Multigraded rings, diagonal subalgebras, and rational singularities

Kazuhiko Kurano ${ }^{\text {a }}$, Ei-ichi Sato ${ }^{\text {b }}$, Anurag K. Singh ${ }^{\text {c, }, ~}{ }^{\text {, }}$, Kei-ichi Watanabe ${ }^{\text {d }}$

${ }^{\text {a }}$ Department of Mathematics, Meiji University, Higashimita 1-1-1, Tama-ku, Kawasaki-shi 214-8571, Japan
b Department of Mathematics, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka-city 812-8581, Japan
${ }^{\text {c }}$ Department of Mathematics, University of Utah, 155 South 1400 East, Salt Lake City, UT 84112, USA
${ }^{\text {d }}$ Department of Mathematics, Nihon University, Sakura-Josui 3-25-40, Setagaya, Tokyo 156-8550, Japan

Received 27 March 2008
Available online 6 December 2008
Communicated by Luchezar L. Avramov
To Paul Roberts

Abstract

We study F-rationality and F-regularity in diagonal subalgebras of multigraded rings, and use this to construct large families of rings that are F-rational but not F-regular. We also use diagonal subalgebras to construct rings with divisor class groups that are finitely generated but not discrete in the sense of Danilov. © 2008 Elsevier Inc. All rights reserved.

Keywords: Tight closure; Singularities; Diagonal subalgebras

1. Introduction

We study the properties of F-rationality and F-regularity in multigraded rings and their diagonal subalgebras. The main focus is on diagonal subalgebras of bigraded rings: these constitute an interesting class of rings since they arise naturally as homogeneous coordinate rings of blow-ups of projective varieties.

[^0]Let X be a projective variety over a field K, with homogeneous coordinate ring A. Let $\mathfrak{a} \subset A$ be a homogeneous ideal, and $V \subset X$ the closed subvariety defined by \mathfrak{a}. For g an integer, we use \mathfrak{a}_{g} to denote the K-vector space consisting of homogeneous elements of \mathfrak{a} of degree g. If $g \gg 0$, then \mathfrak{a}_{g} defines a very ample complete linear system on the blow-up of X along V, and hence $K\left[\mathfrak{a}_{g}\right]$ is a homogeneous coordinate ring for this blow-up. Since the ideals \mathfrak{a}^{h} define the same subvariety V, the rings $K\left[\left(\mathfrak{a}^{h}\right)_{g}\right]$ are homogeneous coordinate ring for the blow-up provided $g \ggg 0$.

Suppose that A is a standard \mathbb{N}-graded K-algebra, and consider the \mathbb{N}^{2}-grading on the Rees algebra $A[\mathfrak{a} t]$, where $\operatorname{deg} r t^{j}=(i, j)$ for $r \in A_{i}$. The connection with diagonal subalgebras stems from the fact that if \mathfrak{a}^{h} is generated by elements of degree less than or equal to g, then

$$
K\left[\left(\mathfrak{a}^{h}\right)_{g}\right] \cong \bigoplus_{k \geqslant 0} A[\mathfrak{a} t]_{(g k, h k)}
$$

Using $\Delta=(g, h) \mathbb{Z}$ to denote the (g, h)-diagonal in \mathbb{Z}^{2}, the diagonal subalgebra $A[\mathfrak{a t}]_{\Delta}=$ $\bigoplus_{k} A[\mathfrak{a t}]_{(g k, h k)}$ is a homogeneous coordinate ring for the blow-up of $\operatorname{Proj} A$ along the subvariety defined by \mathfrak{a}, whenever $g \gg h>0$.

The papers [GG,GGH,GGP,Tr] use diagonal subalgebras in studying blow-ups of projective space at finite sets of points. For A a polynomial ring and \mathfrak{a} a homogeneous ideal, the ring theoretic properties of $K\left[\mathfrak{a}_{g}\right]$ are studied by Simis, Trung, and Valla in [STV] by realizing K [\mathfrak{a}_{g}] as a diagonal subalgebra of the Rees algebra $A[\mathfrak{a} t]$. In particular, they determine when $K\left[\mathfrak{a}_{g}\right]$ is Cohen-Macaulay for \mathfrak{a} a complete intersection ideal generated by forms of equal degree, and also for \mathfrak{a} the ideal of maximal minors of a generic matrix. Some of their results are extended by Conca, Herzog, Trung, and Valla as in the following theorem.

Theorem 1.1. (See [CHTV, Theorem 4.6].) Let $K\left[x_{1}, \ldots, x_{m}\right]$ be a polynomial ring over a field, and let \mathfrak{a} be a complete intersection ideal minimally generated by forms of degrees d_{1}, \ldots, d_{r}. Fix positive integers g and h with $g / h>d=\max \left\{d_{1}, \ldots, d_{r}\right\}$.

Then $K\left[\left(\mathfrak{a}^{h}\right)_{g}\right]$ is Cohen-Macaulay if and only if $g>(h-1) d-m+\sum_{j=1}^{r} d_{j}$.
When A is a polynomial ring and \mathfrak{a} an ideal for which $A[\mathfrak{a} t]$ is Cohen-Macaulay, Lavila-Vidal [Lv1, Theorem 4.5] proved that the diagonal subalgebras $K\left[\left(\mathfrak{a}^{h}\right)_{g}\right]$ are Cohen-Macaulay for $g \gg h \gg 0$, thereby settling a conjecture from [CHTV]. In [CH] Cutkosky and Herzog obtain affirmative answers regarding the existence of a constant c such that $K\left[\left(\mathfrak{a}^{h}\right)_{g}\right]$ is Cohen-Macaulay whenever $g \geqslant c h$. For more work on the Cohen-Macaulay and Gorenstein properties of diagonal subalgebras, see [HHR,Hy2,Lv2] and [LvZ].

As a motivating example for some of the results of this paper, consider a polynomial ring $A=K\left[x_{1}, \ldots, x_{m}\right]$ and an ideal $\mathfrak{a}=\left(z_{1}, z_{2}\right)$ generated by relatively prime forms z_{1} and z_{2} of degree d. Setting $\Delta=(d+1,1) \mathbb{Z}$, the diagonal subalgebra $A[\mathfrak{a} t]_{\Delta}$ is a homogeneous coordinate ring for the blow-up of $\operatorname{Proj} A=\mathbb{P}^{m-1}$ along the subvariety defined by \mathfrak{a}. The Rees algebra $A[\mathfrak{a} t]$ has a presentation

$$
\mathcal{R}=K\left[x_{1}, \ldots, x_{m}, y_{1}, y_{2}\right] /\left(y_{2} z_{1}-y_{1} z_{2}\right),
$$

where $\operatorname{deg} x_{i}=(1,0)$ and $\operatorname{deg} y_{j}=(d, 1)$, and consequently \mathcal{R}_{Δ} is the subalgebra of \mathcal{R} generated by the elements $x_{i} y_{j}$. When K has characteristic zero and z_{1} and z_{2} are general forms of degree d, the results of Section 3 imply that \mathcal{R}_{Δ} has rational singularities if and only if $d \leqslant m$,
and that it is of F-regular type if and only if $d<m$. As a consequence, we obtain large families of rings of the form \mathcal{R}_{Δ}, standard graded over a field, which have rational singularities, but which are not of F-regular type.

It is worth pointing out that if \mathcal{R} is an \mathbb{N}^{2}-graded ring over an infinite field $\mathcal{R}_{(0,0)}=K$, and $\Delta=(g, h) \mathbb{Z}$ for coprime positive integers g and h, then \mathcal{R}_{Δ} is the ring of invariants of the torus K^{*} acting on \mathcal{R} via

$$
\lambda: r \longmapsto \lambda^{h i-g j} r \quad \text { where } \lambda \in K^{*} \text { and } r \in \mathcal{R}_{(i, j)} .
$$

Consequently there exist torus actions on hypersurfaces for which the rings of invariants have rational singularities but are not of F-regular type.

