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1 Introduction

LetM and N be two modules over a local ring A such thatM⊗A N has finite length and

M has finite projective dimension. In [20], Serre defined the intersection multiplicity of

M and N as

χ(M, N) =

dimA∑
i=0

(−1)i�
(
TorAi (M, N)

)
, (1.1)

where �(−) is the length function. If A is a regular local ring, Serre showed that the

condition �(M⊗A N) < ∞ implies that dimM+ dimN ≤ dimA, and posed the following

conjectures.

Vanishing: If dimM+ dimN < dimA, then χ(M, N) = 0.

Positivity: If dimM+ dimN = dimA, then χ(M, N) > 0.

Serre settled these conjectures affirmatively for regular local rings A that are equichar-

acteristic or unramified of mixed characteristic. The positivity conjecture remains open,

though Gabber recently proved that χ(M, N) ≥ 0 (see [1]). The vanishing conjecture was

proved by Roberts in [15] and independently by Gillet and Soulé in [5]. The theorem of

Roberts is as follows.

Theorem 1.1 [15]. Let A be a homomorphic image of a regular local ring S such that

τA/S([A]) = [SpecA]dimA (e.g., suppose that A is a regular local ring or a complete in-

tersection). IfM and N are finitely generated A-modules of finite projective dimension

such that �(M ⊗A N) < ∞ and dimM+ dimN < dimA, then χ(M, N) = 0. �

It draws attention to rings A for which τA/S([A]) = [SpecA]dimA, and such rings

were namedRoberts rings by the first author and studied in [10]. Complete intersections,
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for example, are Roberts rings. Our primary goal in this paper is to determinewhen affine

cones over Grassmann varieties are Roberts rings, and we prove the following result.

Theorem 1.2. For 1 ≤ d ≤ n − 1, let Ad(n) denote the affine cone of the Grassmann

variety Gd(n) under the Plücker embedding. Then Ad(n) is a Roberts ring if and only if

one of the following conditions is satisfied:

(1) d = 1;

(2) d = n− 1;

(3) d = 2 and n = 4;

(4) d = 3 and n = 6. �

Theorem 1.2 gives plenty of examples of Gorenstein factorial rings which are

not Roberts rings. The first examples of Gorenstein rings which are not Roberts rings

were discovered by the first author in [9] where he computed the Todd classes of certain

determinantal rings. A few years later the second author, in collaboration with Miller,

[14], found a Gorenstein ring which is not a numerically Roberts ring in the sense of [12].

(A local ring is a numerically Roberts ring if and only if the Dutta multiplicity coincides

with the Euler characteristic for any bounded free complex with homology of finite

length. We remark that a Roberts ring is a numerically Roberts ring but the converse

is not true, see [12].) Recently Roberts and Srinivas, using a localization sequence in

K-theory, established the existence of large families of Gorenstein rings which are not

numerically Roberts rings [19] and, applying their methods, we know that Ad(n) is a

Roberts ring if and only if it is a numerically Roberts ring. Therefore, Theorem 1.2 gives

many examples of Gorenstein factorial rings which are not numerically Roberts rings.

As a corollary of our results, we show in Section 5 that rings defined by Pfaffian

ideals are Roberts rings if and only if they are complete intersections. The first author

had earlier established that determinantal rings are Roberts rings if and only if they are

complete intersections, [10, Example 6.2]. What is most curious in Theorem 1.2, is that

the ring A3(6) is not a complete intersection, yet it is a Roberts ring.

2 Background

We first review some notation and results from [4, 9, 10] that we use later in our work.

2.1 Roberts rings

Let A be a homomorphic image of a regular local ring S, and d = dimA. The Chow group

of A is
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A∗(A) =
d⊕

i=0

Ai(A), (2.1)

where Ai(A) is the free abelian group generated by cycles of the form [A/P] for P ∈
SpecA with dimA/P = i, considered modulo rational equivalence. Let G0(A) be the

Grothendieck group of finitely generated A-modules. For an abelian group M, we use

MQ to denote the tensor product M ⊗Z Q. With this notation, consider the Riemann-

Roch map as in [4, Chapter 18],

τA/S : G0(A)Q −→ A∗(A)Q. (2.2)

This is an isomorphism of Q-vector spaces and it is known that under mild hypotheses

