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Abstract

We study F-rationality and F-regularity in diagonal subalgebras of multigraded rings, and use this to
construct large families of rings that are F-rational but not F-regular. We also use diagonal subalgebras to
construct rings with divisor class groups that are finitely generated but not discrete in the sense of Danilov.
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1. Introduction

We study the properties of F-rationality and F-regularity in multigraded rings and their diago-
nal subalgebras. The main focus is on diagonal subalgebras of bigraded rings: these constitute an
interesting class of rings since they arise naturally as homogeneous coordinate rings of blow-ups
of projective varieties.
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Let X be a projective variety over a field K , with homogeneous coordinate ring A. Let a ⊂ A

be a homogeneous ideal, and V ⊂ X the closed subvariety defined by a. For g an integer, we use
ag to denote the K-vector space consisting of homogeneous elements of a of degree g. If g � 0,
then ag defines a very ample complete linear system on the blow-up of X along V , and hence
K[ag] is a homogeneous coordinate ring for this blow-up. Since the ideals ah define the same
subvariety V , the rings K[(ah)g] are homogeneous coordinate ring for the blow-up provided
g � h > 0.

Suppose that A is a standard N-graded K-algebra, and consider the N2-grading on the Rees
algebra A[at], where deg rtj = (i, j) for r ∈ Ai . The connection with diagonal subalgebras stems
from the fact that if ah is generated by elements of degree less than or equal to g, then

K
[(

ah
)
g

] ∼=
⊕
k�0

A[at](gk,hk).

Using Δ = (g,h)Z to denote the (g,h)-diagonal in Z2, the diagonal subalgebra A[at]Δ =⊕
k A[at](gk,hk) is a homogeneous coordinate ring for the blow-up of ProjA along the subva-

riety defined by a, whenever g � h > 0.
The papers [GG,GGH,GGP,Tr] use diagonal subalgebras in studying blow-ups of projective

space at finite sets of points. For A a polynomial ring and a a homogeneous ideal, the ring
theoretic properties of K[ag] are studied by Simis, Trung, and Valla in [STV] by realizing K[ag]
as a diagonal subalgebra of the Rees algebra A[at]. In particular, they determine when K[ag]
is Cohen–Macaulay for a a complete intersection ideal generated by forms of equal degree, and
also for a the ideal of maximal minors of a generic matrix. Some of their results are extended by
Conca, Herzog, Trung, and Valla as in the following theorem.

Theorem 1.1. (See [CHTV, Theorem 4.6].) Let K[x1, . . . , xm] be a polynomial ring over a field,
and let a be a complete intersection ideal minimally generated by forms of degrees d1, . . . , dr .
Fix positive integers g and h with g/h > d = max{d1, . . . , dr}.

Then K[(ah)g] is Cohen–Macaulay if and only if g > (h − 1)d − m + ∑r
j=1 dj .

When A is a polynomial ring and a an ideal for which A[at] is Cohen–Macaulay, Lavila-Vidal
[Lv1, Theorem 4.5] proved that the diagonal subalgebras K[(ah)g] are Cohen–Macaulay for
g � h � 0, thereby settling a conjecture from [CHTV]. In [CH] Cutkosky and Herzog obtain af-
firmative answers regarding the existence of a constant c such that K[(ah)g] is Cohen–Macaulay
whenever g � ch. For more work on the Cohen–Macaulay and Gorenstein properties of diagonal
subalgebras, see [HHR,Hy2,Lv2] and [LvZ].

As a motivating example for some of the results of this paper, consider a polynomial ring
A = K[x1, . . . , xm] and an ideal a = (z1, z2) generated by relatively prime forms z1 and z2 of
degree d . Setting Δ = (d + 1,1)Z, the diagonal subalgebra A[at]Δ is a homogeneous coordinate
ring for the blow-up of ProjA = Pm−1 along the subvariety defined by a. The Rees algebra A[at]
has a presentation

R = K[x1, . . . , xm, y1, y2]/(y2z1 − y1z2),

where degxi = (1,0) and degyj = (d,1), and consequently RΔ is the subalgebra of R gener-
ated by the elements xiyj . When K has characteristic zero and z1 and z2 are general forms of
degree d , the results of Section 3 imply that RΔ has rational singularities if and only if d � m,
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and that it is of F-regular type if and only if d < m. As a consequence, we obtain large families of
rings of the form RΔ, standard graded over a field, which have rational singularities, but which
are not of F-regular type.

It is worth pointing out that if R is an N2-graded ring over an infinite field R(0,0) = K , and
Δ = (g,h)Z for coprime positive integers g and h, then RΔ is the ring of invariants of the torus
K∗ acting on R via

λ : r �−→ λhi−gj r where λ ∈ K∗ and r ∈ R(i,j).

Consequently there exist torus actions on hypersurfaces for which the rings of invariants have
rational singularities but are not of F-regular type.

In Section 4 we use diagonal subalgebras to construct standard graded normal rings R, with
isolated singularities, for which H 2

m(R)0 = 0 and H 2
m(R)1 	= 0. If S is the localization of such

a ring R at its homogeneous maximal ideal, then, by Danilov’s results, the divisor class group
of S is a finitely generated abelian group, though S does not have a discrete divisor class group.
Such rings R are also of interest in view of the results of [RSS], where it is proved that the image
of H 2

m(R)0 in H 2
m(R+) is annihilated by elements of R+ of arbitrarily small positive degree;

here R+ denotes the absolute integral closure of R. A corresponding result for H 2
m(R)1 is not

known at this point, and the rings constructed in Section 4 constitute interesting test cases.
Section 2 summarizes some notation and conventions for multigraded rings and modules. In

Section 3 we carry out an analysis of diagonal subalgebras of bigraded hypersurfaces; this uses
results on rational singularities and F-regular rings proved in Sections 5 and 6, respectively.