In Section 4 we use diagonal subalgebras to construct standard graded normal rings R, with isolated singularities, for which $H_{\mathfrak{m}}^{2}(R)_{0}=0$ and $H_{\mathfrak{m}}^{2}(R)_{1} \neq 0$. If S is the localization of such a ring R at its homogeneous maximal ideal, then, by Danilov's results, the divisor class group of S is a finitely generated abelian group, though S does not have a discrete divisor class group. Such rings R are also of interest in view of the results of [RSS], where it is proved that the image of $H_{\mathfrak{m}}^{2}(R)_{0}$ in $H_{\mathfrak{m}}^{2}\left(R^{+}\right)$is annihilated by elements of R^{+}of arbitrarily small positive degree; here R^{+}denotes the absolute integral closure of R. A corresponding result for $H_{\mathfrak{m}}^{2}(R)_{1}$ is not known at this point, and the rings constructed in Section 4 constitute interesting test cases.

Section 2 summarizes some notation and conventions for multigraded rings and modules. In Section 3 we carry out an analysis of diagonal subalgebras of bigraded hypersurfaces; this uses results on rational singularities and F-regular rings proved in Sections 5 and 6, respectively.

2. Preliminaries

In this section, we provide a brief treatment of multigraded rings and modules; see [GW1, GW2,HHR], and [HIO] for further details.

By an \mathbb{N}^{r}-graded ring we mean a ring

$$
\mathcal{R}=\bigoplus_{n \in \mathbb{N}^{r}} \mathcal{R}_{n}
$$

which is finitely generated over the subring $\mathcal{R}_{\mathbf{0}}$. If $\left(\mathcal{R}_{\mathbf{0}}, \mathfrak{m}\right)$ is a local ring, then \mathcal{R} has a unique homogeneous maximal ideal $\mathfrak{M}=\mathfrak{m} \mathcal{R}+\mathcal{R}_{+}$, where $\mathcal{R}_{+}=\bigoplus_{\boldsymbol{n} \neq \boldsymbol{0}} \mathcal{R}_{\boldsymbol{n}}$.

For $\boldsymbol{m}=\left(m_{1}, \ldots, m_{r}\right)$ and $\boldsymbol{n}=\left(n_{1}, \ldots, n_{r}\right)$ in \mathbb{Z}^{r}, we say $\boldsymbol{n}>\boldsymbol{m}$ (resp. $\left.\boldsymbol{n} \geqslant \boldsymbol{m}\right)$ if $n_{i}>m_{i}$ (resp. $n_{i} \geqslant m_{i}$) for each i.

Let M be a \mathbb{Z}^{r}-graded \mathcal{R}-module. For $\boldsymbol{m} \in \mathbb{Z}^{r}$, we set

$$
M_{\geqslant m}=\bigoplus_{n \geqslant m} M_{\boldsymbol{n}}
$$

which is a \mathbb{Z}^{r}-graded submodule of M. One writes $M(\boldsymbol{m})$ for the \mathbb{Z}^{r}-graded \mathcal{R}-module with shifted grading $[M(\boldsymbol{m})]_{\boldsymbol{n}}=M_{\boldsymbol{m}+\boldsymbol{n}}$ for each $\boldsymbol{n} \in \mathbb{Z}^{r}$.

Let M and N be \mathbb{Z}^{r}-graded \mathcal{R}-modules. Then $\underline{\operatorname{Hom}_{\mathcal{R}}}(M, N)$ is the \mathbb{Z}^{r}-graded module with $\left[\underline{\operatorname{Hom}}_{\mathcal{R}}(M, N)\right]_{n}$ being the abelian group consisting of degree preserving \mathcal{R}-linear homomorphisms from M to $N(\boldsymbol{n})$.

The functor $\underline{\operatorname{Ext}}_{\mathcal{R}}^{i}(M,-)$ is the i th derived functor of $\underline{\operatorname{Hom}_{\mathcal{R}}}(M,-)$ in the category of \mathbb{Z}^{r} graded \mathcal{R}-modules. When M is finitely generated, $\operatorname{Ext}_{\mathcal{R}}^{i}(M, N)$ and $\operatorname{Ext}_{\mathcal{R}}^{i}(M, N)$ agree as underlying \mathcal{R}-modules. For a homogeneous ideal \mathfrak{a} of \mathcal{R}, the local cohomology modules of M with support in \mathfrak{a} are the \mathbb{Z}^{r}-graded modules

$$
H_{\mathfrak{a}}^{i}(M)=\underset{n}{\lim } \underline{\operatorname{Ext}}_{\mathcal{R}}^{i}\left(\mathcal{R} / \mathfrak{a}^{n}, M\right)
$$

Let $\varphi: \mathbb{Z}^{r} \longrightarrow \mathbb{Z}^{s}$ be a homomorphism of abelian groups satisfying $\varphi\left(\mathbb{N}^{r}\right) \subseteq \mathbb{N}^{s}$. We write \mathcal{R}^{φ} for the ring \mathcal{R} with the \mathbb{N}^{s}-grading where

$$
\left[\mathcal{R}^{\varphi}\right]_{\boldsymbol{n}}=\bigoplus_{\varphi(\boldsymbol{m})=\boldsymbol{n}} \mathcal{R}_{\boldsymbol{m}}
$$

If M is a \mathbb{Z}^{r}-graded \mathcal{R}-module, then M^{φ} is the \mathbb{Z}^{s}-graded \mathcal{R}^{φ}-module with

$$
\left[M^{\varphi}\right]_{\boldsymbol{n}}=\bigoplus_{\varphi(\boldsymbol{m})=\boldsymbol{n}} M_{\boldsymbol{m}}
$$

The change of grading functor $(-)^{\varphi}$ is exact; by [HHR, Lemma 1.1] one has

$$
H_{\mathfrak{M}}^{i}(M)^{\varphi}=H_{\mathfrak{M} \varphi}^{i}\left(M^{\varphi}\right)
$$

Consider the projections $\varphi_{i}: \mathbb{Z}^{r} \longrightarrow \mathbb{Z}$ with $\varphi_{i}\left(m_{1}, \ldots, m_{r}\right)=m_{i}$, and set

$$
a\left(\mathcal{R}^{\varphi_{i}}\right)=\max \left\{a \in \mathbb{Z} \mid\left[H_{\mathfrak{M}}^{\operatorname{dim} \mathcal{R}}(\mathcal{R})^{\varphi_{i}}\right]_{a} \neq 0\right\}
$$

this is the a-invariant of the \mathbb{N}-graded ring $\mathcal{R}^{\varphi_{i}}$ in the sense of Goto and Watanabe [GW1]. As in [HHR], the multigraded \boldsymbol{a}-invariant of \mathcal{R} is

$$
\boldsymbol{a}(\mathcal{R})=\left(a\left(\mathcal{R}^{\varphi_{1}}\right), \ldots, a\left(\mathcal{R}^{\varphi_{r}}\right)\right)
$$

Let \mathcal{R} be a \mathbb{Z}^{2}-graded ring and let g, h be positive integers. The subgroup $\Delta=(g, h) \mathbb{Z}$ is a diagonal in \mathbb{Z}^{2}, and the corresponding diagonal subalgebra of \mathcal{R} is

$$
\mathcal{R}_{\Delta}=\bigoplus_{k \in \mathbb{Z}} \mathcal{R}_{(g k, h k)}
$$

Similarly, if M is a \mathbb{Z}^{2}-graded \mathcal{R}-module, we set

$$
M_{\Delta}=\bigoplus_{k \in \mathbb{Z}} M_{(g k, h k)}
$$

which is a \mathbb{Z}-graded module over the \mathbb{Z}-graded ring \mathcal{R}_{Δ}.

