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Abstract. In the course of their work on the homological conjectures, Peskine
and Szpiro proved a Riemann-Roch formula for graded modules; we show that
this agrees with the Hirzebruch-Riemann-Roch formula in the case of graded
modules over polynomial rings.

In 1974 Peskine and Szpiro [PS] proved a number of conjectures on intersec-
tion multiplicities of graded modules, using a formula that they developed for the
Hilbert polynomials of such modules. This formula was considered to be a kind
of Riemann-Roch formula, and indeed it was one of the inspirations for the lo-
cal Chern characters and the Riemann-Roch formula for local rings, developed by
Baum, Fulton, and MacPherson [BFM].

In this paper we do not discuss the connections to questions on multiplicities,
but look instead at the formula of Peskine and Szpiro and examine the extent to
which it may be considered a Riemann-Roch formula; in other words, we compare
it to the Riemann-Roch formula of Hirzebruch. In the case of perfect complexes
over polynomial rings, we show that the formulae agree in a precise sense.

1. The Peskine-Szpiro formula

Let A be an N-graded ring such that A0 is a field K, and A is generated over A0

by finitely many elements of A1. For n an integer, A(n) will denote the module A
with the shifted grading A(n)k = An+k for each k. By a perfect complex F• we
mean a bounded complex

(1.1) 0 −→ Fs −→ Fs−1 −→ · · · −→ F0 −→ 0 ,

where each Fi is a finite direct sum of copies of A(n)—for varying n—and such that
the homomorphisms in F• preserve degrees. Set

Fi =

βi⊕

j=1

A(nij) for each i .
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Recall that ifM is a finitely generated gradedA-module, the Hilbert polynomial
of M is the polynomial PM (x) with the property that PM (n) agrees with rankK Mn

for sufficiently large integers n. The Peskine-Szpiro result is a formula for the
alternating sum of the Hilbert polynomials of the homology modules of F• in terms
of the integers nij :

For each integer k > 0, set

ρk =
1

k!

s∑

i=0

(−1)i
βi∑

j=1

nk
ij .

Then the Peskine-Szpiro formula is

(1.2)

s∑

i=0

(−1)iPHi
(x) =

∑

k>0

ρkP
(k)
A (x) ,

where Hi denotes the i-th homology module of the complex F• and P
(k)
A (x) is the

k-th derivative of the polynomial PA(x).

2. Chern classes

We briefly review some material that may be found in [Ha] or [Fu]. Let X be
a nonsingular projective variety of dimension d over a field K. A cycle of codimen-
sion k on X is an element of the free abelian group generated by closed irreducible
subvarieties of X having codimension k. The group CHk(X) consists of cycles
of codimension k modulo rational equivalence. Cycles of codimension d have the
form

∑
i niPi for points Pi of X , and one has a group homomorphism

(2.1) deg : CHd(X) −→ Z where deg
∑

i

niPi =
∑

i

ni .

The intersection pairing on X provides

d⊕

r=0

CHr(X)

with the structure of a commutative ring, the Chow ring of X , denoted CH(X).
Extending the correspondence between invertible sheaves and divisors, for each
locally free sheaf F on X—say of rank r—there exist Chern classes ci = ci(F)

in CHi(X), where c0 = 1 and ci = 0 for all i > r. The Chern polynomial of F is

ct(F) = 1 + c1t+ c2t
2 + · · ·+ crt

r .

For an exact sequence of locally free sheaves

(2.2) 0 −→ F
′
−→ F −→ F

′′
−→ 0 ,

the Whitney sum formula states that

ct(F) = ct(F
′)ct(F

′′) .

For the purposes of a Riemann-Roch formula, one wants to associate to locally free
sheaves, invariants that are additive on exact sequences. Towards this, factor the
polynomial ct(F) formally as

ct(F) =

r∏

i=1

(1 + αit) ;
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the αi are the Chern roots of F . Working in CH(X)Q = CH(X) ⊗Z Q, define the
Chern character of F as

ch(F) =
r∑

i=1

eαi , where ex = 1 + x+
1

2
x2 + · · · .