2. Preliminaries

In this section, we provide a brief treatment of multigraded rings and modules; see [GW1,
GW2,HHR], and [HIO] for further details.

By an Nr -graded ring we mean a ring

R =
⊕
n∈Nr

Rn,

which is finitely generated over the subring R0. If (R0,m) is a local ring, then R has a unique
homogeneous maximal ideal M = mR + R+, where R+ = ⊕

n 	=0 Rn.
For m = (m1, . . . ,mr) and n = (n1, . . . , nr) in Zr , we say n > m (resp. n � m) if ni > mi

(resp. ni � mi ) for each i.
Let M be a Zr -graded R-module. For m ∈ Zr , we set

M�m =
⊕
n�m

Mn,

which is a Zr -graded submodule of M . One writes M(m) for the Zr -graded R-module with
shifted grading [M(m)]n = Mm+n for each n ∈ Zr .

Let M and N be Zr -graded R-modules. Then HomR(M,N) is the Zr -graded module with
[HomR(M,N)]n being the abelian group consisting of degree preserving R-linear homomor-
phisms from M to N(n).
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The functor ExtiR(M,−) is the ith derived functor of HomR(M,−) in the category of Zr -
graded R-modules. When M is finitely generated, ExtiR(M,N) and ExtiR(M,N) agree as
underlying R-modules. For a homogeneous ideal a of R, the local cohomology modules of
M with support in a are the Zr -graded modules

Hi
a(M) = lim−→

n

ExtiR
(

R/an,M
)
.

Let ϕ : Zr −→ Zs be a homomorphism of abelian groups satisfying ϕ(Nr ) ⊆ Ns . We write
Rϕ for the ring R with the Ns -grading where

[
Rϕ

]
n

=
⊕

ϕ(m)=n

Rm.

If M is a Zr -graded R-module, then Mϕ is the Zs -graded Rϕ-module with

[
Mϕ

]
n

=
⊕

ϕ(m)=n

Mm.

The change of grading functor (−)ϕ is exact; by [HHR, Lemma 1.1] one has

Hi
M(M)ϕ = Hi

Mϕ

(
Mϕ

)
.

Consider the projections ϕi : Zr −→ Z with ϕi(m1, . . . ,mr) = mi , and set

a
(

Rϕi
) = max

{
a ∈ Z

∣∣ [
H dim R

M (R)ϕi
]
a

	= 0
};

this is the a-invariant of the N-graded ring Rϕi in the sense of Goto and Watanabe [GW1]. As in
[HHR], the multigraded a-invariant of R is

a(R) = (
a
(

Rϕ1
)
, . . . , a

(
Rϕr

))
.

Let R be a Z2-graded ring and let g,h be positive integers. The subgroup Δ = (g,h)Z is a
diagonal in Z2, and the corresponding diagonal subalgebra of R is

RΔ =
⊕
k∈Z

R(gk,hk).

Similarly, if M is a Z2-graded R-module, we set

MΔ =
⊕
k∈Z

M(gk,hk),

which is a Z-graded module over the Z-graded ring RΔ.
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Lemma 2.1. Let A and B be N-graded normal rings, finitely generated over a field A0 = K =
B0. Set T = A ⊗K B . Let g and h be positive integers and set Δ = (g,h)Z. Let a, b, and m

denote the homogeneous maximal ideals of A, B , and TΔ respectively. Then, for each q � 0 and
i, j, k ∈ Z, one has

H
q
m

(
T (i, j)Δ

)
k
= (

Ai+gk ⊗ H
q

b
(B)

j+hk

) ⊕ (
H

q
a (A)i+gk ⊗ Bj+hk

)
⊕

⊕
q1+q2=q+1

(
H

q1
a (A)i+gk ⊗ H

q2
b

(B)
j+hk

)
.

Proof. Let A(g) and B(h) denote the respective Veronese subrings of A and B . Set

A(g,i) =
⊕
k∈Z

Ai+gk and B(h,j) =
⊕
k∈Z

Bj+hk,

which are graded A(g) and B(h) modules respectively. Using # for the Segre product,

T (i, j)Δ =
⊕
k∈Z

Ai+gk ⊗K Bj+hk = A(g,i) # B(h,j).

The ideal A
(g)
+ A is a-primary; likewise, B

(h)
+ B is b-primary. The Künneth formula for local

cohomology, [GW1, Theorem 4.1.5], now gives the desired result. �
Notation 2.2. We use bold letters to denote lists of elements, e.g., z = z1, . . . , zs and γ =
γ1, . . . , γs .

3. Diagonal subalgebras of bigraded hypersurfaces

We prove the following theorem about diagonal subalgebras of N2-graded hypersurfaces. The
proof uses results proved later in Sections 5 and 6.

Theorem 3.1. Let K be a field, let m,n be integers with m,n � 2, and let

R = K[x1, . . . , xm, y1, . . . , yn]/(f )

be a normal N2-graded hypersurface where degxi = (1,0), degyj = (0,1), and degf =
(d, e) > (0,0). For positive integers g and h, set Δ = (g,h)Z. Then:

(1) The ring RΔ is Cohen–Macaulay if and only if 
(d −m)/g� < e/h and 
(e −n)/h� < d/g.
In particular, if d < m and e < n, then RΔ is Cohen–Macaulay for each diagonal Δ.