(e.g., if A is complete, or is essentially of finite type over a field or over Z) it does not

depend on the choice of the regular local ring S, see [10, 18]. When τA/S does not depend

on the choice of S, we denote it simply by τA. Let [A] denote the class of the ring A in

G0(A)Q. Then A is said to be a Roberts ring if

τA/S

(
[A]

)
∈ Ad(A)Q (2.3)

for some choice of S. In other words, if we write

τA/S

(
[A]

)
= τd + τd−1 + · · ·+ τ0 for τi ∈ Ai(A)Q, (2.4)

then A is a Roberts ring if and only if τd−1 = · · · = τ0 = 0 for some choice of S. We

summarize some properties of Roberts rings; see [10] for the proofs.

Theorem 2.1. Consider a ring (A,m) which is a homomorphic image of a regular local

ring.

(1) If (A,m) is a Roberts ring, so are the local rings Ap for p ∈ SpecA, and the

m-adic completion Â;

(2) let x ∈ m be a nonzerodivisor. If A is a Roberts ring, so is A/xA;

(3) if A is a subring of a regular local ring T such that T is a module-finite exten-

sion of A, then A is a Roberts ring;

(4) if A is a normal domain with a Noether normalization S ⊆ A such that the

extension A/S is generically Galois, then A is a Roberts ring. �

We next record some facts about τA/S.

Theorem 2.2. Let A be a local ring of dimension d which is a homomorphic image of a

regular local ring S. Let
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τA/S

(
[A]

)
= τd + τd−1 + · · ·+ τ0 for τi ∈ Ai(A)Q; (2.5)

(1) τd �= 0;

(2) if A is a complete intersection, then τi = 0 for all i < d;

(3) if A is a Cohen-Macaulay ring with canonical module ωA, then

τA/S

([
ωA

])
= τd − τd−1 + τd−2 − · · ·+ (−1)dτ0; (2.6)

(4) if A is a Gorenstein ring, then τd−i = 0 for odd integers i;

(5) if A is a normal Roberts ring, then it is Q-Gorenstein. A normal domain A of

dimension two is a Roberts ring if and only if A is a Q-Gorenstein ring.

�

2.2 Affine cones of smooth projective varieties

Let R = ⊕n≥0Rn be a graded ring over a field R0 = K which is generated, as a K-algebra,

by finitely many elements of degree one. Let m be the unique homogeneous maximal

ideal of R. Assume that X = ProjR is a smooth projective variety of dimension t. Let

A∗(X) =
⊕t

i=0 Ai(X) and CH(X) =
⊕t

i=0 CH
i(X) denote the Chow group and the Chow

ring of X, respectively, where

CHi
(X) = At−i(X) for all 0 ≤ i ≤ t. (2.7)

Set CH(X)Q = CH(X)⊗Q. Let h = c1(OX(1))∩ [X] ∈ CH1(X)Q be the first Chern class of the

invertible sheaf OX(1). One of the main results of [9] is the following theorem.

Theorem 2.3. There is an exact sequence of graded modules

CH(X)Q
h−−→ CH(X)Q ξ−−→ A∗

(
Rm

)
Q
−→ 0, (2.8)

where ξ is a map satisfying ξ([ProjR/p]) = [Rm/pRm] for each homogeneous prime ideal

p of R. Under this map, ξ(td(Ω∨
X )) = τRm([Rm]) where td(Ω

∨
X ) is the Todd class of the

tangent sheaf Ω∨
X , and τRm : G0(Rm)Q → A∗(Rm)Q is the Riemann-Roch isomorphism.

In particular,

A0

(
Rm

)
Q

∼= 0,

Ai

(
Rm

)
Q

∼=
CHt+1−i(X)Q

hCHt−i(X)Q
for all 1 ≤ i ≤ t,

At+1

(
Rm

)
Q

∼= CH0
(X)Q ∼= Q.

