊕ Sx0μm ⊕ Ci−1(x1, . . . , xn;S).

Since F(η) = ∂(F (β) + γ ), we have

F
(
η − ∂(β)

) = ∂(γ ).

But [η] = [η − ∂(β)] in Hi
a(S), so after replacing η we may assume that

F(η) = ∂(γ ).

Next, note that γ is an element of Ci−1(1, x1, . . . , xn;S), viewed as a submodule of Ci−1(x;S).
There exits ζ in Ci−2(1, x1, . . . , xn;S) such that

∂(ζ ) =
(

t1

μ
q

1

, . . . ,
tm

μ
q
m

,∗, . . . ,∗
)

.

Since

F(η) = ∂
(
γ − ∂(ζ )

)
,

after replacing γ we may assume that the first m coordinate entries of γ are 0, i.e., that

γ =
(

0, . . . ,0,
c1

λ
Q
1

, . . . ,
cl

λ
Q
l

)
,

where Q is a power of p, the ci belong to S, and λ1, . . . , λl are the square-free monomials of
degree i − 1 in x1, . . . , xn.

The coordinate entries of ∂(γ ) include each ci/λ
Q
i . Since ∂(γ ) = F(η), each ci/λ

Q
i is a p-th

power in frac(S); it follows that each ci has a p-th root in frac(S). After enlarging S by adjoining
each c

1/p
i , we see that γ = F(ξ) for an element ξ of Ci−1(x;S). But then

F(η) = ∂
(
F(ξ)

) = F
(
∂(ξ)

)
.

Since the Frobenius action on Ci(x;S) is injective, we have η = ∂(ξ), which proves (1).
For (2), it suffices to construct a module-finite generically separable extension S such

that Hi
m(R) −→ Hi

m(S) is zero for i < dimR; to obtain a generically Galois extension, en-
large S to a module-finite extension whose fraction field is the Galois closure of frac(S) over
frac(R).

We use induction on d = dimR, as in [10]. If d = 0, there is nothing to be proved; if d = 1,
the inductive hypothesis is again trivially satisfied since H 0

m(R) = 0. Fix i < dimR. Let (A,M)

be a Gorenstein local ring that has R as a homomorphic image, and set

M = ExtdimA−i
A (R,A).

Let p1, . . . ,ps be the elements of the set AssA M � {M}.
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Let q be a prime ideal of R that is not maximal. Since R is catenary, one has

dimR = dimRq + dimR/q.

Thus, the condition i < dimR may be rewritten as

i − dimR/q < dimRq.

Using the inductive hypothesis and Lemma 3.2, there exists a module-finite extension R′ of R

such that frac(R′) is a separable field extension of frac(Rq) = frac(R), and the induced map

H
i−dimR/q
qRq

(Rq) −→ H
i−dimR/q
qRq

(
R′

q

)
(3.2.1)

is zero. Taking the compositum of finitely many such separable extensions inside a fixed algebraic
closure of frac(R), there exists a module-finite generically separable extension R′ of R such that
the map (3.2.1) is zero when q is any of the primes p1R, . . . ,psR. We claim that the image of the
induced map Hi

m(R) −→ Hi
m(R′) has finite length.

Using local duality over A, it suffices to show that

M ′ = ExtdimA−i
A

(
R′,A

) −→ ExtdimA−i
A (R,A) = M

has finite length. This, in turn, would follow if

M ′
p = ExtdimA−i

Ap

(
R′

p,Ap

) −→ ExtdimA−i
Ap

(Rp,Ap) = Mp

is zero for each prime ideal p in AssA M � {M}. Using local duality over Ap, it suffices to verify
the vanishing of

H
dimAp−dimA+i

pRp
(Rp) −→ H

dimAp−dimA+i

pRp

(
R′

p

)
for each p in AssA M � {M}. This, however, follows from our choice of R′ since

dimAp − dimA + i = i − dimA/p = i − dimR/pR.