(2) The graded canonical module of RΔ is R(d − m,e − n)Δ. Hence RΔ is Gorenstein if and
only if (d − m)/g = (e − n)/h, and this is an integer.

If K has characteristic zero, and f is a generic polynomial of degree (d, e), then:

(3) The ring RΔ has rational singularities if and only if it is Cohen–Macaulay and d < m or
e < n.

(4) The ring RΔ is of F-regular type if and only if d < m and e < n.
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Fig. 1. Properties of RΔ for Δ = (1,1)Z.

For m,n � 3 and Δ = (1,1)Z, the properties of RΔ, as determined by m,n,d, e, are summa-
rized in Fig. 1.

Remark 3.2. Let m,n � 2. A generic hypersurface of degree (d, e) > (0,0) in m,n variables is
normal precisely when

m > min(2, d) and n > min(2, e).

Suppose that m = 2 = n, and that f is nonzero. Then dim RΔ = 2; since RΔ is generated over a
field by elements of equal degree, RΔ is of F-regular type if and only if it has rational singulari-
ties; see [Wa2]. This is the case precisely if

d = 1, e � h + 1, or

e = 1, d � g + 1.

Following a suggestion of Hara, the case n = 2 and e = 1 was used in [Si, Example 7.3] to
construct examples of standard graded rings with rational singularities which are not of F-regular
type.

Proof of Theorem 3.1. Set A = K[x], B = K[y], and T = A ⊗K B . By Lemma 2.1,
H

q
m(TΔ) = 0 for q 	= m + n − 1. The local cohomology exact sequence induced by

f

0 −−−−→ T (−d,−e)Δ −−−−→ TΔ −−−−→ RΔ −−−−→ 0
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therefore gives H
q−1
m (RΔ) = H

q
m(T (−d,−e)Δ) for q � m + n − 2, and also shows that

Hm+n−2
m (RΔ) and Hm+n−1

m (RΔ) are, respectively, the kernel and cokernel of

Hm+n−1
m (T (−d,−e)Δ)

f−−−−→ Hm+n−1
m (TΔ)∥∥∥ ∥∥∥

[Hm
a (A(−d)) ⊗ Hn

b
(B(−e))]

Δ

f−−−−→ [Hm
a (A) ⊗ Hn

b
(B)]

Δ
.

The horizontal map above is surjective since its graded dual

[A(d − m) ⊗ B(e − n)]Δ f←−−−− [A(−m) ⊗ B(−n)]Δ∥∥∥ ∥∥∥
T (d − m,e − n)Δ

f←−−−− T (−m,−n)Δ

is injective. In particular, dim RΔ = m + n − 2.
It follows from the above discussion that RΔ is Cohen–Macaulay if and only if

H
q
m(T (−d,−e)Δ) = 0 for each q � m + n − 2. By Lemma 2.1, this is the case if and only

if, for each integer k, one has

A−d+gk ⊗ Hn
b (B)−e+hk

= 0 = Hm
a (A)−d+gk ⊗ B−e+hk.

Hence RΔ is Cohen–Macaulay if and only if there is no integer k satisfying

d/g � k � (e − n)/h or e/h � k � (d − m)/g,

which completes the proof of (1).
For (2), note that the graded canonical module of RΔ is the graded dual of Hm+n−2

m (RΔ),
and hence that it equals

coker
(
T (−m,−n)Δ

f−→ T (d − m,e − n)Δ
) = R(d − m,e − n)Δ.

This module is principal if and only if R(d − m,e − n)Δ = RΔ(a) for some integer a, i.e.,
d − m = ga and e − n = ha.

When f is a general polynomial of degree (d, e), the ring RΔ has an isolated singularity.
Also, RΔ is normal since it is a direct summand of the normal ring R. By Theorem 5.1, RΔ has
rational singularities precisely if it is Cohen–Macaulay and a(RΔ) < 0; this proves (3).

It remains to prove (4). If d < m and e < n, then Theorem 5.2 implies that R has rational
singularities. By Theorem 6.2, it follows that for almost all primes p, the characteristic p models
Rp of R are F-rational hypersurfaces which, therefore, are F-regular. Alternatively, Rp is a
generic hypersurface of degree (d, e) < (m,n), so Theorem 6.5 implies that Rp is F-regular.
Since (Rp)

Δ
is a direct summand of Rp , it follows that (Rp)

Δ
is F-regular. The rings (Rp)

Δ

are characteristic p models of RΔ, so we conclude that RΔ is of F-regular type.
Suppose RΔ has F-regular type, and let (Rp)

Δ
be a characteristic p model which is F-regular.

Fix an integer k > d/g. Then Proposition 6.3 implies that there exists an integer q = pe such that
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rankK

(
(Rp)

Δ

)
k
� rankK

[
Hm+n−2

m

(
ω(q)

)]
k
,

where ω is the graded canonical module of (Rp)
Δ

. Using (2), we see that

Hm+n−2
m

(
ω(q)

) = Hm+n−2
m

(
Rp(qd − qm,qe − qn)

Δ

)
.

Let Tp be a characteristic p model for T such that Tp/f Tp = Rp . Multiplication by f on Tp

induces a local cohomology exact sequence

· · · −→ Hm+n−2
mp

(
Tp(qd − qm,qe − qn)

Δ

) −→ Hm+n−2
mp

(
Rp(qd − qm,qe − qn)

Δ

)
−→ Hm+n−1

mp

(
Tp(qd − qm − d, qe − qn − e)

Δ

) −→ · · · .