Lemma 2.1. Let A and B be \mathbb{N}-graded normal rings, finitely generated over a field $A_{0}=K=$ B_{0}. Set $T=A \otimes_{K} B$. Let g and h be positive integers and set $\Delta=(g, h) \mathbb{Z}$. Let $\mathfrak{a}, \mathfrak{b}$, and \mathfrak{m} denote the homogeneous maximal ideals of A, B, and T_{Δ} respectively. Then, for each $q \geqslant 0$ and $i, j, k \in \mathbb{Z}$, one has

$$
\begin{aligned}
H_{\mathfrak{m}}^{q}\left(T(i, j)_{\Delta}\right)_{k}= & \left(A_{i+g k} \otimes H_{\mathfrak{b}}^{q}(B)_{j+h k}\right) \oplus\left(H_{\mathfrak{a}}^{q}(A)_{i+g k} \otimes B_{j+h k}\right) \\
& \oplus \bigoplus_{q_{1}+q_{2}=q+1}\left(H_{\mathfrak{a}}^{q_{1}}(A)_{i+g k} \otimes H_{\mathfrak{b}}^{q_{2}}(B)_{j+h k}\right)
\end{aligned}
$$

Proof. Let $A^{(g)}$ and $B^{(h)}$ denote the respective Veronese subrings of A and B. Set

$$
A^{(g, i)}=\bigoplus_{k \in \mathbb{Z}} A_{i+g k} \quad \text { and } \quad B^{(h, j)}=\bigoplus_{k \in \mathbb{Z}} B_{j+h k},
$$

which are graded $A^{(g)}$ and $B^{(h)}$ modules respectively. Using \# for the Segre product,

$$
T(i, j)_{\Delta}=\bigoplus_{k \in \mathbb{Z}} A_{i+g k} \otimes_{K} B_{j+h k}=A^{(g, i)} \# B^{(h, j)}
$$

The ideal $A_{+}^{(g)} A$ is \mathfrak{a}-primary; likewise, $B_{+}^{(h)} B$ is \mathfrak{b}-primary. The Künneth formula for local cohomology, [GW1, Theorem 4.1.5], now gives the desired result.

Notation 2.2. We use bold letters to denote lists of elements, e.g., $z=z_{1}, \ldots, z_{\text {s }}$ and $\gamma=$ $\gamma_{1}, \ldots, \gamma_{s}$.

3. Diagonal subalgebras of bigraded hypersurfaces

We prove the following theorem about diagonal subalgebras of \mathbb{N}^{2}-graded hypersurfaces. The proof uses results proved later in Sections 5 and 6.

Theorem 3.1. Let K be a field, let m, n be integers with $m, n \geqslant 2$, and let

$$
\mathcal{R}=K\left[x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right] /(f)
$$

be a normal \mathbb{N}^{2}-graded hypersurface where $\operatorname{deg} x_{i}=(1,0)$, $\operatorname{deg} y_{j}=(0,1)$, and $\operatorname{deg} f=$ $(d, e)>(0,0)$. For positive integers g and h, set $\Delta=(g, h) \mathbb{Z}$. Then:
(1) The ring \mathcal{R}_{Δ} is Cohen-Macaulay if and only if $\lfloor(d-m) / g\rfloor<e / h$ and $\lfloor(e-n) / h\rfloor<d / g$. In particular, if $d<m$ and $e<n$, then \mathcal{R}_{Δ} is Cohen-Macaulay for each diagonal Δ.
(2) The graded canonical module of \mathcal{R}_{Δ} is $\mathcal{R}(d-m, e-n)_{\Delta}$. Hence \mathcal{R}_{Δ} is Gorenstein if and only if $(d-m) / g=(e-n) / h$, and this is an integer.

If K has characteristic zero, and f is a generic polynomial of degree (d, e), then:
(3) The ring \mathcal{R}_{Δ} has rational singularities if and only if it is Cohen-Macaulay and $d<m$ or $e<n$.
(4) The ring \mathcal{R}_{Δ} is of F-regular type if and only if $d<m$ and $e<n$.

Fig. 1. Properties of \mathcal{R}_{Δ} for $\Delta=(1,1) \mathbb{Z}$.
For $m, n \geqslant 3$ and $\Delta=(1,1) \mathbb{Z}$, the properties of \mathcal{R}_{Δ}, as determined by m, n, d, e, are summarized in Fig. 1.

Remark 3.2. Let $m, n \geqslant 2$. A generic hypersurface of degree $(d, e)>(0,0)$ in m, n variables is normal precisely when

$$
m>\min (2, d) \quad \text { and } \quad n>\min (2, e) .
$$

Suppose that $m=2=n$, and that f is nonzero. Then $\operatorname{dim} \mathcal{R}_{\Delta}=2$; since \mathcal{R}_{Δ} is generated over a field by elements of equal degree, \mathcal{R}_{Δ} is of F-regular type if and only if it has rational singularities; see [Wa2]. This is the case precisely if

$$
\begin{array}{ll}
d=1, & e \leqslant h+1, \quad \text { or } \\
e=1, & d \leqslant g+1 .
\end{array}
$$

Following a suggestion of Hara, the case $n=2$ and $e=1$ was used in [Si, Example 7.3] to construct examples of standard graded rings with rational singularities which are not of F-regular type.

Proof of Theorem 3.1. Set $A=K[\boldsymbol{x}], B=K[\boldsymbol{y}]$, and $T=A \otimes_{K} B$. By Lemma 2.1, $H_{\mathfrak{m}}^{q}\left(T_{\Delta}\right)=0$ for $q \neq m+n-1$. The local cohomology exact sequence induced by

$$
0 \longrightarrow T(-d,-e)_{\Delta} \xrightarrow{f} T_{\Delta} \longrightarrow \mathcal{R}_{\Delta} \longrightarrow 0
$$

therefore gives $H_{\mathfrak{m}}^{q-1}\left(\mathcal{R}_{\Delta}\right)=H_{\mathfrak{m}}^{q}\left(T(-d,-e)_{\Delta}\right)$ for $q \leqslant m+n-2$, and also shows that $H_{\mathfrak{m}}^{m+n-2}\left(\mathcal{R}_{\Delta}\right)$ and $H_{\mathfrak{m}}^{m+n-1}\left(\mathcal{R}_{\Delta}\right)$ are, respectively, the kernel and cokernel of

The horizontal map above is surjective since its graded dual

is injective. In particular, $\operatorname{dim} \mathcal{R}_{\Delta}=m+n-2$.
It follows from the above discussion that \mathcal{R}_{Δ} is Cohen-Macaulay if and only if $H_{\mathfrak{m}}^{q}\left(T(-d,-e)_{\Delta}\right)=0$ for each $q \leqslant m+n-2$. By Lemma 2.1, this is the case if and only if, for each integer k, one has

$$
A_{-d+g k} \otimes H_{\mathfrak{b}}^{n}(B)_{-e+h k}=0=H_{\mathfrak{a}}^{m}(A)_{-d+g k} \otimes B_{-e+h k} .
$$

Hence \mathcal{R}_{Δ} is Cohen-Macaulay if and only if there is no integer k satisfying

$$
d / g \leqslant k \leqslant(e-n) / h \quad \text { or } \quad e / h \leqslant k \leqslant(d-m) / g,
$$

which completes the proof of (1).
For (2), note that the graded canonical module of \mathcal{R}_{Δ} is the graded dual of $H_{\mathfrak{m}}^{m+n-2}\left(\mathcal{R}_{\Delta}\right)$, and hence that it equals

$$
\operatorname{coker}\left(T(-m,-n)_{\Delta} \xrightarrow{f} T(d-m, e-n)_{\Delta}\right)=\mathcal{R}(d-m, e-n)_{\Delta} .
$$

This module is principal if and only if $\mathcal{R}(d-m, e-n)_{\Delta}=\mathcal{R}_{\Delta}(a)$ for some integer a, i.e., $d-m=g a$ and $e-n=h a$.