What we have arrived at thus far is a module-finite generically separable extension R′ of R

such that the image of Hi
m(R) −→ Hi

m(R′) has finite length; in particular, this image is finitely
generated. Working with one generator at a time and taking the compositum of extensions,
given [η] in Hi

m(R′), it suffices to construct a module-finite generically separable extension S

of R′ such that [η] maps to 0 under Hi
m(R′) −→ Hi

m(S).
By Theorem 1.2, there exists a module-finite extension R1 of R′ such that [η] maps to 0 under

the map Hi
m(R′) −→ Hi

m(R1). Setting R2 to be the separable closure of R′ in R1, the image
of [η] in Hi

m(R2) lies in Hi
m(R2)nil. The result now follows by (1). �

Corollary 3.3. Let (R,m) be a local domain of prime characteristic that is a homomorphic
image of a Gorenstein ring. Then Hi

m(R+sep) = 0 for each i < dimR.
Moreover, each system of parameters for R is a regular sequence on R+sep, i.e., R+sep is

a separable balanced big Cohen–Macaulay algebra for R.
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Proof. Theorem 1.3(2) implies that Hi
m(R+sep) = 0 for each i < dimR. The proof that this

implies the second statement is similar to the proof of [10, Corollary 2.3]. �
Proof of Theorem 1.4. Let p be the characteristic of R. If z ∈ aF , then there exists a prime
power q = pe with zq ∈ a[q]. In this case, zq/p belongs to the Frobenius closure of a[q/p], and

(
zq/p

)p ∈ (
a[q/p])[p]

.

Since solvable extensions form a distinguished class, we reduce to the case e = 1, i.e., q = p.
There exist nonzero elements, a0, . . . , am ∈ a and b0, . . . , bm ∈ R with

zp =
m∑

i=0

bia
p
i .

Consider the polynomials

T p + a
p

0 T − bi for i = 1, . . . ,m,

and let L be a finite extension field where these have roots t1, . . . , tm respectively. By Lemma 3.1,
we may assume L is Galois over frac(R) with the Galois group being solvable. Set

t0 = 1

a0

(
z −

m∑
i=1

tiai

)
. (3.3.1)

Taking p-th powers, we have

t
p

0 = 1

a
p

0

(
m∑

i=0

bia
p
i −

m∑
i=1

t
p
i a

p
i

)
= b0 + 1

a
p

0

m∑
i=1

(
bi − t

p
i

)
a

p
i = b0 +

m∑
i=1

tia
p
i .

Thus, t0 belongs to the integral closure of R[t1, . . . , tm] in its field of fractions. Let S be a module-
finite extension of R that contains t0, . . . , tm, and has L as its fraction field; if R is excellent, we
may take S to be the integral closure of R in L. Since (3.3.1) may be rewritten as

z =
m∑

i=0

tiai,

it follows that z ∈ aS, completing the proof of (1).
Assertion (2) follows from [17, Corollary 3.4], though we include a proof using (1). There

exists a module-finite extension domain T such that z ∈ aT . Decompose the field extension
frac(R) ⊆ frac(T ) as a separable extension frac(R) ⊆ frac(T ) followed by a purely inseparable
extension frac(T ) ⊆ frac(T ). Let T0 be the integral closure of R in frac(T ).

Since T is a purely inseparable extension of T0, and z ∈ aT , it follows that z belongs to the
Frobenius closure of the ideal aT0. By (2) there exists a generically separable extension S0 of T0
with z ∈ aS0. Enlarge S0 to a generically Galois extension S of R. This concludes the argument
in the case R is excellent; in the event that S is not module-finite over R, one may replace it by
a subring satisfying z ∈ aS and having the same fraction field. �
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The equational construction used in the proof of Theorem 1.4(1) arose from the study of
symplectic invariants in [16].

4. Some Galois groups that are not solvable

Let R be a domain of prime characteristic, and let a be an ideal of R. If z is an element of aF ,
Theorem 1.4(1) states that there exists a solvable module-finite extension S with z ∈ aS. In the
following example one has z ∈ a+, and we conjecture z /∈ aS for any module-finite generically
Galois extension S with Gal(S/R) solvable.

Example 4.1. Let a, b, c1, c2 be algebraically independent over Fp , and set R be the hypersurface

Fp(a, b, c1, c2)[x, y, z]
(zp2 + c1(xy)p

2−pzp + c2(xy)p
2−1z + axp2 + byp2

)
.

We claim z ∈ (x, y)+. Let u, v be elements of R+ that are, respectively, roots of the polynomials

T p2 + c1y
p2−pT p + c2y

p2−1T + a, (4.1.1)

and

T p2 + c1x
p2−pT p + c2x

p2−1T + b.