Since ch(F) is a symmetric function of the Chern roots α1, . . . , αr, and the Chern
classes c1, . . . , cr are precisely the elementary symmetric polynomials in α1, . . . , αr,
one can express ch(F) in terms of the Chern classes; the first few terms, as may be
found in [Ha, page 432] or [Fu, Example 3.2.3], are

ch(F) = r + c1 +
1

2
(c21 − 2c2) +

1

6
(c31 − 3c1c2 + 3c3) + · · · .

The Whitney sum formula now yields

ch(F) = ch(F ′) + ch(F ′′) ,

i.e., Chern characters are additive on short exact sequences.
The Chern character of a tensor product of locally free sheaves is

(2.3) ch(F ⊗ F
′) = ch(F) ch(F ′) .

The formal power series

1− e−x

x
= 1−

x

2!
+

x2

3!
−

x3

4!
+ · · ·

is an invertible element of Q[[x]]; we denote its inverse by

(2.4) Q(x) = x/(1− e−x) .

The occurrence of this power series will be justified in Example 3.1. For now, we
conclude this section with one last definition: the Todd class of a locally free sheaf
F with Chern roots α1, . . . , αr is

td(F) =
r∏

i=1

Q(αi) .

Once again, this is a symmetric function of α1, . . . , αr, so it can be expressed in
terms of the Chern classes; indeed, one has

td(E) = 1 +
1

2
c1 +

1

12
(c21 + c2) +

1

24
(c1c2) + · · · .

For an exact sequence (2.2), the Whitney sum formula implies

(2.5) td(F) = td(F ′) td(F ′′) .

3. The Riemann-Roch Theorem

Let F be a locally free sheaf on a nonsingular projective variety X of dimen-
sion d. The Euler characteristic of F is the alternating sum of the ranks of the
sheaf cohomology groups Hi(X,F), i.e.,

χ(F) =

d∑

i=0

(−1)i rankK Hi(X,F) .

Let TX be the tangent sheaf of X . The Riemann-Roch theorem of Hirzebruch states

χ(F) = deg [ch(F) td(TX)]d ,
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where [−]d denotes the component in CHd(X)Q and deg : CHd(X)Q −→ Q extends

the homomorphism deg : CHd(X) −→ Z of (2.1); see [Ha, Appendix A].
Let L• be a bounded complex of locally free sheaves on X , say

0 −→ Ls −→ Ls−1 −→ · · · −→ L0 −→ 0 .

The Euler characteristic of L• is

χ(L•) =

s∑

i=0

(−1)iχ(Li) .

Setting ch(L•) =
∑

i(−1)i ch(Li), the Riemann-Roch theorem takes the form

χ(L•) = deg [ch(L•) td(T )]d .

Example 3.1. We examine the Riemann-Roch theorem in the caseX is projec-
tive space Pd, and provide some justification for the choice of the power series Q(x)
used in the definition of the Todd class; see (2.4).

Any subvariety of degree k in Pd is linearly equivalent to k times a linear space
of the same dimension, so

CH(Pd)Q = Q[h]/(hd+1) ,

where h is the class of a hyperplane; the class of a point in Pd is identified with

hd
∈ CHd(Pd)Q .

By the exact sequence

0 −→ OPd −→ OPd(1)d+1
−→ TPd −→ 0

and (2.5), one has

td(TPd) = td
(
OPd(1)d+1

)
= td(h)d+1 .

Taking F to be OPd in the Riemann-Roch theorem, we see that

1 = deg [td(TPd)]d = deg [td(h)d+1]d .

Thus, td(h) is a power series such that xd occurs with unit coefficient in td(h)d+1.
It turns out that

Q(x) = x/(1 − e−x)

is the only power series in Q[[x]] with the property that xd occurs with unit coeffi-
cient in Q(x)d+1 for each d > 0; this can be proved using the recursion (4.3).

It follows from the above discussion that

td(TPd) = Q(h)d+1 .