When f is a general polynomial of degree (d, e), the ring \mathcal{R}_{Δ} has an isolated singularity. Also, \mathcal{R}_{Δ} is normal since it is a direct summand of the normal ring \mathcal{R}. By Theorem 5.1, \mathcal{R}_{Δ} has rational singularities precisely if it is Cohen-Macaulay and $a\left(\mathcal{R}_{\Delta}\right)<0$; this proves (3).

It remains to prove (4). If $d<m$ and $e<n$, then Theorem 5.2 implies that \mathcal{R} has rational singularities. By Theorem 6.2, it follows that for almost all primes p, the characteristic p models \mathcal{R}_{p} of \mathcal{R} are F-rational hypersurfaces which, therefore, are F-regular. Alternatively, \mathcal{R}_{p} is a generic hypersurface of degree $(d, e)<(m, n)$, so Theorem 6.5 implies that \mathcal{R}_{p} is F-regular. Since $\left(\mathcal{R}_{p}\right)_{\Delta}$ is a direct summand of \mathcal{R}_{p}, it follows that $\left(\mathcal{R}_{p}\right)_{\Delta}$ is F-regular. The rings $\left(\mathcal{R}_{p}\right)_{\Delta}$ are characteristic p models of \mathcal{R}_{Δ}, so we conclude that \mathcal{R}_{Δ} is of F-regular type.

Suppose \mathcal{R}_{Δ} has F-regular type, and let $\left(\mathcal{R}_{p}\right)_{\Delta}$ be a characteristic p model which is F-regular. Fix an integer $k>d / g$. Then Proposition 6.3 implies that there exists an integer $q=p^{e}$ such that

$$
\operatorname{rank}_{K}\left(\left(\mathcal{R}_{p}\right)_{\Delta}\right)_{k} \leqslant \operatorname{rank}_{K}\left[H_{\mathfrak{m}}^{m+n-2}\left(\omega^{(q)}\right)\right]_{k},
$$

where ω is the graded canonical module of $\left(\mathcal{R}_{p}\right)_{\Delta}$. Using (2), we see that

$$
H_{\mathfrak{m}}^{m+n-2}\left(\omega^{(q)}\right)=H_{\mathfrak{m}}^{m+n-2}\left(\mathcal{R}_{p}(q d-q m, q e-q n)_{\Delta}\right)
$$

Let T_{p} be a characteristic p model for T such that $T_{p} / f T_{p}=\mathcal{R}_{p}$. Multiplication by f on T_{p} induces a local cohomology exact sequence

$$
\begin{aligned}
\cdots & \longrightarrow H_{\mathfrak{m}_{p}}^{m+n-2}\left(T_{p}(q d-q m, q e-q n)_{\Delta}\right) \longrightarrow H_{\mathfrak{m}_{p}}^{m+n-2}\left(\mathcal{R}_{p}(q d-q m, q e-q n)_{\Delta}\right) \\
& \longrightarrow H_{\mathfrak{m}_{p}}^{m+n-1}\left(T_{p}(q d-q m-d, q e-q n-e)_{\Delta}\right) \longrightarrow \cdots .
\end{aligned}
$$

Since $H_{\mathfrak{m}_{p}}^{m+n-2}\left(T_{p}(q d-q m, q e-q n)_{\Delta}\right)$ vanishes by Lemma 2.1, we conclude that

$$
\begin{aligned}
\operatorname{rank}_{K}\left(\left(\mathcal{R}_{p}\right)_{\Delta}\right)_{k} & \leqslant \operatorname{rank}_{K}\left[H_{\mathfrak{m}_{p}}^{m+n-1}\left(T_{p}(q d-q m-d, q e-q n-e)_{\Delta}\right)\right]_{k} \\
& =\operatorname{rank}_{K} H_{\mathfrak{a}_{p}}^{m}\left(A_{p}\right)_{q d-q m-d+g k} \otimes H_{\mathfrak{b}_{q}}^{n}\left(B_{p}\right)_{q e-q n-e+h k} .
\end{aligned}
$$

Hence $q d-q m-d+g k<0$; as $d-g k<0$, we conclude $d<m$. Similarly, $e<n$.

We conclude this section with an example where a local cohomology module of a standard graded ring is not rigid in the sense that $H_{\mathfrak{m}}^{2}(R)_{0}=0$ while $H_{\mathfrak{m}}^{2}(R)_{1} \neq 0$. Further such examples are constructed in Section 4.

Proposition 3.3. Let K be a field and let

$$
\mathcal{R}=K\left[x_{1}, x_{2}, x_{3}, y_{1}, y_{2}\right] /(f)
$$

where $\operatorname{deg} x_{i}=(1,0), \operatorname{deg} y_{j}=(0,1)$, and $\operatorname{deg} f=(d, e)$ for $d \geqslant 4$ and $e \geqslant 1$. Let g and h be positive integers such that $g \leqslant d-3$ and $h \geqslant e$, and set $\Delta=(g, h) \mathbb{Z}$. Then $H_{\mathfrak{m}}^{2}\left(\mathcal{R}_{\Delta}\right)_{0}=0$ and $H_{\mathfrak{m}}^{2}\left(\mathcal{R}_{\Delta}\right)_{1} \neq 0$.

Proof. Using the resolution of \mathcal{R} over the polynomial ring T as in the proof of Theorem 3.1, we have an exact sequence

$$
H_{\mathfrak{m}}^{2}\left(T_{\Delta}\right) \longrightarrow H_{\mathfrak{m}}^{2}\left(\mathcal{R}_{\Delta}\right) \longrightarrow H_{\mathfrak{m}}^{3}\left(T(-d,-e)_{\Delta}\right) \longrightarrow H_{\mathfrak{m}}^{3}\left(T_{\Delta}\right)
$$

Lemma 2.1 implies that $H_{\mathfrak{m}}^{2}\left(T_{\Delta}\right)=0=H_{\mathfrak{m}}^{3}\left(T_{\Delta}\right)$. Hence, again by Lemma 2.1,

$$
H_{\mathfrak{m}}^{2}\left(\mathcal{R}_{\Delta}\right)_{0}=H^{3}(A)_{-d} \otimes B_{-e}=0 \quad \text { and } \quad H_{\mathfrak{m}}^{2}\left(\mathcal{R}_{\Delta}\right)_{1}=H^{3}(A)_{g-d} \otimes B_{h-e} \neq 0
$$

4. Non-rigid local cohomology modules

We construct examples of standard graded normal rings R over \mathbb{C}, with only isolated singularities, for which $H_{\mathfrak{m}}^{2}(R)_{0}=0$ and $H_{\mathfrak{m}}^{2}(R)_{1} \neq 0$. Let S be the localization of such a ring R at its homogeneous maximal ideal. By results of Danilov [Da1,Da2], Theorem 4.1 below, it follows that the divisor class group of S is finitely generated, though S does not have a discrete divisor class group, i.e., the natural map $\mathrm{Cl}(S) \longrightarrow \mathrm{Cl}(S[[t]])$ is not bijective. Here, remember that if A is a Noetherian normal domain, then so is $A[[t]]$.

Theorem 4.1. Let R be a standard graded normal ring, which is finitely generated as an algebra over $R_{0}=\mathbb{C}$. Assume, moreover, that $X=\operatorname{Proj} R$ is smooth. Set (S, \mathfrak{m}) to be the local ring of R at its homogeneous maximal ideal, and \widehat{S} to be the \mathfrak{m}-adic completion of S. Then
(1) the group $\mathrm{Cl}(S)$ is finitely generated if and only if $H^{1}\left(X, \mathcal{O}_{X}\right)=0$;
(2) the map $\mathrm{Cl}(S) \longrightarrow \mathrm{Cl}(\widehat{S})$ is bijective if and only if $H^{1}\left(X, \mathcal{O}_{X}(i)\right)=0$ for each integer $i \geqslant 1$; and
(3) the map $\mathrm{Cl}(S) \longrightarrow \mathrm{Cl}(S[[t]])$ is bijective if and only if $H^{1}\left(X, \mathcal{O}_{X}(i)\right)=0$ for each integer $i \geqslant 0$.