Set S to be the integral closure of R in the Galois closure of frac(R)(u, v) over frac(R). Then
(z − ux − vy)/xy is an element of S, since it is a root of the monic polynomial

T p2 + c1T
p + c2T .

It follows that z ∈ (x, y)S.
We next show that Gal(S/R) is not solvable for the extension S constructed above. Since u is

a root of (4.1.1), u/y is a root of

T p2 + c1T
p + c2T + a

yp2 . (4.1.2)

The polynomial (4.1.2) is irreducible over Fq(c1, c2, a/yp2
), and hence over the purely transcen-

dental extension Fq(c1, c2, a, x, y, z) = frac(R). Since frac(S) is a Galois extension of frac(R)

containing a root of (4.1.2), it contains all roots of (4.1.2). As (4.1.2) is separable, its roots are
distinct; taking differences of roots, it follows that frac(S) contains the p2 distinct roots of

T p2 + c1T
p + c2T . (4.1.3)

We next verify that the Galois group of (4.1.3) over frac(R) is GL2(Fq).
Quite generally, let L be a field of characteristic p. Consider the standard linear action of

GL2(Fp) on the polynomial ring L[x1, x2]. The ring of invariants for this action is generated
over L by the Dickson invariants c1, c2, which occur as the coefficients in the polynomial
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∏
α,β∈Fp

(T − αx1 − βx2) = T p2 + c1T
p + c2T ,

see [3] or [1, Chapter 8]. Hence the extension L(x1, x2)/L(c1, c2) has Galois group GL2(Fp).
It follows from the above that if c1, c2 are algebraically independent elements over a field L

of characteristic p, then the polynomial

T p2 + c1T
p + c2T ∈ L(c1, c2)[T ]

has Galois group GL2(Fp).
The group PSL2(Fp) is a subquotient of GL2(Fp), and, we conjecture, a subquotient of

Gal(S/R) for any module-finite generically Galois extension S of R with z ∈ aS. For p � 5,
the group PSL2(Fp) is a nonabelian simple group; thus, conjecturally, Gal(S/R) is not solvable
for any module-finite generically Galois extension S with z ∈ aS.

Example 4.2. Extending the previous example, let a, b, c1, . . . , cn be algebraically independent
elements over Fq , and set R to be the polynomial ring Fq(a, b, c1, . . . , cn)[x, y, z] modulo the
principal ideal generated by

zqn + c1(xy)q
n−qn−1

zqn−1 + c2(xy)q
n−qn−2

zqn−2 + · · · + cn(xy)q
n−1z + axqn + byqn

.

Then z ∈ (x, y)+; imitate the previous example with u,v being roots of

T qn + c1y
qn−qn−1

T qn−1 + c2y
qn−qn−2

T qn−2 + · · · + cny
qn−1T + a,

and

T qn + c1x
qn−qn−1

T qn−1 + c2x
qn−qn−2

T qn−2 + · · · + cnx
qn−1T + b.

If S is any module-finite generically Galois extension of R with z ∈ aS, we conjecture that
frac(S) contains the splitting field of

T qn + c1T
qn−1 + c2T

qn−2 + · · · + cnT . (4.2.1)

Using a similar argument with Dickson invariants, the Galois group of (4.2.1) over frac(R)

is GLn(Fq). Its subquotient PSLn(Fq) is a nonabelian simple group for n � 3, and for n = 2,
q � 4.

Likewise, we record conjectural examples R where Hi
m(R) −→ Hi

m(S) is nonzero for each
module-finite generically Galois extension S with Gal(S/R) solvable:

Example 4.3. Let a, b, c1, c2 be algebraically independent over Fp , and consider the hypersur-
face

A = Fp(a, b, c1, c2)[x, y, z]
2p2 p2−p 2p p2−1 2 p2 p2 .
(z + c1(xy) z + c2(xy) z + ax + by )
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Let (R,m) be the Rees ring A[xt, yt, zt] localized at the maximal ideal x, y, z, xt , yt , zt . The
elements x, yt , y + xt form a system of parameters for R, and the relation

z2t · (y + xt) = z2t2 · x + z2 · yt

defines an element [η] of H 2
m(R). We conjecture that if S is any module-finite generically Galois

extension such that [η] maps to 0 under the induced map H 2
m(R) −→ H 2

m(S), then frac(S)

contains the splitting field of

T p2 + c1T
p + c2T ,

and hence that Gal(S/R) is not solvable if p � 5.