Since Hm+n−2
mp

(Tp(qd − qm,qe − qn)
Δ
) vanishes by Lemma 2.1, we conclude that

rankK

(
(Rp)

Δ

)
k
� rankK

[
Hm+n−1

mp

(
Tp(qd − qm − d, qe − qn − e)

Δ

)]
k

= rankK Hm
ap

(Ap)
qd−qm−d+gk

⊗ Hn
bq

(Bp)
qe−qn−e+hk

.

Hence qd − qm − d + gk < 0; as d − gk < 0, we conclude d < m. Similarly, e < n. �
We conclude this section with an example where a local cohomology module of a standard

graded ring is not rigid in the sense that H 2
m(R)0 = 0 while H 2

m(R)1 	= 0. Further such examples
are constructed in Section 4.

Proposition 3.3. Let K be a field and let

R = K[x1, x2, x3, y1, y2]/(f )

where degxi = (1,0), degyj = (0,1), and degf = (d, e) for d � 4 and e � 1. Let g and h be
positive integers such that g � d − 3 and h � e, and set Δ = (g,h)Z. Then H 2

m(RΔ)0 = 0 and
H 2

m(RΔ)1 	= 0.

Proof. Using the resolution of R over the polynomial ring T as in the proof of Theorem 3.1, we
have an exact sequence

H 2
m(TΔ) −→ H 2

m(RΔ) −→ H 3
m

(
T (−d,−e)Δ

) −→ H 3
m(TΔ).

Lemma 2.1 implies that H 2
m(TΔ) = 0 = H 3

m(TΔ). Hence, again by Lemma 2.1,

H 2
m(RΔ)0 = H 3(A)−d ⊗ B−e = 0 and H 2

m(RΔ)1 = H 3(A)g−d ⊗ Bh−e 	= 0. �
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4. Non-rigid local cohomology modules

We construct examples of standard graded normal rings R over C, with only isolated singu-
larities, for which H 2

m(R)0 = 0 and H 2
m(R)1 	= 0. Let S be the localization of such a ring R at

its homogeneous maximal ideal. By results of Danilov [Da1,Da2], Theorem 4.1 below, it follows
that the divisor class group of S is finitely generated, though S does not have a discrete divisor
class group, i.e., the natural map Cl(S) −→ Cl(S[[t]]) is not bijective. Here, remember that if A

is a Noetherian normal domain, then so is A[[t]].

Theorem 4.1. Let R be a standard graded normal ring, which is finitely generated as an algebra
over R0 = C. Assume, moreover, that X = ProjR is smooth. Set (S,m) to be the local ring of R

at its homogeneous maximal ideal, and Ŝ to be the m-adic completion of S. Then

(1) the group Cl(S) is finitely generated if and only if H 1(X, OX) = 0;
(2) the map Cl(S) −→ Cl(Ŝ) is bijective if and only if H 1(X, OX(i)) = 0 for each integer i � 1;

and
(3) the map Cl(S) −→ Cl(S[[t]]) is bijective if and only if H 1(X, OX(i)) = 0 for each integer

i � 0.

The essential point in our construction is in the following theorem.

Theorem 4.2. Let A be a Cohen–Macaulay ring of dimension d � 2, which is a standard graded
algebra over a field K . For s � 2, let z1, . . . , zs be a regular sequence in A, consisting of homo-
geneous elements of equal degree, say k. Consider the Rees ring R = A[z1t, . . . , zs t] with the
Z2-grading where degx = (n,0) for x ∈ An, and deg zi t = (0,1).

Let Δ = (g,h)Z where g,h are positive integers, and let m denote the homogeneous maximal
ideal of RΔ. Then:

(1) H
q
m(RΔ) = 0 if q 	= d − s + 1, d ; and

(2) Hd−s+1
m (RΔ)i 	= 0 if and only if 1 � i � (a + ks − k)/g, where a is the a-invariant of A.

In particular, RΔ is Cohen–Macaulay if and only if g > a + ks − k.

Example 4.3. For d � 3, let A = C[x0, . . . , xd ]/(f ) be a standard graded hypersurface such that
ProjA is smooth over C. Take general k-forms z1, . . . , zd−1 ∈ A, and consider the Rees ring
R = A[z1t, . . . , zd−1t]. Since (z) ⊂ A is a radical ideal,

gr
(
(z),A

) ∼= A/(z)[y1, . . . , yd−1]
is a reduced ring, and therefore R = A[z1t, . . . , zd−1t] is integrally closed in A[t]. Since A is
normal, so is R. Note that Proj RΔ is the blow-up of ProjA at the subvariety defined by (z), i.e.,
at kd−1(degf ) points. It follows that Proj RΔ is smooth over C. Hence RΔ is a standard graded
C-algebra, which is normal and has an isolated singularity.

If Δ = (g,h)Z is a diagonal with 1 � g � degf + k(d − 2) − (d + 1) and h � 1, then
Theorem 4.2 implies that

H 2
m(RΔ)0 = 0 and H 2

m(RΔ)1 	= 0.
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The rest of this section is devoted to proving Theorem 4.2. We may assume that the base field
K is infinite. Then one can find linear forms x1, . . . , xd−s in A such that x1, . . . , xd−s , z1, . . . , zs

is a maximal A-regular sequence.
We will use the following lemma; the notation is as in Theorem 4.2.