(2.9)

�
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2.3 Dutta multiplicity

Let A be a complete local ring of dimension d over a perfect field of prime characteristic

p, and let G• be a bounded complex of free modules with homology of finite length. We

denote by Fn(−) the nth iteration of the Frobenius functor. The Dutta multiplicity of G•

is the limit

χ∞
(
G•

)
= lim

n→∞
χ
(
Fn

(
G•

))
pnd

, (2.10)

studied by Dutta in [3]. The Dutta multiplicity behaves, in many ways, better than the

usual multiplicity, and Roberts used the Dutta multiplicity in an essential way in his

proof of the new intersection theorem in mixed-characteristic [16]. While we do not

pursue it here, the Dutta multiplicity can be defined in a characteristic-free way, as was

accomplished by the first author in [8]. One of the motivating reasons for the study of

Roberts rings is that over these rings, the Dutta multiplicity of a complex coincides with

its Euler characteristic.

By the support of a complex G•, denoted by Supp(G•), we mean the union of the

supports of its homology modules. We summarize some results from [2, 4, 13, 15, 17]

which illustrate the behavior of χ∞ (G•).

Theorem 2.4. Let G• and F• be bounded complexes of finitely generated free modules

over a complete local ringA of dimensiond and characteristicp > 0. Assume furthermore

that A has a perfect residue class field.

(1) If Supp(G•) = {m}, then χ∞ (G•
∨
) = (−1)dχ∞ (G•);

(2) if Supp(G•) = {m}, then χ∞ (Fn(G•)) = pndχ∞ (G•) for all n ∈ N;

(3) if dimSupp(G•) + dimSupp(F•) < d and Supp(G•) ∩ Supp(F•) = {m}, then

χ∞ (G• ⊗A F•) = 0;

(4) if dimSupp(G•) + dimSupp(F•) ≤ d and Supp(G•) ∩ Supp(F•) = {m}, then

χ∞ (G• ⊗A F•) = (−1)d−dim Supp(G•) χ∞ (G∨
• ⊗A F•);

(5) if G• has length d and Supp(G•) = {m} (in particular, G• is not exact), then

χ∞ (G•) > 0. �

The assertions (1), (2), (4), and (5) of Theorem 2.4 are not true in general if the

Duttamultiplicity χ∞ is replaced by the usual Euler characteristic χ. However, if the ring

A is a Roberts ring, all assertions of Theorem 2.4 are true for the Euler characteristic χ

since, in this case, χ∞ (G•) = χ(G•) for a bounded free complex G• with Supp(G•) = {m}.

Remark 2.5. Assume thatA is a d-dimensional local ring (not necessary of positive char-

acteristic) which is a homomorphic image of a regular local ring. In this generality, the

Dutta multiplicity of complexes with support in {m} is defined in [8].
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The statements (1), (3), (4) in Theorem 2.4 hold true in this case. Furthermore, if

we replace F with the pth Adams operation ψp [6, 13], statement (2) is also valid for any

positive integer p. IfA contains a field, then (5) is true, see [13]. However, this is an open

problem in the case of mixed-characteristic. The positivity of the Dutta multiplicity is

deeply connected to the positivity conjecture of Serre, [11, Theorem 1.2].

Remark 2.6. The concept of a numerically Roberts ring is defined in [12]. It is proved

there that a local ring A is a numerically Roberts ring if and only if, over the ring A,

the Dutta multiplicity always coincides with the Euler characteristic. Consequently, a

Roberts ring is a numerically Roberts ring, but there are many examples of numerically

Roberts rings which are not Roberts rings.

However, using a method established in [19], the affine cone Ad(n) of a

Grassmann variety is a Roberts ring if and only if it is a numerically Roberts ring. A key

point here is that for a Grassmann variety G = Gd(n), we have CH(G)Q ∼= CHnum(G)Q.

3 Vector bundles

We review definitions and basic facts on Chern characters, [4, Section 3.2], that we use

later.

Let E be a vector bundle on a scheme X. We use ct(E) to denote its Chern polyno-

mial,

ct(E) = 1+ c1(E)t+ c2(E)t
2
+ c3(E)t

3
+ · · · . (3.1)

For an exact sequence of vector bundles 0 → E ′ → E → E ′′ → 0, theWhitney sum formula

gives

ct(E) = ct(E
′
)ct(E

′′
). (3.2)

If the vector bundle E has rank r, then ci(E) = 0 for all i > r. If its Chern polynomial is

factored formally as

ct(E) =

r∏
i=1

(
1+ αit

)
, (3.3)

the αi’s are called the Chern roots of E, and the Chern classes of E are elementary sym-

metric functions of α1, . . . , αr. The Chern character of E is

ch(E) =
r∑

i=1

exp
(
αi

)
=

r∑
i=1

∑
n≥0

αn
i

n!
. (3.4)
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The first few terms, as found in [4, Example 3.2.3], are

ch(E) = r+ c1 +
1

2

(
c2

1 − 2c2

)
+

1

6

(
c3

1 − 3c1c2 + 3c3

)
+

1

24

(
c4

1 − 4c2
1c2 + 4c1c3 + 2c2

2 − 4c4

)
+ · · · ,

(3.5)

where ci = ci(E).

