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Abstract. The F-pure threshold is a numerical invariant of prime characteristic sin-
gularities, that constitutes an analogue of the log canonical thresholds in characteristic
zero. We compute the F-pure thresholds of determinantal ideals, i.e., of ideals generated
by the minors of a generic matrix.
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1 Introduction

Consider the ring of polynomials in a matrix of indeterminates X , with coeffi-
cients in a field of prime characteristic. We compute the F-pure thresholds of
determinantal ideals, i.e., of ideals generated by the minors of X of a fixed size.

The notion of F-pure thresholds is due to Takagi and Watanabe [18], see also
Mustaţă, Takagi, and Watanabe [17]. These are positive characteristic invariants
of singularities, analogous to log canonical thresholds in characteristic zero.
While the definition exists in greater generality – see the above papers – the
following is adequate for our purpose:

Definition 1.1. Let R be a polynomial ring over a field of characteristic p > 0,
with the homogeneous maximal ideal denoted by m. For a homogeneous proper
ideal I , and integer q = pe, set

νI (q) = max
{
r ∈ N | Ir � m[q]} ,
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where m[q] = (aq | a ∈ m). If I is generated by N elements, it is readily seen
that 0 � νI (q) � N(q − 1). Moreover, if f ∈ Ir \ m[q], then f p ∈ I pr \ m[pq].
Thus,

νI (pq) � pνI (q) .

It follows that
{
νI (pe)/pe

}
e�1

is a bounded monotone sequence; its limit is the
F-pure threshold of I , denoted fpt(I).

The F-pure threshold is known to be rational in a number of cases, see, for
example, [2, 3, 4, 9, 16]. The theory of F-pure thresholds is motivated by con-
nections to log canonical thresholds; for simplicity, and to conform to the above
context, let I be a homogeneous ideal in a polynomial ring over the field of ratio-
nal numbers. Using “I modulo p" to denote the corresponding characteristic p
model, one has the inequality

fpt(I modulo p) � lct(I) for all p � 0 ,

where lct(I) denotes the log canonical threshold of I . Moreover,

lim
p−→∞ fpt(I modulo p) = lct(I) . (1.1.1)

These follow from work of Hara and Yoshida [10]; see [17, Theorems 3.3, 3.4].
The F-pure thresholds of defining ideals of Calabi-Yau hypersurfaces are com-

puted in [1]. Hernández has computed F-pure thresholds for binomial hypersur-
faces [11] and for diagonal hypersurfaces [12]. In the present paper, we perform
the computation for determinantal ideals:

Theorem 1.2. Fix positive integers t � m � n, and let X be an m × n matrix of
indeterminates over a field F of prime characteristic. Let R be the polynomial
ring F[X], and It the ideal generated by the size t minors of X.

The F-pure threshold of It is

min

{
(m − k)(n − k)

t − k
| k = 0, . . . , t − 1

}
.

It follows that the F-pure threshold of a determinantal ideal is independent of
the characteristic: for each prime characteristic, it agrees with the log canonical
threshold of the corresponding characteristic zero determinantal ideal, as com-
puted by Johnson [15, Theorem 6.1] or Docampo [8, Theorem 5.6] using log
resolutions as in Vainsencher [19]. In view of (1.1.1), Theorem 1.2 recovers the
calculation of the characteristic zero log canonical threshold.
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2 The computations

The primary decomposition of powers of determinantal ideals, i.e., of the ideals
I s
t , was computed by DeConcini, Eisenbud, and Procesi [7] in the case of charac-

teristic zero, and extended to the case of non-exceptional prime characteristic by
Bruns and Vetter [6, Chapter 10]. By Bruns [5, Theorem 1.3], the intersection of
the primary ideals arising in a primary decomposition of I s

t in non-exceptional
characteristics, yields, in all characteristics, the integral closure I s

t . We record
this below in the form that is used later in the paper:

Theorem 2.1 (Bruns). Let s be a positive integer, and let δ1, . . . , δh be minors
of the matrix X. If

h � s and
∑

i

deg δi = ts,

then
δ1 · · · δh ∈ I s

t .

Proof. By [5, Theorem 1.3], the ideal I s
t has a primary decomposition

t⋂
j=1

I ((t− j+1)s)
j .

Thus, it suffices to verify that

δ1 · · · δh ∈ I ((t− j+1)s)
j

for each j with 1 � j � t . This follows from [6, Theorem 10.4]. �
We will also need:

Lemma 2.2. Let k be the least integer in the interval [0, t − 1] such that

(m − k)(n − k)

t − k
� (m − k − 1)(n − k − 1)

t − k − 1
;

interpreting a positive integer divided by zero as infinity, such a k indeed exists.
Set

u = t (m + n − 2k) − mn + k2 .

Then t − k − u � 0.

Moreover, if k is nonzero, then t−k+u > 0; if k = 0, then t (m+n−1) � mn.

Bull Braz Math Soc, Vol. 45, N. 4, 2014
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Proof. Rearranging the inequality above, we have

t (m + n − 2k − 1) � mn − k2 − k ,

which gives t − k − u � 0. If k is nonzero, then the minimality of k implies that

t (m + n − 2k + 1) > mn − k2 + k ,

equivalently, that t − k + u > 0. If k = 0, the assertion is readily verified. �

Notation 2.3. Let X be an m × n matrix of indeterminates. Following the
notation in [6], for indices

1 � a1 < · · · < at � m and 1 � b1 < · · · < bt � n ,

we set [a1, . . . , at | b1, . . . , bt] to be the minor

det

⎛
⎜⎝

xa1b1 . . . xa1bt
...

...

xat b1 . . . xat bt

⎞
⎟⎠ .