Lemma 4.4. Let a be the homogeneous maximal ideal of A. Set I = (z1, . . . , zs)A. Let r be a
positive integer.

(1) H
q
a (I r ) = 0 if q 	= d − s + 1, d .

(2) Assume d > s. Then, Hd−s+1
a (I r )i 	= 0 if and only if i � a + ks + rk − k.

(3) Assume d = s. Then, Hd−s+1
a (I r )i 	= 0 if and only if 0 � i � a + ks + rk − k.

Proof. Recall that A and A/Ir are Cohen–Macaulay rings of dimension d and d − s, respec-
tively. By the exact sequence

0 −→ I r −→ A −→ A/Ir −→ 0

we obtain

H
q
a

(
I r

) =
⎧⎨
⎩

Hd
a (A) if q = d,

Hd−s
a (A/I r) if q = d − s + 1,

0 if q 	= d − s + 1, d,

which proves (1).
Next we prove (2) and (3). Since A/Ir is a standard graded Cohen–Macaulay ring of dimen-

sion d − s, it is enough to show that the a-invariant of this ring equals a + ks + rk − k. This is
straightforward if r = 1, and we proceed by induction. Consider the exact sequence

0 −→ I r/I r+1 −→ A/Ir+1 −→ A/Ir −→ 0.

Since z1, . . . , zs is a regular sequence of k-forms, I r/I r+1 is isomorphic to

(
(A/I)(−rk)

)(s−1+r
r )

.

Thus, we have the following exact sequence:

0 −→ Hd−s
a

(
(A/I)(−rk)

)(s−1+r
r ) −→ Hd−s

a

(
A/Ir+1) −→ Hd−s

a

(
A/Ir

) −→ 0.

The a-invariant of (A/I)(−rk) equals a + ks + rk, and that of A/Ir is a + ks + rk − k by the
inductive hypothesis. Thus, A/Ir+1 has a-invariant a + ks + rk. �
Proof of Theorem 4.2. Let B = K[y1, . . . , ys] be a polynomial ring, and set

T = A ⊗K B = A[y1, . . . , ys].
Consider the Z2-grading on T where degx = (n,0) for x ∈ An, and degyi = (0,1) for each i.
One has a surjective homomorphism of graded rings
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T −→ R = A[z1t, . . . , zs t] where yi �−→ zi t,

and this induces an isomorphism

R ∼= T/I2

(
z1 . . . zs

y1 . . . ys

)
.

The minimal free resolution of R over T is given by the Eagon–Northcott complex

0 −→ F−(s−1) −→ F−(s−2) −→ · · · −→ F 0 −→ 0,

where F 0 = T (0,0), and F−i for 1 � i � s − 1 is the direct sum of
(

s
i+1

)
copies of

T (−k,−i) ⊕ T
(−2k,−(i − 1)

) ⊕ · · · ⊕ T (−ik,−1).

Let n be the homogeneous maximal ideal of TΔ. One has the spectral sequence:

E
p,q

2 = Hp
(
H

q
n

(
F •

Δ

)) �⇒ H
p+q
m (RΔ).

Let G be the set of (n,m) such that T (n,m) appears in the Eagon–Northcott complex above,
i.e., the elements of G are

(0,0),

(−k,−1),

(−k,−2), (−2k,−1),

(−k,−3), (−2k,−2), (−3k,−1),

...(−k,−(s − 1)
)
, . . . ,

(−(s − 1)k,−1
)
.

Let a and b be the homogeneous maximal ideal of A and B , respectively. For integers n and m,
the Künneth formula gives

H
q
n

(
T (n,m)

)
= H

q
n

(
A(n) ⊗K B(m)

)
= (

H
q
a

(
A(n)

) ⊗ B(m)
) ⊕ (

A(n) ⊗ H
q

b

(
B(m)

)) ⊕
⊕

i+j=q+1

Hi
a

(
A(n)

) ⊗ H
j

b

(
B(m)

)

= H
q
a

(
T (n,m)

) ⊕ H
q

b

(
T (n,m)

) ⊕
⊕

i+j=q+1

Hi
a

(
A(n)

) ⊗K H
j

b

(
B(m)

)
.

As A and B are Cohen–Macaulay of dimension d and s respectively, it follows that

H
q
n

(
F •) = 0 if q 	= s, d, d + s − 1.
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In the case where d > s, one has

Hs
n

(
F •) = Hs

b

(
F •) and Hd

n

(
F •) = Hd

a

(
F •),

and if d = s, then

Hd
n

(
F •) = Hd

a

(
F •) ⊕ Hs

b

(
F •).

We claim Hs
b
(F •)

Δ
= 0. If not, there exists (n,m) ∈ G and � ∈ Z such that

Hs
b

(
T (n,m)

)
(g�,h�)

	= 0.

This implies that

Hs
b

(
T (n,m)

)
(g�,h�)

= A(n)g� ⊗K Hs
b

(
B(m)

)
h�

= An+g� ⊗K Hs
b(B)

m+h�

is nonzero, so

n + g� � 0 and m + h� � −s,

and hence

−n

g
� � � − s + m

h
.

But (n,m) ∈ G, so n � 0 and m � −(s − 1), implying that

0 � � � − 1

h
,

which is not possible. This proves that Hs
b
(F •)

Δ
= 0. Thus, we have

H
q
n

(
F •)

Δ
=

{
0 if q 	= d, d + s − 1,

Hd
a (F •)Δ if q = d.