The Chern character of a tensor product of vector bundles is

ch
(
E ⊗ E ′)

= ch(E) ch
(
E ′), (3.6)

and for an exact sequence 0 → E ′ → E → E ′′ → 0, we have

ch(E) = ch
(
E ′)
+ ch

(
E ′′). (3.7)

The Chern classes of the dual bundle E∨ are given by

ci

(
E∨

)
= (−1)ici(E). (3.8)

The Todd class td(E) of a vector bundle E with Chern roots α1, . . . , αr is

td(E) =
r∏

i=1

αi

1− exp
(
−αi

) , (3.9)

and the first few terms of the expansion are

td(E) = 1+
1

2
c1 +

1

12

(
c2

1 + c2

)
+

1

24

(
c1c2

)
+

1

720

(
− c4

1 + 4c2
1c2 + 3c2

2 + c1c3 − c4

)
+ · · · ,

(3.10)

see [4, Example 3.2.4].

4 Grassmannians

Let X = (xij) be an n× dmatrix of indeterminates over a field K, and consider the ring R

generated, as a K-algebra, by all the d×dminors of the matrix X. Then R is the homoge-

neous coordinate ring of the Grassmann varietyGd(n) of d-dimensional subspaces in an

n-dimensional vector space, that is, Gd(n) = ProjR. The relations between the minors

are quadratic, and are the well-known Plücker relations, see [7, Section 6, Chapter VII].
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Setting G = Gd(n) for the notational convenience, we have the universal exact

sequence

0 −→ S −→ On
G −→ Q −→ 0, (4.1)

where Q (resp., S) is the universal rank (n − d) quotient bundle (resp., universal rank

d subbundle) on G, see [4, Section 14.6]. We briefly explain the construction of Q and S.

Consider theK[xij]-module T which is the submodule of the freemoduleK[xij]
n generated

by the columns of X. LetN denote the set of elements of T which have entries in R. ThenN

is a graded submodule of Rn, and S is the locally free sheaf corresponding toN. Similarly,

the locally free sheafQ corresponds to the graded R-module Rn/N, see [18, Section 10.2].

By [4, Appendix B.5.8], we have

Ω∨
G = Hom(S, Q) = S∨ ⊗ Q. (4.2)

From the universal exact sequence we also get

∧nOn
G

∼= OG
∼= ∧dS ⊗ ∧n−dQ, (4.3)

and so ∧n−dQ ∼= (∧dS)∨ ∼= ∧d(S∨). Here, ∧n−dQ is the very ample invertible sheaf

corresponding to the Plücker embedding G = Gd(n) ↪→ P(
n

d)−1. By [4, Remark 3.2.3(c)],

c1(∧
n−dQ) = c1(Q) and setting h = c1(Q), Theorem 2.3 gives us the exact sequence

CH(G)Q
h−−→ CH(G)Q ξ−−→ A∗(A)Q −→ 0 (4.4)

such that

ξ
(
td

(
Ω∨

G

))
= τA

(
[A]

)
∈ A∗(A)Q, (4.5)

where A = Rm. Let t = d(n−d), which is the dimension of the projective variety G. Then

dimA = t+ 1, and suppose that

τA

(
[A]

)
= τt+1 + τt + τt−1 + · · ·+ τ0, (4.6)

where τi ∈ Ai(A)Q for each i. Here, since A is essentially of finite type over a field, the

Riemann-Rochmap τA/S is independent of the choice of a regular local ring S. Comparing
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terms with the expansion of td(Ω∨
G), we see that