We use the lexicographical term order on R = F[X] with

x11 > x12 > · · · > x1n > x21 > · · · > xm1 > · · · > xmn ;
under this term order, the initial form of the minor displayed above is the product
of the entries on the leading diagonal, i.e.,

in
([a1, . . . , at | b1, . . . , bt]

) = xa1b1 xa2b2 · · · xat bt .

For an integer k with 0 � k � m, we set �k to be the product of minors:

n−m+1∏
i=1

[1, . . . , m | i, . . . , i + m − 1]

×
m−k∏
j=2

[ j, . . . , m | 1, . . . , m − j + 1] · [1, . . . , m − j + 1 | n − m + j, . . . , n] .

If k � 1, we set �′
k to be

�k · [m − k + 1, . . . , m | 1, . . . , k] .

Notice that deg �k = mn − k2 − k and that deg �′
k = mn − k2 . The element �k

is a product of m + n − 2k − 1 minors and �′
k of m + n − 2k minors.

Bull Braz Math Soc, Vol. 45, N. 4, 2014
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Example 2.4. We include an example to assist with the notation. In the case
m = 4 and n = 5, the elements �2 and �′

2 are, respectively, the products of the
minors determined by the leading diagonals displayed below:
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The initial form of �′
2 is the square-free monomial

x11 x12 x13 x21 x22 x23 x24 x31 x32 x33 x34 x35 x42 x43 x44 x45 .

For arbitrary m, n, the initial form of �0 is the product of the mn indeterminates.

Proof of Theorem 1.2. We first show that for each k with 0 � k � t − 1, one
has

fpt(It ) �
(m − k)(n − k)

t − k
.

Let δk and δt be minors of size k and t respectively. Theorem 2.1 implies that

δt−k−1
k δt ∈ I t−k

k+1 ,

and hence that δt−k−1
k It ⊆ I t−k

k+1 . By the Briançon-Skoda theorem, see, for
example, [13, Theorem 5.4], there exists an integer N such that

(
δt−k−1

k It
)N+l ∈ I (t−k)l

k+1

for each integer l � 1. Localizing at the prime ideal Ik+1 of R, one has

I N+l
t ⊆ I (t−k)l

k+1 RIk+1 for each l � 1 ,

as the element δk is a unit in RIk+1 . Since RIk+1 is a regular local ring of dimension
(m − k)(n − k), with maximal ideal Ik+1 RIk+1 , it follows that

I N+l
t ⊆ I [q]

k+1 RIk+1

for positive integers l and q = pe satisfying

(t − k)l > (q − 1)(m − k)(n − k) .

Bull Braz Math Soc, Vol. 45, N. 4, 2014
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Returning to the polynomial ring R, the ideal Ik+1 is the unique associated prime
of I [q]

k+1; this follows from the flatness of the Frobenius endomorphism, see for
example, [14, Corollary 21.11]. Hence, in the ring R, we have

I N+l
t ⊆ I [q]

k+1

for all integers q, l satisfying the above inequality. This implies that

νIt (q) � N + (q − 1)(m − k)(n − k)

t − k
.

Dividing by q and passing to the limit, one obtains

fpt(It ) �
(m − k)(n − k)

t − k
.

Next, fix k and u be as in Lemma 2.2, and consider�k and �′
k as in Notation 2.3;

the latter is defined only in the case k � 1. Set

� =

⎧⎪⎨
⎪⎩

�t
0 if k = 0,

�u
k · (�′

k)
t−k−u if k � 1 and u � 0,

(�′
k)

t−k+u · �−u
k−1 if k � 1 and u < 0,

bearing in mind that t − k − u � 0 by Lemma 2.2.
We claim that � belongs to the integral closure of the ideal I (m−k)(n−k)

t . This
holds by Theorem 2.1, since, in each case,

deg � = t (m − k)(n − k) ,

and � is a product of at most (m − k)(n − k) minors: if k � 1, then � is a
product of exactly (m − k)(n − k) minors, whereas if k = 0 then � is a product
of t (m + n − 1) minors and, by Lemma 2.2, one has t (m + n − 1) � mn.

Let m be the homogeneous maximal ideal of R. For a positive integer s that
is not necessarily a power of p, set

m[s] = (xs
i j | i = 1, . . . , m, j = 1, . . . , n) .

Using the lexicographical term order from Notation 2.3, the initial forms in(�k)

and in(�′
k) are square-free monomials, and

in(�) =

⎧⎪⎪⎨
⎪⎪⎩

in(�0)
t if k = 0,

in(�k)
u · in(�′

k)
t−k−u if k � 1 and u � 0,

in(�′
k)

t−k+u · in(�k−1)
−u if k � 1 and u < 0.

Bull Braz Math Soc, Vol. 45, N. 4, 2014
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Thus, each variable xi j occurs in the monomial in(�) with exponent at most
t − k. It follows that

� /∈ m[t−k+1] .

As � belongs to the integral closure of I (m−k)(n−k)
t , there exists a nonzero

homogeneous polynomial f ∈ R such that

f �l ∈ I (m−k)(n−k)l
t for all integers l � 1 .

But then
f �l ∈ I (m−k)(n−k)l

t \m[q]

for all integers l with deg f + l(t − k) � q − 1. Hence,

νIt (q) � (m − k)(n − k)l for all integers l with l � q − 1 − deg f

t − k
.

Thus,

νIt (q) � (m − k)(n − k)

(
q − 1 − deg f

t − k
− 1

)
,

and dividing by q and passing to the limit, one obtains

fpt(It ) �
(m − k)(n − k)

t − k
,

which completes the proof. �
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