4. A comparison

We now reconcile the Riemann-Roch theorem of Hirzebruch with the formula
of Peskine and Szpiro; first, some notation:

We use ∁
k
p(x) to denote the coefficient of xk in a polynomial or formal power

series p(x).
Let A be a standard graded polynomial ring over a field. A perfect complex of

A-modules (1.1) defines a complex of locally free sheaves on ProjA, which is Pd.
The sheaves that occur are direct sums of OPd(n) for varying n.
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We now translate the Peskine-Szpiro formula into these terms. The modules
Fi =

⊕
j A(nij) in (1.1) define sheaves

⊕
j OPd(nij) on Pd. The complex F• thus

yields a complex L• of locally free sheaves Li, where

Li =

βi⊕

j=1

OPd(nij) .

The Chern polynomial of OPd(1) is 1 + ht, for h the class of a hyperplane. Hence

ch(OPd(1)) = eh ,

and using (2.3), it follows that the Chern character of OPd(n) is

ch(OPd(n)) = enh

= 1 + nh+
n2h2

2!
+

n3h3

3!
+ · · ·+

ndhd

d!
in Q[h]/(hd+1) .

Since Chern characters are additive on short exact sequences—in particular, on
direct sums—the Chern character of L• is

ch(L•) =

s∑

i=0

(−1)i ch(Li)

=

s∑

i=0

(−1)i
βi∑

j=1

ch(OX(nij))

=

s∑

i=0

(−1)i
βi∑

j=1

(
1 + nijh+

n2
ijh

2

2!
+ · · ·+

nd
ijh

d

d!

)
.

Collecting coefficients, we obtain that for each k the coefficient of hk is

s∑

i=0

(−1)i
βi∑

j=1

nk
ij

k!
.

Since this is precisely ρk, we see that

ch(L•) = ρ0 + ρ1h+ ρ2h
2 + · · ·+ ρdh

d .

Thus, the quantities ρk in the Peskine-Szpiro formula occur as the components of
the Chern character in the Riemann-Roch Theorem. We now look at the other half
of the theorem, namely the Todd class.

In the Riemann-Roch Theorem for projective space Pd, the Todd class of the
tangent bundle is td(TPd) = Q(h)d+1, where Q(x) = x/(1− e−x); see Example 3.1.
Since hd+1 = 0, this may be written as

td(TPd) = a0 + a1h+ · · ·+ adh
d ,

where the ak are rational numbers. As deg hd = 1 in CHd(Pd)Q, the Riemann-Roch
Theorem states that

χ(L•) = ρda0 + ρd−1a1 + · · ·+ ρ0ad , where ak = ∁
k
Q(x)d+1 .

To compare this with the Peskine-Szpiro formula (1.2), we need to know the
relation between the Hilbert polynomial of A(n) and the Euler characteristic of
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OPd(n). This is very simple: if M is a finitely generated graded A-module with

Hilbert polynomial PM (x) and F = M̃ the associated coherent sheaf, then

PM (n) = χ(F(n)) for all integers n ,

where F(n) = F ⊗ OPd(n). In particular, the Euler characteristic χ(F) equals
PM (0). Hence, the Peskine-Szpiro formula yields

χ(L•) =

s∑

i=0

(−1)iPHi
(0) =

∑

k>0

ρkP
(k)
A (0) .

Setting bi = P
(d−i)
A (0) for i = 0, . . . , d, we have

χ(L•) = ρdb0 + ρd−1b1 + · · ·+ ρ0bd .

In this formula, bk is the constant term of the (d − k)-th derivative of the
polynomial PA(x), i.e.,

bk = (d− k)! ∁
d−k

PA(x) .

Since A is the polynomial ring in d + 1 variables, its Hilbert polynomial is
(
x+d
d

)
,

and so

bk = (d− k)! ∁
d−k

(
x+ d

d

)
.

Thus, we have two similar formulae for the Euler characteristic of L•, involving
the sequences a0, a1, . . . , ad and b0, b1, . . . , bd; the first sequence is given by the first
d+1 coefficients of the power series Q(x)d+1, where Q(x) = x/(1−e−x); the second

sequence is derived from the coefficients of the polynomial
(
x+d
d

)
. It is by no means

a priori obvious that these sequences are related; the remainder of this section is
devoted to giving a direct proof that these sequences are indeed the same.