τt+1 = 1,

τt =
1

2
c1

(
Ω∨

G

)
modhCH0

(G)Q,

τt−1 =
1

12

(
c1

(
Ω∨

G

)2
+ c2

(
Ω∨

G

))
modhCH1

(G)Q,

τt−2 =
1

24
c1

(
Ω∨

G

)
c2

(
Ω∨

G

)
modhCH2

(G)Q,

τt−3 =
1

720

(
− c1

(
Ω∨

G

)4
+ 4c1

(
Ω∨

G

)2
c2

(
Ω∨

G

)
+ 3c2

(
Ω∨

G

)2

+ c1

(
Ω∨

G

)
c3

(
Ω∨

G

)
− c4

(
Ω∨

G

))
modhCH3

(G)Q,

(4.7)

and so forth. Recall that A is a Roberts ring if and only if τi = 0 for all i ≤ t, and we will

prove Theorem 1.2 essentially by establishing the vanishing or nonvanishing of τi’s.

Proof of Theorem 1.2. If d = 1 or d = n− 1, the affine cone Ad(n) is a regular local ring,

and therefore is a Roberts ring. Consequently, we may assume that 2 ≤ d ≤ n− 2. In the

case d = 2 and n = 4, it is easily seen that there is exactly one Plücker relation, and so

A2(4) is a hypersurface, hence a Roberts ring.

In general, the Whitney sum formula, applied to the universal exact sequence

0 → S → On
G → Q → 0, gives ct(S)ct(Q) = ct(O

n
G) = (ct(OG))

n = 1, which says that

(
1+ c1(S)t+ c2(S)t

2
+ c3(S)t

3
+ c4(S)t

4
+ · · ·

)
×

(
1+ c1(Q)t+ c2(Q)t

2
+ c3(Q)t

3
+ c4(Q)t

4
+ · · ·

)
= 1.

(4.8)

Comparing the coefficients, we obtain

c2(S) + c1(S)c1(Q) + c2(Q) = 0,

c4(S) + c3(S)c1(Q) + c2(S)c2(Q) + c1(S)c3(Q) + c4(Q) = 0.
(4.9)

By Lemma 4.1(1) below, the graded component of CH(G)Q/hCH(G)Q in degree

one is

CH1
(G)Q/hCH0

(G)Q = 0. (4.10)

In particular, c1(E) ≡ 0modhCH(G)Q for any vector bundle E on G. Hence we have

c2(S) ≡ −c2(Q) and c4(S) ≡ c2(Q)
2 − c4(Q), which will be used later. Furthermore, the

expansion of ch(E) is simplified as
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ch(E) ≡ rankE+
1

2

(
− 2c2(E)

)
+

1

6

(
3c3(E)

)
+

1

24

(
2c2(E)

2
− 4c4(E)

)
+ · · ·

≡ rankE− c2(E) +
1

2
c3(E) +

1

12

(
c2(E)

2
− 2c4(E)

)
+ · · · .

(4.11)

Recall that ch(Ω∨
G) = ch(S

∨) ch(Q) since Ω∨
G = S∨ ⊗ Q. This equation gives us

d(n− d) − c2

(
Ω∨

G

)
+

1

2
c3

(
Ω∨

G

)
+

1

12

(
c2

(
Ω∨

G

)2
− 2c4

(
Ω∨

G

))
+ · · ·

≡
[
d− c2

(
S∨

)
+

1

2
c3

(
S∨

)
+

1

12

(
c2(S

∨
)2
− 2c4

(
S∨

))
+ · · ·

]

×
[
n− d− c2(Q) +

1

2
c3(Q) +

1

12

(
c2(Q)

2
− 2c4(Q)

)
+ · · ·

]
.

(4.12)

Comparing the components of degree two in (4.12), we see that

c2

(
Ω∨

G

)
≡ dc2(Q) + (n− d)c2

(
S∨

)
≡ dc2(Q) + (n− d)c2(S). (4.13)

Since c2(S) ≡ −c2(Q), we have c2(Ω
∨
G) ≡ (2d− n)c2(Q). Consequently,

τt−1 =
1

12

(
c1

(
Ω∨

G

)2
+ c2

(
Ω∨

G

))
modhCH1

(G)Q

=
1

12
(2d− n)c2(Q)modhCH1

(G)Q.

(4.14)

We need the following lemma to complete the proof of Theorem 1.2.