The essential point in our construction is in the following theorem.
Theorem 4.2. Let A be a Cohen-Macaulay ring of dimension $d \geqslant 2$, which is a standard graded algebra over a field K. For $s \geqslant 2$, let z_{1}, \ldots, z_{s} be a regular sequence in A, consisting of homogeneous elements of equal degree, say k. Consider the Rees ring $\mathcal{R}=A\left[z_{1} t, \ldots, z_{s} t\right]$ with the \mathbb{Z}^{2}-grading where $\operatorname{deg} x=(n, 0)$ for $x \in A_{n}$, and $\operatorname{deg} z_{i} t=(0,1)$.

Let $\Delta=(g, h) \mathbb{Z}$ where g, h are positive integers, and let \mathfrak{m} denote the homogeneous maximal ideal of \mathcal{R}_{Δ}. Then:
(1) $H_{\mathfrak{m}}^{q}\left(\mathcal{R}_{\Delta}\right)=0$ if $q \neq d-s+1, d$; and
(2) $H_{\mathfrak{m}}^{d-s+1}\left(\mathcal{R}_{\Delta}\right)_{i} \neq 0$ if and only if $1 \leqslant i \leqslant(a+k s-k) / g$, where a is the a-invariant of A.

In particular, \mathcal{R}_{Δ} is Cohen-Macaulay if and only if $g>a+k s-k$.
Example 4.3. For $d \geqslant 3$, let $A=\mathbb{C}\left[x_{0}, \ldots, x_{d}\right] /(f)$ be a standard graded hypersurface such that $\operatorname{Proj} A$ is smooth over \mathbb{C}. Take general k-forms $z_{1}, \ldots, z_{d-1} \in A$, and consider the Rees ring $\mathcal{R}=A\left[z_{1} t, \ldots, z_{d-1} t\right]$. Since $(z) \subset A$ is a radical ideal,

$$
\operatorname{gr}((z), A) \cong A /(z)\left[y_{1}, \ldots, y_{d-1}\right]
$$

is a reduced ring, and therefore $\mathcal{R}=A\left[z_{1} t, \ldots, z_{d-1} t\right]$ is integrally closed in $A[t]$. Since A is normal, so is \mathcal{R}. Note that $\operatorname{Proj} \mathcal{R}_{\Delta}$ is the blow-up of $\operatorname{Proj} A$ at the subvariety defined by (z), i.e., at $k^{d-1}(\operatorname{deg} f)$ points. It follows that $\operatorname{Proj} \mathcal{R}_{\Delta}$ is smooth over \mathbb{C}. Hence \mathcal{R}_{Δ} is a standard graded \mathbb{C}-algebra, which is normal and has an isolated singularity.

If $\Delta=(g, h) \mathbb{Z}$ is a diagonal with $1 \leqslant g \leqslant \operatorname{deg} f+k(d-2)-(d+1)$ and $h \geqslant 1$, then Theorem 4.2 implies that

$$
H_{\mathfrak{m}}^{2}\left(\mathcal{R}_{\Delta}\right)_{0}=0 \quad \text { and } \quad H_{\mathfrak{m}}^{2}\left(\mathcal{R}_{\Delta}\right)_{1} \neq 0
$$

The rest of this section is devoted to proving Theorem 4.2. We may assume that the base field K is infinite. Then one can find linear forms x_{1}, \ldots, x_{d-s} in A such that $x_{1}, \ldots, x_{d-s}, z_{1}, \ldots, z_{s}$ is a maximal A-regular sequence.

We will use the following lemma; the notation is as in Theorem 4.2.
Lemma 4.4. Let \mathfrak{a} be the homogeneous maximal ideal of A. Set $I=\left(z_{1}, \ldots, z_{s}\right)$ A. Let r be a positive integer.
(1) $H_{\mathfrak{a}}^{q}\left(I^{r}\right)=0$ if $q \neq d-s+1, d$.
(2) Assume $d>s$. Then, $H_{\mathfrak{a}}^{d-s+1}\left(I^{r}\right)_{i} \neq 0$ if and only if $i \leqslant a+k s+r k-k$.
(3) Assume $d=s$. Then, $H_{\mathfrak{a}}^{d-s+1}\left(I^{r}\right)_{i} \neq 0$ if and only if $0 \leqslant i \leqslant a+k s+r k-k$.

Proof. Recall that A and A / I^{r} are Cohen-Macaulay rings of dimension d and $d-s$, respectively. By the exact sequence

$$
0 \longrightarrow I^{r} \longrightarrow A \longrightarrow A / I^{r} \longrightarrow 0
$$

we obtain

$$
H_{\mathfrak{a}}^{q}\left(I^{r}\right)= \begin{cases}H_{\mathfrak{a}}^{d}(A) & \text { if } q=d \\ H_{\mathfrak{a}}^{d-s}\left(A / I^{r}\right) & \text { if } q=d-s+1 \\ 0 & \text { if } q \neq d-s+1, d\end{cases}
$$

which proves (1).
Next we prove (2) and (3). Since A / I^{r} is a standard graded Cohen-Macaulay ring of dimension $d-s$, it is enough to show that the a-invariant of this ring equals $a+k s+r k-k$. This is straightforward if $r=1$, and we proceed by induction. Consider the exact sequence

$$
0 \longrightarrow I^{r} / I^{r+1} \longrightarrow A / I^{r+1} \longrightarrow A / I^{r} \longrightarrow 0
$$

Since z_{1}, \ldots, z_{s} is a regular sequence of k-forms, I^{r} / I^{r+1} is isomorphic to

$$
((A / I)(-r k))^{\left(s^{-1+r}\right)} .
$$

Thus, we have the following exact sequence:

$$
0 \longrightarrow H_{\mathfrak{a}}^{d-s}((A / I)(-r k))^{\left({ }^{s-1+r}\right)} r_{r} \longrightarrow H_{\mathfrak{a}}^{d-s}\left(A / I^{r+1}\right) \longrightarrow H_{\mathfrak{a}}^{d-s}\left(A / I^{r}\right) \longrightarrow 0
$$

The a-invariant of $(A / I)(-r k)$ equals $a+k s+r k$, and that of A / I^{r} is $a+k s+r k-k$ by the inductive hypothesis. Thus, A / I^{r+1} has a-invariant $a+k s+r k$.