5. Graded rings and extensions

Let R be an N-graded domain that is finitely generated over a field R0. Set R+GR to be the
Q�0-graded ring generated by elements of R+ that can be assigned a degree such that they
then satisfy a homogeneous equation of integral dependence over R. Note that [R+GR]0 is the
algebraic closure of the field R0. One has the following:

Theorem 5.1. (See [8, Theorem 6.1].) Let R be an N-graded domain that is finitely generated
over a field R0 of prime characteristic. Then each homogeneous system of parameters for R is
a regular sequence on R+GR.

Let R be as in the above theorem. Since R+GR and R+sep are Cohen–Macaulay R-algebras,
it is natural to ask whether there exists a Q-graded separable Cohen–Macaulay R-algebra. The
answer to this is negative:

Example 5.2. Let R be the Rees ring

F2[x, y, z]
(x3 + y3 + z3)

[xt, yt, zt]

with the N-grading where the generators x, y, z, xt , yt , zt have degree 1. Set B to be the
R-algebra generated by the homogeneous elements of R+GR that are separable over frac(R). We
prove that B is not a balanced Cohen–Macaulay R-module.

The elements x, yt , y + xt constitute a homogeneous system of parameters for R since the
radical of the ideal that they generate is the homogeneous maximal ideal of R, and dimR = 3.
Suppose, to the contrary, that they form a regular sequence on B . Since

z2t · (y + xt) = z2t2 · x + z2 · yt,

it follows that z2t ∈ (x, yt)B . Thus, there exist elements u,v ∈ B1 with

z2t = u · x + v · yt. (5.2.1)
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Since z3 = x3 + y3, we also have z2 = x
√

xz + y
√

yz in R+GR, and hence

z2t = t
√

xz · x + √
yz · yt. (5.2.2)

Comparing (5.2.1) and (5.2.2), we see that

(u + t
√

xz ) · x = (v + √
yz ) · yt

in R+GR. But x, yt is a regular sequence on R+GR, so there exists an element c in [R+GR]0 with
u + t

√
xz = cyt and v + √

yz = cx. Since [R+GR]0 = F2, it follows that c ∈ R, and hence that√
yz ∈ B . This contradicts the hypothesis that elements of B are separable over frac(R).
The above argument shows that any graded Cohen–Macaulay R-algebra must contain the

elements
√

yz and t
√

xz.

We next show that no module-finite Q-graded extension domain of the ring R in Example 5.2
is Cohen–Macaulay.

Example 5.3. Let R be the Rees ring from Example 5.2, and let S be a graded Cohen–Macaulay
ring with R ⊆ S ⊆ R+GR. We prove that S is not finitely generated over R.

By the previous example, S contains
√

yz and t
√

xz. Using the symmetry between x, y, z, it
follows that

√
xy,

√
xz, t

√
xy, t

√
yz are all elements of S. We prove inductively that S contains

x1−2/q(yz)1/q , y1−2/q(xz)1/q , z1−2/q(xy)1/q,

tx1−2/q(yz)1/q , ty1−2/q(xz)1/q , tz1−2/q(xy)1/q, (5.3.1)

for each q = 2e with e � 1. The case e = 1 has been settled.
Suppose S contains the elements (5.3.1) for some q = 2e . Then, one has

x1−2/q(yz)1/q · ty1−2/q(xz)1/q · (y + xt)

= tx1−2/q(yz)1/q · ty1−2/q(xz)1/q · x + x1−2/q(yz)1/q · y1−2/q(xz)1/q · yt.

Using as before that x, yt, y + xt is a regular sequence on S, we conclude

x1−2/q(yz)1/q · ty1−2/q(xz)1/q = u · x + v · yt

for some u,v ∈ S1. Simplifying the left-hand side, the above reads

t (xy)1−1/qz2/q = u · x + v · yt. (5.3.2)

Taking q-th roots in

z2 = x
√

xz + y
√

yz

and multiplying by t (xy)1−1/q yields

t (xy)1−1/qz2/q = ty1−1/q(xz)1/2q · x + x1−1/q(yz)1/2q · yt. (5.3.3)
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Comparing (5.3.2) and (5.3.3), we see that

(
u + ty1−1/q(xz)1/2q

) · x = (
v + x1−1/q(yz)1/2q

) · yt,

so there exists c in [R+GR]0 = F2 with

u + ty1−1/q(xz)1/2q = cyt and v + x1−1/q(yz)1/2q = cx.