Lemma 4.1. Let G denote the Grassmann manifold Gd(n) where 2 ≤ d ≤ n− 2. Then

(1) CH1(G)Q = hCH0(G)Q;

(2) c2(Q) /∈ hCH1(G)Q;

(3) if d ≥ 4 and n = 2d, then c2(Q)
2 /∈ hCH3(G)Q;

(4) if d = 3 and n = 6, then hCHi(G)Q = CHi+1(G)Q for 3 ≤ i ≤ 8. �

We first complete the proof of Theorem 1.2 using this lemma. Recall that we may

assume that 2 ≤ d ≤ n− 2. Since

τt−1 =
1

12
(2d− n)c2(Q)modhCH1

(G)Q. (4.15)

Lemma 4.1(2) implies that τt−1 is nonzero ifn �= 2d. Consequently,Ad(n) is not aRoberts

ring in this case.
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We next assume that n = 2d. Since c2(Ω
∨
G) ≡ (2d−n)c2(Q), we have c2(Ω

∨
G) ≡ 0.

Comparing the components of degree four in (4.12), we get

−
1

6
c4

(
Ω∨

G

)
≡ d

12

(
c2(Q)

2
− 2c4(Q)

)
+ c2

(
S∨

)
c2(Q) +

d

12

(
c2

(
S∨

)2
− 2c4

(
S∨

))
≡ c2(S)c2(Q) +

d

12

(
c2(Q)

2
− 2c4(Q) + c2(S)

2
− 2c4(S)

)
.

(4.16)

Since c2(S) ≡ −c2(Q) and c4(S) ≡ c2(Q)
2 − c4(Q), we have

−
1

6
c4

(
Ω∨

G

)
≡ −c2(Q)

2. (4.17)

Consequently, c4(Ω
∨
G) ≡ 6c2(Q)

2 and so

τt−3 = −
1

120
c2(Q)

2modhCH3
(G)Q. (4.18)

If n = 2d and d ≥ 4, then τt−3 is nonzero by Lemma 4.1(3). Hence Ad(n) is not a

Roberts ring in this case.

Suppose that n = 6 and d = 3. Then A3(6) is a Gorenstein ring of dimension 10

and so τi = 0 for odd integers i. Since n = 2d, we have τ8 = τt−1 = 0. The equality

τ9−i = 0 for i ≥ 3 follows from Lemma 4.1(4). Hence A3(6) is a Roberts ring. �

We now record the proof of Lemma 4.1.

Proof of Lemma 4.1. We use the notation and results of [4, Sections 14.5–14.7] for Schu-

bert cycles. The Chow ring CH(G)Q has a basis overQ represented by the set of partitions

λ =
(
λ1, . . . , λd

)
, where n− d ≥ λ1 ≥ · · · ≥ λd ≥ 0. (4.19)

We denote the cycle corresponding to a partition λ = (λ1, . . . , λd) by {λ} or {λ1, . . . , λd}.

Set |λ| =
∑

λi. Then CHl(G)Q has a basis which consists of the set of cycles {λ} such that

|λ| = l. For 1 ≤ m ≤ n − d, the classes cm(Q) are called the special Schubert classes and

σm = cm(Q) coincideswith the cycle {m, 0, . . . , 0}. Themultiplication by σm is determined

by Pieri’s formula:

{λ} × σm =
∑

{µ}, (4.20)

where the sum runs over µ with

n− d ≥ µ1 ≥ λ1 ≥ µ2 ≥ λ2 ≥ · · · ≥ µd ≥ λd, |µ| = |λ|+m. (4.21)
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(1) The group CH1(G)Q is aQ-vector space of dimension one, whose generator, in

terms of a Young diagram, is . Since h ∈ CH1(G)Q corresponds to a very ample divisor,

h does not vanish. Therefore, CH1(G)Q = hCH0(G)Q is satisfied.

(2) The group CH2(G)Q is a Q-vector space of dimension two spanned by

and . The image hCH1(G)Q is the Q-span of

× = + , and so c2(Q) = /∈ hCH1
(G)Q. (4.22)

(3) Since CH3(G)Q is spanned by , , and , it follows that hCH3(G)Q

is spanned by × = + ,

× = + + , × = + . (4.23)

Then it is easy to see that

c2(Q)
2
= × = + + (4.24)

is not an element of hCH3(G)Q.