Proof of Theorem 4.2. Let $B=K\left[y_{1}, \ldots, y_{s}\right]$ be a polynomial ring, and set

$$
T=A \otimes_{K} B=A\left[y_{1}, \ldots, y_{s}\right] .
$$

Consider the \mathbb{Z}^{2}-grading on T where $\operatorname{deg} x=(n, 0)$ for $x \in A_{n}$, and $\operatorname{deg} y_{i}=(0,1)$ for each i. One has a surjective homomorphism of graded rings

$$
T \longrightarrow \mathcal{R}=A\left[z_{1} t, \ldots, z_{s} t\right] \quad \text { where } y_{i} \longmapsto z_{i} t
$$

and this induces an isomorphism

$$
\mathcal{R} \cong T / I_{2}\left(\begin{array}{ccc}
z_{1} & \ldots & z_{s} \\
y_{1} & \ldots & y_{s}
\end{array}\right) .
$$

The minimal free resolution of \mathcal{R} over T is given by the Eagon-Northcott complex

$$
0 \longrightarrow F^{-(s-1)} \longrightarrow F^{-(s-2)} \longrightarrow \cdots \longrightarrow F^{0} \longrightarrow 0
$$

where $F^{0}=T(0,0)$, and F^{-i} for $1 \leqslant i \leqslant s-1$ is the direct sum of $\binom{s}{i+1}$ copies of

$$
T(-k,-i) \oplus T(-2 k,-(i-1)) \oplus \cdots \oplus T(-i k,-1)
$$

Let \mathfrak{n} be the homogeneous maximal ideal of T_{Δ}. One has the spectral sequence:

$$
E_{2}^{p, q}=H^{p}\left(H_{\mathfrak{n}}^{q}\left(F_{\Delta}^{\bullet}\right)\right) \Longrightarrow H_{\mathfrak{m}}^{p+q}\left(\mathcal{R}_{\Delta}\right)
$$

Let G be the set of (n, m) such that $T(n, m)$ appears in the Eagon-Northcott complex above, i.e., the elements of G are

$$
\begin{gathered}
(0,0), \\
(-k,-1), \\
(-k,-2),(-2 k,-1), \\
(-k,-3),(-2 k,-2),(-3 k,-1), \\
\vdots \\
(-k,-(s-1)), \quad \cdots, \quad(-(s-1) k,-1)
\end{gathered}
$$

Let \mathfrak{a} and \mathfrak{b} be the homogeneous maximal ideal of A and B, respectively. For integers n and m, the Künneth formula gives

$$
\begin{aligned}
& H_{\mathfrak{n}}^{q}(T(n, m)) \\
& \quad=H_{\mathfrak{n}}^{q}\left(A(n) \otimes_{K} B(m)\right) \\
& \quad=\left(H_{\mathfrak{a}}^{q}(A(n)) \otimes B(m)\right) \oplus\left(A(n) \otimes H_{\mathfrak{b}}^{q}(B(m))\right) \oplus \bigoplus_{i+j=q+1} H_{\mathfrak{a}}^{i}(A(n)) \otimes H_{\mathfrak{b}}^{j}(B(m)) \\
& \quad=H_{\mathfrak{a}}^{q}(T(n, m)) \oplus H_{\mathfrak{b}}^{q}(T(n, m)) \oplus \bigoplus_{i+j=q+1} H_{\mathfrak{a}}^{i}(A(n)) \otimes_{K} H_{\mathfrak{b}}^{j}(B(m)) .
\end{aligned}
$$

As A and B are Cohen-Macaulay of dimension d and s respectively, it follows that

$$
H_{\mathfrak{n}}^{q}\left(F^{\bullet}\right)=0 \quad \text { if } q \neq s, d, d+s-1
$$

In the case where $d>s$, one has

$$
H_{\mathfrak{n}}^{s}\left(F^{\bullet}\right)=H_{\mathfrak{b}}^{s}\left(F^{\bullet}\right) \quad \text { and } \quad H_{\mathfrak{n}}^{d}\left(F^{\bullet}\right)=H_{\mathfrak{a}}^{d}\left(F^{\bullet}\right)
$$

and if $d=s$, then

$$
H_{\mathfrak{n}}^{d}\left(F^{\bullet}\right)=H_{\mathfrak{a}}^{d}\left(F^{\bullet}\right) \oplus H_{\mathfrak{b}}^{s}\left(F^{\bullet}\right)
$$

We claim $H_{\mathfrak{b}}^{s}\left(F^{\bullet}\right)_{\Delta}=0$. If not, there exists $(n, m) \in G$ and $\ell \in \mathbb{Z}$ such that

$$
H_{\mathfrak{b}}^{s}(T(n, m))_{(g \ell, h \ell)} \neq 0 .
$$

This implies that

$$
H_{\mathfrak{b}}^{s}(T(n, m))_{(g \ell, h \ell)}=A(n)_{g \ell} \otimes_{K} H_{\mathfrak{b}}^{s}(B(m))_{h \ell}=A_{n+g \ell} \otimes_{K} H_{\mathfrak{b}}^{s}(B)_{m+h \ell}
$$

is nonzero, so

$$
n+g \ell \geqslant 0 \quad \text { and } \quad m+h \ell \leqslant-s
$$

and hence

$$
-\frac{n}{g} \leqslant \ell \leqslant-\frac{s+m}{h}
$$

But $(n, m) \in G$, so $n \leqslant 0$ and $m \geqslant-(s-1)$, implying that

$$
0 \leqslant \ell \leqslant-\frac{1}{h}
$$

which is not possible. This proves that $H_{\mathfrak{b}}^{s}\left(F^{\bullet}\right)_{\Delta}=0$. Thus, we have

$$
H_{\mathfrak{n}}^{q}\left(F^{\bullet}\right)_{\Delta}= \begin{cases}0 & \text { if } q \neq d, d+s-1, \\ H_{\mathfrak{a}}^{d}\left(F^{\bullet}\right)_{\Delta} & \text { if } q=d .\end{cases}
$$

It follows that

$$
E_{2}^{p, q}=H^{p}\left(H_{\mathfrak{n}}^{q}\left(F_{\Delta}^{\bullet}\right)\right)=E_{\infty}^{p, q}
$$

for each p and q. Therefore,

$$
H_{\mathfrak{m}}^{i}\left(\mathcal{R}_{\Delta}\right)=E_{2}^{i-d, d}=H^{i-d}\left(H_{\mathfrak{n}}^{d}\left(F_{\Delta}^{\bullet}\right)\right)=H^{i-d}\left(H_{\mathfrak{a}}^{d}\left(F^{\bullet}\right)_{\Delta}\right)=H_{\mathfrak{a}}^{i}(\mathcal{R})_{\Delta}
$$

for $d-s+1 \leqslant i \leqslant d-1$, and

$$
H_{\mathfrak{m}}^{i}\left(\mathcal{R}_{\Delta}\right)=0 \quad \text { for } i<d-s+1
$$

We next study $H_{\mathfrak{a}}^{i}(\mathcal{R})$. Since

$$
\mathcal{R}=A \oplus I(k) \oplus I^{2}(2 k) \oplus \cdots \oplus I^{r}(r k) \oplus \cdots,
$$

we have

$$
H_{\mathfrak{a}}^{i}(\mathcal{R})=H_{\mathfrak{a}}^{i}(A) \oplus H_{\mathfrak{a}}^{i}(I)(k) \oplus H_{\mathfrak{a}}^{i}\left(I^{2}\right)(2 k) \oplus \cdots \oplus H_{\mathfrak{a}}^{i}\left(I^{r}\right)(r k) \oplus \cdots
$$

Theorem 4.2 (1) now follow using Lemma 4.4 (1).
Assume that $d>s$. Then, by Lemma 4.4 (2), $H_{\mathfrak{a}}^{d-s+1}\left(I^{r}(r k)\right)_{i} \neq 0$ if and only if $i \leqslant a+k s-k$.

Assume that $d=s$. Then, by Lemma $4.4(3), H_{\mathfrak{a}}^{d-s+1}\left(I^{r}(r k)\right)_{i} \neq 0$ if and only if $-r k \leqslant i \leqslant$ $a+k s-k$.

In each case, $H_{\mathfrak{a}}^{d-s+1}(\mathcal{R})_{(g i, h i)} \neq 0$ if and only if

$$
1 \leqslant i \leqslant \frac{a+k s-k}{g}
$$

5. Rational singularities

Let R be a normal domain, essentially of finite type over a field of characteristic zero, and consider a desingularization $f: Z \longrightarrow$ Spec R, i.e., a proper birational morphism with Z a nonsingular variety. One says R has rational singularities if $R^{i} f_{*} \mathcal{O}_{Z}=0$ for each $i \geqslant 1$; this does not depend on the choice of the desingularization f. For \mathbb{N}-graded rings, one has the following criterion due to Flenner [Fl] and Watanabe [Wa1].