It follows that ty1−1/q(xz)1/2q and x1−1/q(yz)1/2q are elements of S. In view of the symmetry
between x, y, z, this completes the inductive step. Setting

θ = xy

z2
,

we have proved that

θ1/q ∈ frac(S) for each q = 2e.

We claim θ1/2 does not belong to frac(R). Indeed if it does, then (xy)1/2 belongs to frac(R),
and hence to R, as R is normal; this is readily seen to be false. The extension

frac(R) ⊆ frac(R)
(
θ1/q

)
is purely inseparable, so the minimal polynomial of θ1/q over frac(R) has the form T Q − θQ/q

for some Q = 2E . Since θ1/2 /∈ frac(R), we conclude that the minimal polynomial is T q − θ .
Hence

[
frac(R)

(
θ1/q

) : frac(R)
] = q for each q = 2e.

It follows that [frac(S) : frac(R)] is not finite.

Theorems 1.2 and 1.3(2) discuss the vanishing of the image of Hi
m(R) for i < dimR. In the

case of graded rings, one also has the following result for Hd
m(R).

Proposition 5.4. Let R be an N-graded domain that is finitely generated over a field R0 of prime
characteristic. Set d = dimR. Then [Hd

m(R)]�0 maps to zero under the induced map

Hd
m(R) −→ Hd

m

(
R+GR)

.

Hence, there exists a module-finite Q-graded extension domain S of R such that the induced map
[Hd

m(R)]�0 −→ Hd
m(S) is zero.

Proof. Let Fe :Hd
m(R) −→ Hd

m(R) denote the e-th iteration of the Frobenius map. Suppose
[η] ∈ [Hd

m(R)]n for some n � 0. Then Fe([η]) belongs to [Hd
m(R)]npe for each e. As [Hd

m(R)]�0
has finite length, there exists e � 1 and homogeneous elements r1, . . . , re ∈ R such that

Fe
([η]) + r1F

e−1([η]) + · · · + re[η] = 0. (5.4.1)
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We imitate the equational construction from [10]: Consider a homogeneous system of parameters
x = x1, . . . , xd , and compute Hi

m(R) as the cohomology of the Čech complex C•(x;R) below:

0 −→ R −→
d⊕

i=1

Rxi
−→

⊕
i<j

Rxixj
−→ · · · −→ Rx1···xd

−→ 0.

This complex is Z-graded; let η be a homogeneous element of Cd(x;R) that maps to [η]
in Hd

m(R). Eq. (5.4.1) implies that

Fe(η) + r1F
e−1(η) + · · · + reη

is a boundary in Cd(x;R), say it equals ∂(α) for a homogeneous element α of Cd−1(x;R). Solv-
ing integral equations in each coordinate of Cd−1(x;R), there exists a module-finite extension
domain S and β in Cd−1(x;S) with

Fe(β) + r1F
e−1(β) + · · · + reβ = α.

Moreover, we may assume S is a normal ring. Since η − ∂(β) is an element on frac(S) satisfying

T pe + r1T
pe−1 + · · · + reT = 0,

it belongs to S. But then η − ∂(β) maps to zero in Hd
m(S). Thus, each homogeneous element of

the module [Hd
m(R)]�0 maps to 0 in Hd

m(R+GR).

For the final statement, note that [Hd
m(R)]�0 has finite length. �

The next example illustrates why Proposition 5.4 is limited to [Hd
m(R)]�0.

Example 5.5. Let K be a field of prime characteristic, and take R to be the semigroup ring

R = K
[
x1 · · ·xd, xd

1 , . . . , xd
d

]
.

It is easily seen that R is normal, and that [Hd
m(R)]n is nonzero for each integer n < 0. We claim

that the induced map

Hd
m(R) −→ Hd

m(S)

is injective for each module-finite extension ring S. For this, it suffices to check that R is a
splinter ring, i.e., that R is a direct summand of each module-finite extension ring; the splitting
of R ⊆ S then induces an R-splitting of Hd

m(R) −→ Hd
m(S).

To check that R is splinter, note that normal affine semigroup rings are weakly F -regular
by [7, Proposition 4.12], and that weakly F -regular rings are splinter by [9, Theorem 5.25]. For
more on splinters, we point the reader towards [14,9,18].
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