It follows that

E
p,q

2 = Hp
(
H

q
n

(
F •

Δ

)) = E
p,q∞

for each p and q . Therefore,

Hi
m(RΔ) = E

i−d,d
2 = Hi−d

(
Hd

n

(
F •

Δ

)) = Hi−d
(
Hd

a

(
F •)

Δ

) = Hi
a(R)Δ

for d − s + 1 � i � d − 1, and

Hi
m(RΔ) = 0 for i < d − s + 1.
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We next study Hi
a(R). Since

R = A ⊕ I (k) ⊕ I 2(2k) ⊕ · · · ⊕ I r (rk) ⊕ · · · ,

we have

Hi
a(R) = Hi

a(A) ⊕ Hi
a(I )(k) ⊕ Hi

a

(
I 2)(2k) ⊕ · · · ⊕ Hi

a

(
I r

)
(rk) ⊕ · · · .

Theorem 4.2 (1) now follow using Lemma 4.4 (1).
Assume that d > s. Then, by Lemma 4.4 (2), Hd−s+1

a (I r (rk))i 	= 0 if and only if
i � a + ks − k.

Assume that d = s. Then, by Lemma 4.4 (3), Hd−s+1
a (I r (rk))i 	= 0 if and only if −rk � i �

a + ks − k.
In each case, Hd−s+1

a (R)(gi,hi) 	= 0 if and only if

1 � i � a + ks − k

g
. �

5. Rational singularities

Let R be a normal domain, essentially of finite type over a field of characteristic zero, and
consider a desingularization f : Z −→ SpecR, i.e., a proper birational morphism with Z a non-
singular variety. One says R has rational singularities if Rif∗OZ = 0 for each i � 1; this does
not depend on the choice of the desingularization f . For N-graded rings, one has the following
criterion due to Flenner [Fl] and Watanabe [Wa1].

Theorem 5.1. Let R be a normal N-graded ring which is finitely generated over a field R0
of characteristic zero. Then R has rational singularities if and only if it is Cohen–Macaulay,
a(R) < 0, and the localization Rp has rational singularities for each p ∈ SpecR \ {R+}.

When R has an isolated singularity, the above theorem gives an effective criterion for deter-
mining if R has rational singularities. However, a multigraded hypersurface typically does not
have an isolated singularity, and the following variation turns out to be useful.

Theorem 5.2. Let R be a normal Nr -graded ring such that R0 is a local ring essentially of finite
type over a field of characteristic zero, and R is generated over R0 by elements

x11, x12, . . . , x1t1, x21, x22, . . . , x2t2, . . . , xr1, xr2, . . . , xrtr ,

where degxij is a positive integer multiple of the ith unit vector ei ∈ Nr . Then R has rational
singularities if and only if

(1) R is Cohen–Macaulay,
(2) Rp has rational singularities for each p belonging to

SpecR \ (
V (x11, x12, . . . , x1t1) ∪ · · · ∪ V (xr1, xr2, . . . , xrtr )

)
, and
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(3) a(R) < 0, i.e., a(Rϕi ) < 0 for each coordinate projection ϕi : Nr −→ N.

Before proceeding with the proof, we record some preliminary results.

Remark 5.3. Let R be an N-graded ring. We use R� to denote the Rees algebra with respect to
the filtration Fn = R�n, i.e.,

R� = F0 ⊕ F1T ⊕ F2T
2 ⊕ · · · .

When considering ProjR�, we use the N-grading on R� where [R�]n = FnT
n. The inclusion

R = [R�]0 ↪→ R� gives a map

ProjR� f−→ SpecR.

Also, the inclusions Rn ↪→ Fn give rise to an injective homomorphism of graded rings R ↪→ R�,
which induces a surjection

ProjR� π−→ ProjR.

Lemma 5.4. Let R be an N-graded ring which is finitely generated over R0, and assume that R0
is essentially of finite type over a field of characteristic zero.

If Rp has rational singularities for all primes p ∈ SpecR \ V (R+), then ProjR� has rational
singularities.

Proof. Note that ProjR� is covered by affine open sets D+(rT n) for integers n � 1 and homoge-
neous elements r ∈ R�n. Consequently, it suffices to check that [R�

rT n]0 has rational singularities.
Next, note that

[
R

�
rT n

]
0 = R + 1

r
[R]�n + 1

r2
[R]�2n + · · · .

In the case deg r > n, the ring above is simply Rr , which has rational singularities by the hypoth-
esis of the lemma. If deg r = n, then

[
R

�
rT n

]
0 = [Rr ]�0.

The Z-graded ring Rr has rational singularities and so, by [Wa1, Lemma 2.5], the ring [Rr ]�0
has rational singularities as well. �
Lemma 5.5. (See [Hy2, Lemma 2.3].) Let R be an N-graded ring which is finitely generated over
a local ring (R0,m). Suppose [Hi

m+R+(R)]�0
= 0 for all i � 0. Then, for all ideals a of R0, one

has

[
Hi

a+R+(R)
]
�0 = 0 for all i � 0.

We are now in a position to prove the following theorem, which is a variation of [Fl, Satz 3.1],
[Wa1, Theorem 2.2], and [Hy1, Theorem 1.5].
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Theorem 5.6. Let R be an N-graded normal ring which is finitely generated over R0, and assume
that R0 is a local ring essentially of finite type over a field of characteristic zero. Then R has
rational singularities if and only if

(1) R is Cohen–Macaulay,
(2) Rp has rational singularities for all p ∈ SpecR \ V (R+), and
(3) a(R) < 0.