Proposition 4.1. Let d be a nonnegative integer. Then, for each integer k
with 0 6 k 6 d, the coefficient of xk in the formal power series

(
x

1− e−x

)d+1

agrees with the coefficient of xd−k in the polynomial

(d− k)!

(
x+ d

d

)
=

(d− k)!

d!
(x+ 1)(x+ 2) · · · (x+ d) .

Proof. Set

q(d, k) = (d− k)! ∁
d−k

(
x+ d

d

)
.

Note that q(0, 0) = 1, and that q(d, k) = 0 unless 0 6 k 6 d. We claim that

(4.1) q(d, k) = q(d− 1, k − 1) +
d− k

d
q(d− 1, k) .
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This holds since

q(d− 1, k − 1) +
d− k

d
q(d− 1, k)

= (d− k)! ∁
d−k

(
x+ d− 1

d− 1

)
+

d− k

d
(d− k − 1)! ∁

d−k−1

(
x+ d− 1

d− 1

)

=
(d− k)!

(d− 1)!
∁

d−k
(x + 1) · · · (x+ d− 1) +

(d− k)!

d!
∁

d−k−1
(x+ 1) · · · (x+ d− 1)

=
(d− k)!

d!
∁

d−k
(x + 1) · · · (x+ d− 1)d +

(d− k)!

d!
∁

d−k
(x+ 1) · · · (x + d− 1)x

=
(d− k)!

d!
∁

d−k
(x + 1) · · · (x+ d− 1)(x+ d)

= q(d, k) .

Next, consider the polynomials

qd =
∑

k

q(d, k)xk , where d > 0 .

Using the recursion relation (4.1), it follows that

qd =
∑

k

q(d− 1, k − 1)xk +
d− k

d

∑

k

q(d− 1, k)xk

= x
∑

k

q(d− 1, k − 1)xk−1 +
∑

k

q(d− 1, k)xk
−

kx

d

∑

k

q(d− 1, k)xk−1

= xqd−1 + qd−1 −
x

d
q′d−1 ,

where q′d−1 denotes the derivative of qd−1 with respect to x. Thus, we have

(4.2) qd = (1 + x)qd−1 −
x

d
q′d−1 for d > 1 , and q0 = 1 .

The polynomials qd—and hence the numbers q(d, k)—are determined by (4.2).
Next, we claim that the formal power series

Qd =

(
x

1− e−x

)d+1

, where d > 0 ,

satisfy a similar recursion, namely

(4.3) Qd = (1 + x)Qd−1 −
x

d
Q′

d−1 for d > 1 .

The derivative of x/(1− e−x) may be computed as

d

dx

(
x

1− e−x

)
=

d

dx

(
1− e−x

x

)−1

= −

(
1− e−x

x

)−2 (
xe−x − 1 + e−x

x2

)

=
1− e−x − xe−x

(1− e−x)2
.
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Hence

(1 + x)Qd−1 −
x

d
Q′

d−1 = (1 + x)

(
x

1− e−x

)d

−
x

d

d

dx

(
x

1− e−x

)d

= (1 + x)

(
x

1− e−x

)d

− x

(
x

1− e−x

)d−1(
1− e−x − xe−x

(1− e−x)2

)

=

(
x

1− e−x

)d(
1 + x −

1− e−x − xe−x

1− e−x

)

=

(
x

1− e−x

)d+1

,

which proves (4.3).
The proposition asserts that the coefficients of xk in Qd and qd agree for each

k with 0 6 k 6 d, i.e., that

Qd − qd ∈
(
xd+1

)
Q[[x]] .

We prove this by induction on d; the case d = 0 is readily checked. Assuming the
result for d− 1, we have

Qd−1 − qd−1 = xdE for some E ∈ Q[[x]] .

But then, using (4.3) and (4.2), we have

Qd − qd = (1 + x)
(
Qd−1 − qd−1

)
−

x

d

(
Q′

d−1 − q′d−1

)

= (1 + x)xdE −
x

d

(
xdE

)
′

= (1 + x)xdE −
x

d

(
dxd−1E + xdE′

)

= xd+1
(
E −

1

d
E′

)
. �
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