Theorem 5.1. Let R be a normal \mathbb{N}-graded ring which is finitely generated over a field R_{0} of characteristic zero. Then R has rational singularities if and only if it is Cohen-Macaulay, $a(R)<0$, and the localization $R_{\mathfrak{p}}$ has rational singularities for each $\mathfrak{p} \in \operatorname{Spec} R \backslash\left\{R_{+}\right\}$.

When R has an isolated singularity, the above theorem gives an effective criterion for determining if R has rational singularities. However, a multigraded hypersurface typically does not have an isolated singularity, and the following variation turns out to be useful.

Theorem 5.2. Let R be a normal \mathbb{N}^{r}-graded ring such that $R_{\mathbf{0}}$ is a local ring essentially of finite type over a field of characteristic zero, and R is generated over R_{0} by elements

$$
x_{11}, x_{12}, \ldots, x_{1 t_{1}}, \quad x_{21}, x_{22}, \ldots, x_{2 t_{2}}, \quad \ldots, \quad x_{r 1}, x_{r 2}, \ldots, x_{r t_{r}}
$$

where $\operatorname{deg} x_{i j}$ is a positive integer multiple of the ith unit vector $e_{i} \in \mathbb{N}^{r}$. Then R has rational singularities if and only if
(1) R is Cohen-Macaulay,
(2) $R_{\mathfrak{p}}$ has rational singularities for each \mathfrak{p} belonging to

$$
\operatorname{Spec} R \backslash\left(V\left(x_{11}, x_{12}, \ldots, x_{1 t_{1}}\right) \cup \cdots \cup V\left(x_{r 1}, x_{r 2}, \ldots, x_{r t_{r}}\right)\right), \quad \text { and }
$$

(3) $\boldsymbol{a}(R)<\mathbf{0}$, i.e., $a\left(R^{\varphi_{i}}\right)<0$ for each coordinate projection $\varphi_{i}: \mathbb{N}^{r} \longrightarrow \mathbb{N}$.

Before proceeding with the proof, we record some preliminary results.
Remark 5.3. Let R be an \mathbb{N}-graded ring. We use R^{\natural} to denote the Rees algebra with respect to the filtration $F_{n}=R_{\geqslant n}$, i.e.,

$$
R^{\natural}=F_{0} \oplus F_{1} T \oplus F_{2} T^{2} \oplus \cdots
$$

When considering $\operatorname{Proj} R^{\natural}$, we use the \mathbb{N}-grading on R^{\natural} where $\left[R^{\natural}\right]_{n}=F_{n} T^{n}$. The inclusion $R=\left[R^{\natural}\right]_{0} \hookrightarrow R^{\natural}$ gives a map

$$
\operatorname{Proj} R^{\natural} \xrightarrow{f} \operatorname{Spec} R .
$$

Also, the inclusions $R_{n} \hookrightarrow F_{n}$ give rise to an injective homomorphism of graded rings $R \hookrightarrow R^{\natural}$, which induces a surjection

$$
\operatorname{Proj} R^{\natural} \xrightarrow{\pi} \operatorname{Proj} R .
$$

Lemma 5.4. Let R be an \mathbb{N}-graded ring which is finitely generated over R_{0}, and assume that R_{0} is essentially of finite type over a field of characteristic zero.

If $R_{\mathfrak{p}}$ has rational singularities for all primes $\mathfrak{p} \in \operatorname{Spec} R \backslash V\left(R_{+}\right)$, then $\operatorname{Proj} R^{\natural}$ has rational singularities.

Proof. Note that Proj R^{\natural} is covered by affine open sets $D_{+}\left(r T^{n}\right)$ for integers $n \geqslant 1$ and homogeneous elements $r \in R_{\geqslant n}$. Consequently, it suffices to check that $\left[R_{r T^{n}}^{\natural}\right]_{0}$ has rational singularities. Next, note that

$$
\left[R_{r T^{n}}^{\natural}\right]_{0}=R+\frac{1}{r}[R]_{\geqslant n}+\frac{1}{r^{2}}[R]_{\geqslant 2 n}+\cdots .
$$

In the case $\operatorname{deg} r>n$, the ring above is simply R_{r}, which has rational singularities by the hypothesis of the lemma. If $\operatorname{deg} r=n$, then

$$
\left[R_{r T^{n}}^{\natural}\right]_{0}=\left[R_{r}\right] \geqslant 0 .
$$

The \mathbb{Z}-graded ring R_{r} has rational singularities and so, by [Wa1, Lemma 2.5], the ring [R_{r}] ${ }_{\geqslant 0}$ has rational singularities as well.

Lemma 5.5. (See [Hy2, Lemma 2.3].) Let R be an \mathbb{N}-graded ring which is finitely generated over a local ring $\left(R_{0}, \mathfrak{m}\right)$. Suppose $\left[H_{\mathfrak{m}+R_{+}}^{i}(R)\right]_{\geqslant 0}=0$ for all $i \geqslant 0$. Then, for all ideals \mathfrak{a} of R_{0}, one has

$$
\left[H_{\mathfrak{a}+R_{+}}^{i}(R)\right]_{\geqslant 0}=0 \quad \text { for all } i \geqslant 0
$$

We are now in a position to prove the following theorem, which is a variation of [Fl, Satz 3.1], [Wa1, Theorem 2.2], and [Hy1, Theorem 1.5].

Theorem 5.6. Let R be an \mathbb{N}-graded normal ring which is finitely generated over R_{0}, and assume that R_{0} is a local ring essentially of finite type over a field of characteristic zero. Then R has rational singularities if and only if
(1) R is Cohen-Macaulay,
(2) $R_{\mathfrak{p}}$ has rational singularities for all $\mathfrak{p} \in \operatorname{Spec} R \backslash V\left(R_{+}\right)$, and
(3) $a(R)<0$.

Proof. It is straightforward to see that conditions (1)-(3) hold when R has rational singularities, and we focus on the converse. Consider the morphism

$$
Y=\operatorname{Proj} R^{\natural} \xrightarrow{f} \operatorname{Spec} R
$$

as in Remark 5.3. Let $g: Z \longrightarrow Y$ be a desingularization of Y; the composition

$$
Z \xrightarrow{g} Y \xrightarrow{f} \operatorname{Spec} R
$$

is then a desingularization of $\operatorname{Spec} R$. Note that $Y=\operatorname{Proj} R^{\natural}$ has rational singularities by Lemma 5.4, so

$$
g_{*} \mathcal{O}_{Z}=\mathcal{O}_{Y} \quad \text { and } \quad R^{q} g_{*} \mathcal{O}_{Z}=0 \quad \text { for all } q \geqslant 1
$$

Consequently the Leray spectral sequence

$$
E_{2}^{p, q}=H^{p}\left(Y, R^{q} g_{*} \mathcal{O}_{Z}\right) \quad \Longrightarrow \quad H^{p+q}\left(Z, \mathcal{O}_{Z}\right)
$$

degenerates, and we get $H^{p}\left(Z, \mathcal{O}_{Z}\right)=H^{p}\left(Y, \mathcal{O}_{Y}\right)$ for all $p \geqslant 1$. Since Spec R is affine, we also have $R^{p}(g \circ f)_{*} \mathcal{O}_{Z}=H^{p}\left(Z, \mathcal{O}_{Z}\right)$. To prove that R has rational singularities, it now suffices to show that $H^{p}\left(Y, \mathcal{O}_{Y}\right)=0$ for all $p \geqslant 1$. Consider the map $\pi: Y \longrightarrow X=\operatorname{Proj} R$. We have

$$
H^{p}\left(Y, \mathcal{O}_{Y}\right)=H^{p}\left(X, \pi_{*} \mathcal{O}_{X}\right)=\bigoplus_{n \geqslant 0} H^{p}\left(X, \mathcal{O}_{X}(n)\right)=\left[H_{R_{+}}^{p+1}(R)\right]_{\geqslant 0}
$$

By condition (1), we have $\left[H_{\mathfrak{m}+R_{+}}^{p}(R)\right]_{\geqslant 0}=0$ for all $p \geqslant 0$, and so Lemma 5.5 implies that $\left[H_{R_{+}}^{p}(R)\right]_{\geqslant 0}=0$ for all $p \geqslant 0$ as desired.