Proof. It is straightforward to see that conditions (1)–(3) hold when R has rational singularities,
and we focus on the converse. Consider the morphism

Y = ProjR� f−→ SpecR

as in Remark 5.3. Let g : Z −→ Y be a desingularization of Y ; the composition

Z
g−→ Y

f−→ SpecR

is then a desingularization of SpecR. Note that Y = ProjR� has rational singularities by
Lemma 5.4, so

g∗OZ = OY and Rqg∗OZ = 0 for all q � 1.

Consequently the Leray spectral sequence

E
p,q

2 = Hp
(
Y,Rqg∗OZ

) �⇒ Hp+q(Z, OZ)

degenerates, and we get Hp(Z, OZ) = Hp(Y, OY ) for all p � 1. Since SpecR is affine, we also
have Rp(g ◦ f )∗OZ = Hp(Z, OZ). To prove that R has rational singularities, it now suffices to
show that Hp(Y, OY ) = 0 for all p � 1. Consider the map π : Y −→ X = ProjR. We have

Hp(Y, OY ) = Hp(X,π∗OX) =
⊕
n�0

Hp
(
X, OX(n)

) = [
H

p+1
R+ (R)

]
�0

.

By condition (1), we have [Hp
m+R+(R)]�0

= 0 for all p � 0, and so Lemma 5.5 implies that

[Hp
R+(R)]�0

= 0 for all p � 0 as desired. �
Proof of theorem 5.2. If R has rational singularities, it is easily seen that conditions (1)–(3)
must hold. For the converse, we proceed by induction on r . The case r = 1 is Theorem 5.6
established above, so assume r � 2. It suffices to show that RM has rational singularities where
M is the homogeneous maximal ideal of R. Set

m = M ∩ [
Rϕr

]
0,

and consider the N-graded ring S obtained by inverting the multiplicative set [Rϕr ]0 \ m in Rϕr .
Since RM is a localization of S, it suffices to show that S has rational singularities. Note that
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a(S) = a(Rϕr ), which is a negative integer by (1). Using Theorem 5.6, it is therefore enough
to show that RP has rational singularities for all P ∈ SpecR \ V (xr1, xr2, . . . , xrtr ). Fix such a
prime P, and let

ψ : Zr −→ Zr−1

be the projection to the first r − 1 coordinates. Note that Rψ is the ring R regraded such that
degxrj = 0, and the degrees of xij for i < r are unchanged. Set

p = P ∩ [
Rψ

]
0,

and let T be the ring obtained by inverting the multiplicative set [Rψ ]0 \ p in Rψ . It suffices to
show that T has rational singularities. Note that T is an Nr−1-graded ring defined over a local
ring (T0,p), and that it has homogeneous maximal ideal p + bT where

b = (
Rψ

)
+ = (xij | i < r)R.

Using the inductive hypothesis, it remains to verify that a(T ) < 0. By condition (1), for all
integers 1 � j � r − 1, we have

[
Hi

M(R)ϕj
]
�0 = 0 for all i � 0,

and using Lemma 5.5 it follows that

[
Hi

p+b(R)ϕj
]
�0

= 0 for all i � 0.

Consequently a(T ϕj ) < 0 for 1 � j � r − 1, which completes the proof. �
6. F-regularity

For the theory of tight closure, we refer to the papers [HH1,HH2] and [HH3]. We summarize
results about F-rational and F-regular rings:

Theorem 6.1. The following hold for rings of prime characteristic.

(1) Regular rings are F-regular.
(2) Direct summands of F-regular rings are F-regular.
(3) F-rational rings are normal; an F-rational ring which is a homomorphic image of a Cohen–

Macaulay ring is Cohen–Macaulay.
(4) F-rational Gorenstein rings are F-regular.
(5) Let R be an N-graded ring which is finitely generated over a field R0. If R is weakly F-

regular, then it is F-regular.

Proof. For (1) and (2) see [HH1, Theorem 4.6] and [HH1, Proposition 4.12] respectively; (3)
is part of [HH2, Theorem 4.2], and for (4) see [HH2, Corollary 4.7], Lastly, (5) is [LS, Corol-
lary 4.4]. �
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The characteristic zero aspects of tight closure are developed in [HH4]. Let K be a field of
characteristic zero. A finitely generated K-algebra R = K[x1, . . . , xm]/a is of F-regular type if
there exists a finitely generated Z-algebra A ⊆ K , and a finitely generated free A-algebra

RA = A[x1, . . . , xm]/aA,

such that R ∼= RA ⊗A K and, for all maximal ideals μ in a Zariski dense subset of SpecA, the
fiber rings RA ⊗A A/μ are F-regular rings of characteristic p > 0. Similarly, R is of F-rational
type if for a dense subset of μ, the fiber rings RA ⊗A A/μ are F-rational. Combining results from
[Ha,HW,MS,Sm] one has:

Theorem 6.2. Let R be a ring which is finitely generated over a field of characteristic zero. Then
R has rational singularities if and only if it is of F-rational type. If R is Q-Gorenstein, then it
has log terminal singularities if and only if it is of F-regular type.

Proposition 6.3. Let K be a field of characteristic p > 0, and R an N-graded normal ring which
is finitely generated over R0 = K . Let ω denote the graded canonical module of R, and set
d = dimR.

Suppose R is F-regular. Then, for each integer k, there exists q = pe such that

rankK Rk � rankK

[
Hd

m

(
ω(q)

)]
k
.