(4) If d = 3 and n = 6, then hCH3(G)Q is spanned by

× = , × = + + ,

× =

(4.25)

which, in this case, generate CH4(G)Q. This shows that hCH3(G)Q = CH4(G)Q, and the

remaining cases may be computed similarly. �

Remark 4.2. The ring A3(6) is not a complete intersection. It is a ring of dimension 10,

and is the homomorphic image of a regular local ring of dimension 20 (which is the

number of 3 × 3 minors of a 6 × 3 matrix) modulo an ideal generated minimally by 35

Plücker relations. The number of minimal generators may be checked using [7, Section 6,

Chapter VII] and eliminating redundant relations, or by a computer algebra package such

as Macaulay 2.
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5 Pfaffian ideals

We determine next when the rings S/Pfm(Y) defined by Pfaffian ideals are Roberts rings.

Let Z = (zij) be a 2m × 2m antisymmetric matrix, that is, zij = −zji for 1 ≤ i <

j ≤ 2m and zii = 0 for 1 ≤ i ≤ 2m. We call

Pf(Z) =
∑
σ

sgn(σ)zσ(1)σ(2) zσ(3)σ(4) · · · zσ(2m−1)σ(2m) (5.1)

the Pfaffian ofZ, where the sum is taken over permutations of {1, 2, . . . , 2m}which satisfy

σ(1) < σ(3) < · · · < σ(2m− 1) and

σ(1) < σ(2), σ(3) < σ(4), . . . , σ(2m− 1) < σ(2m). (5.2)

It is easy to see that Pf(Z)2 = det(Z).

Letm and n be positive integers such that 2m ≤ n, and let Y = (yij) be the n×n

antisymmetric matrix with variables yij for 1 ≤ i < j ≤ n. For a set of integers such

that 1 ≤ s1 < · · · < s2m ≤ n, we denote by Pf(s1, . . . , s2m) the Pfaffian of the 2m × 2m

antisymmetric matrix (ysisj
). Let K be a field and S be the localization of the polynomial

ring K[yij|1 ≤ i < j ≤ n] at its homogeneous maximal ideal. We denote by Pfm(Y) the

ideal of S generated by all the elements Pf(s1, . . . , s2m) for 1 ≤ s1 < · · · < s2m ≤ n. Set

Bm(n) = S/Pfm(Y). It is well known that Bm(n) is a factorial Gorenstein ring and that

dimBm(n) = dimS− (n− 2m+ 1)(n− 2m+ 2)/2. (5.3)

With this notation we have the following theorem.

Theorem 5.1. The following conditions are equivalent:

(1) Bm(n) is a Roberts ring;

(2) Bm(n) is a complete intersection;

(3) n = 2m or m = 1. �

Proof. The minimal number of generators of the ideal Pfm(Y) is
(

n

2m

)
, and its height is

(n− 2m+ 1)(n− 2m+ 2)/2 =
(
n−2m+2

2

)
. Using these facts, the equivalence of (2) and (3)

is easily verified.

In the case m = 2, the ideal Pf2(Y) is generated by the elements

yijykl − yikyjl + yilyjk, for 1 ≤ i < j < k < l ≤ n. (5.4)

These are precisely the Plücker relations for the Grassmann variety G2(n), and so B2(n)

coincides with A2(n). It then follows from Theorem 1.2 that B2(n) is a Roberts ring if

and only if n = 4.



1854 K. Kurano and A. K. Singh

Next, assume that m ≥ 3. If n = 2m, then Bm(n) is a complete intersection

and, therefore, a Roberts ring. If n > 2m, then a suitable localization of Bm(n) gives a

Pfaffian ring Bm−1(n− 2) over a different base field. By induction onm, we may assume

that Bm−1(n− 2) is not a Roberts ring and it follows from Theorem 2.1(1) that Bm(n) is

not a Roberts ring. This completes the proof of the theorem. �

Remark 5.2. The ring Ad(n) is a Roberts ring if and only if it is a numerically Roberts

ring. Consequently, B2(n) is a Roberts ring if and only if it is a numerically Roberts

ring. However, the authors do not know whether or not the rings Bm(n) are numerically

Roberts rings in the case m ≥ 3.
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