Proof. If d � 1, then R is regular and the assertion is elementary. Assume d � 2. Let ξ ∈
[Hd

m(ω)]0 be an element which generates the socle of Hd
m(ω). Since the map ω[q] −→ ω(q)

is an isomorphism in codimension one, Fe(ξ) may be viewed as an element of Hd
m(ω(q)) as

in [Wa2].
Fix an integer k. For each e ∈ N, set Ve to be the kernel of the vector space homomorphism

Rk −→ [
Hd

m

(
ω(pe)

)]
k
, where c �−→ cF e(ξ). (6.3.1)

If cF e+1(ξ) = 0, then F(cF e(ξ)) = cpF e+1(ξ) = 0; since R is F-pure, it follows that
cF e(ξ) = 0. Consequently the vector spaces Ve form a descending sequence

V1 ⊇ V2 ⊇ V3 ⊇ · · · .

The hypothesis that R is F-regular implies
⋂

e Ve = 0. Since each Ve has finite rank, Ve = 0 for
e � 0. Hence the homomorphism (6.3.1) is injective for e � 0. �

We next record tight closure properties of general N-graded hypersurfaces. The results for
F-purity are essentially worked out in [HR].

Theorem 6.4. Let A = K[x1, . . . , xm] be a polynomial ring over a field K of positive character-
istic. Let d be a nonnegative integer, and set M = (

d+m−1
d

) − 1. Consider the affine space AM
K

parameterizing the degree d forms in A in which xd
1 occurs with coefficient 1.

Let U be the subset of AM
K corresponding to the forms f for which A/f A F-pure. Then U is

a Zariski open set, and it is nonempty if and only if d � m.
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Let V be the set corresponding to forms f for which A/f A is F-regular. Then V contains a
nonempty Zariski open set if d < m, and is empty otherwise.

Proof. The set U is Zariski open by [HR, p. 156] and it is empty if d > m by [HR, Propo-
sition 5.18]. If d � m, the square-free monomial x1 · · ·xd defines an F-pure hypersurface
A/(x1 · · ·xd). A linear change of variables yields the polynomial

f = x1(x1 + x2) · · · (x1 + xd)

in which xd
1 occurs with coefficient 1. Hence U is nonempty for d � m.

If d � m, then A/f A has a-invariant d − m � 0 so A/f A is not F-regular. Suppose d < m.
Consider the set W ⊆ AM

K parameterizing the forms f for which A/f A is F-pure and (A/f A)x1

is regular; W is a nonempty open subset of AM
K . Let f correspond to a point of W . The element

x1 ∈ A/f A has a power which is a test element; since A/f A is F-pure, it follows that x1 is a test
element. Note that x2, . . . , xm is a homogeneous system of parameters for A/f A and that xd−1

1
generates the socle modulo (x2, . . . , xm). Hence the ring A/f A is F-regular if and only if there
exists a power q of the prime characteristic p such that

x
(d−1)q+1
1 /∈ (

x
q

2 , . . . , x
q
m,f

)
A.

The set of such f corresponds to an open subset of W ; it remains to verify that this subset is
nonempty. For this, consider

f = xd
1 + x2 · · ·xd+1,

which corresponds to a point of W , and note that A/f A is F-regular since

x
(d−1)p+1
1 /∈ (

x
p

2 , . . . , x
p
m,f

)
A. �

These ideas carry over to multi-graded hypersurfaces; we restrict below to the bigraded case.
The set of forms in K[x1, . . . , xm, y1, . . . , yn] of degree (d, e) in which xd

1 ye
1 occurs with coeffi-

cient 1 is parametrized by the affine space AN
K where N = (

d+m−1
d

)(
e+n−1

e

) − 1.

Theorem 6.5. Let B = K[x1, . . . , xm, y1, . . . , yn] be a polynomial ring over a field K of positive
characteristic. Consider the N2-grading on B with degxi = (1,0) and degyj = (0,1). Let d, e

be nonnegative integers, and consider the affine space AN
K parameterizing forms of degree (d, e)

in which xd
1 ye

1 occurs with coefficient 1.
Let U be the subset of AN

K corresponding to forms f for which B/f B is F-pure. Then U is a
Zariski open set, and it is nonempty if and only if d � m and e � n.

Let V be the set corresponding to forms f for which B/f B is F-regular. Then V contains a
nonempty Zariski open set if d < m and e < n, and is empty otherwise.

Proof. The argument for F-purity is similar to the proof of Theorem 6.4; if d � m and e � n,
then the polynomial x1 · · ·xdy1 · · ·ye defines an F-pure hypersurface.

If B/f B is F-regular, then a(B/f B) < 0 implies d < m and e < n. Conversely, if d < m and
e < n, then there is a nonempty open set W corresponding to forms f for which the hypersurface
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B/f B is F-pure and (B/f B)x1y1 is regular. In this case, x1y1 ∈ B/f B is a test element. The
socle modulo the parameter ideal (x1 −y1, x2, . . . , xm, y2, . . . , yn)B/f B is generated by xd+e−1

1 ,
so B/f B is F-regular if and only if there exists a power q = pe such that

x
(d+e−1)q+1
1 /∈ (

x
q

1 − y
q

1 , x
q

2 , . . . , x
q
m, y

q

2 , . . . , y
q
n , f

)
B.

The subset of W corresponding to such f is open; it remains to verify that it is nonempty. For
this, use f = xd

1 ye
1 + x2 · · ·xd+1y2 · · ·ye+1. �
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