Proof of theorem 5.2. If R has rational singularities, it is easily seen that conditions (1)-(3) must hold. For the converse, we proceed by induction on r. The case $r=1$ is Theorem 5.6 established above, so assume $r \geqslant 2$. It suffices to show that $R_{\mathfrak{M}}$ has rational singularities where \mathfrak{M} is the homogeneous maximal ideal of R. Set

$$
\mathfrak{m}=\mathfrak{M} \cap\left[R^{\varphi_{r}}\right]_{0}
$$

and consider the \mathbb{N}-graded ring S obtained by inverting the multiplicative set $\left[R^{\varphi_{r}}\right]_{0} \backslash \mathfrak{m}$ in $R^{\varphi_{r}}$. Since $R_{\mathfrak{M}}$ is a localization of S, it suffices to show that S has rational singularities. Note that
$a(S)=a\left(R^{\varphi_{r}}\right)$, which is a negative integer by (1). Using Theorem 5.6, it is therefore enough to show that $R_{\mathfrak{P}}$ has rational singularities for all $\mathfrak{P} \in \operatorname{Spec} R \backslash V\left(x_{r 1}, x_{r 2}, \ldots, x_{r t_{r}}\right)$. Fix such a prime \mathfrak{P}, and let

$$
\psi: \mathbb{Z}^{r} \longrightarrow \mathbb{Z}^{r-1}
$$

be the projection to the first $r-1$ coordinates. Note that R^{ψ} is the ring R regraded such that $\operatorname{deg} x_{r j}=0$, and the degrees of $x_{i j}$ for $i<r$ are unchanged. Set

$$
\mathfrak{p}=\mathfrak{P} \cap\left[R^{\psi}\right]_{\mathbf{0}},
$$

and let T be the ring obtained by inverting the multiplicative set $\left[R^{\psi}\right]_{\mathbf{0}} \backslash \mathfrak{p}$ in R^{ψ}. It suffices to show that T has rational singularities. Note that T is an \mathbb{N}^{r-1}-graded ring defined over a local ring ($T_{\mathbf{0}}, \mathfrak{p}$), and that it has homogeneous maximal ideal $\mathfrak{p}+\mathfrak{b} T$ where

$$
\mathfrak{b}=\left(R^{\psi}\right)_{+}=\left(x_{i j} \mid i<r\right) R .
$$

Using the inductive hypothesis, it remains to verify that $\boldsymbol{a}(T)<\mathbf{0}$. By condition (1), for all integers $1 \leqslant j \leqslant r-1$, we have

$$
\left[H_{\mathfrak{M}}^{i}(R)^{\varphi_{j}}\right]_{\geqslant 0}=0 \quad \text { for all } i \geqslant 0
$$

and using Lemma 5.5 it follows that

$$
\left[H_{\mathfrak{p}+\mathfrak{b}}^{i}(R)^{\varphi_{j}}\right]_{\geqslant 0}=0 \quad \text { for all } i \geqslant 0
$$

Consequently $a\left(T^{\varphi_{j}}\right)<0$ for $1 \leqslant j \leqslant r-1$, which completes the proof.

6. F-regularity

For the theory of tight closure, we refer to the papers [HH1,HH2] and [HH3]. We summarize results about F-rational and F-regular rings:

Theorem 6.1. The following hold for rings of prime characteristic.
(1) Regular rings are F-regular.
(2) Direct summands of F-regular rings are F-regular.
(3) F-rational rings are normal; an F-rational ring which is a homomorphic image of a CohenMacaulay ring is Cohen-Macaulay.
(4) F-rational Gorenstein rings are F-regular.
(5) Let R be an \mathbb{N}-graded ring which is finitely generated over a field R_{0}. If R is weakly F regular, then it is F-regular.

Proof. For (1) and (2) see [HH1, Theorem 4.6] and [HH1, Proposition 4.12] respectively; (3) is part of [HH2, Theorem 4.2], and for (4) see [HH2, Corollary 4.7], Lastly, (5) is [LS, Corollary 4.4].

The characteristic zero aspects of tight closure are developed in [HH4]. Let K be a field of characteristic zero. A finitely generated K-algebra $R=K\left[x_{1}, \ldots, x_{m}\right] / \mathfrak{a}$ is of F-regular type if there exists a finitely generated \mathbb{Z}-algebra $A \subseteq K$, and a finitely generated free A-algebra

$$
R_{A}=A\left[x_{1}, \ldots, x_{m}\right] / \mathfrak{a}_{A}
$$

such that $R \cong R_{A} \otimes_{A} K$ and, for all maximal ideals μ in a Zariski dense subset of Spec A, the fiber rings $R_{A} \otimes_{A} A / \mu$ are F-regular rings of characteristic $p>0$. Similarly, R is of F-rational type if for a dense subset of μ, the fiber rings $R_{A} \otimes_{A} A / \mu$ are F-rational. Combining results from [Ha,HW,MS,Sm] one has:

Theorem 6.2. Let R be a ring which is finitely generated over a field of characteristic zero. Then R has rational singularities if and only if it is of F-rational type. If R is \mathbb{Q}-Gorenstein, then it has log terminal singularities if and only if it is of F-regular type.

Proposition 6.3. Let K be a field of characteristic $p>0$, and R an \mathbb{N}-graded normal ring which is finitely generated over $R_{0}=K$. Let ω denote the graded canonical module of R, and set $d=\operatorname{dim} R$.

Suppose R is F-regular. Then, for each integer k, there exists $q=p^{e}$ such that

$$
\operatorname{rank}_{K} R_{k} \leqslant \operatorname{rank}_{K}\left[H_{\mathfrak{m}}^{d}\left(\omega^{(q)}\right)\right]_{k} .
$$

Proof. If $d \leqslant 1$, then R is regular and the assertion is elementary. Assume $d \geqslant 2$. Let $\xi \in$ $\left[H_{\mathfrak{m}}^{d}(\omega)\right]_{0}$ be an element which generates the socle of $H_{\mathfrak{m}}^{d}(\omega)$. Since the map $\omega^{[q]} \longrightarrow \omega^{(q)}$ is an isomorphism in codimension one, $F^{e}(\xi)$ may be viewed as an element of $H_{\mathfrak{m}}^{d}\left(\omega^{(q)}\right)$ as in [Wa2].

Fix an integer k. For each $e \in \mathbb{N}$, set V_{e} to be the kernel of the vector space homomorphism

$$
\begin{equation*}
R_{k} \longrightarrow\left[H_{\mathfrak{m}}^{d}\left(\omega^{\left(p^{e}\right)}\right)\right]_{k}, \quad \text { where } c \longmapsto c F^{e}(\xi) . \tag{6.3.1}
\end{equation*}
$$

If $c F^{e+1}(\xi)=0$, then $F\left(c F^{e}(\xi)\right)=c^{p} F^{e+1}(\xi)=0$; since R is F-pure, it follows that $c F^{e}(\xi)=0$. Consequently the vector spaces V_{e} form a descending sequence

$$
V_{1} \supseteq V_{2} \supseteq V_{3} \supseteq \cdots
$$

The hypothesis that R is F-regular implies $\bigcap_{e} V_{e}=0$. Since each V_{e} has finite rank, $V_{e}=0$ for $e \gg 0$. Hence the homomorphism (6.3.1) is injective for $e \gg 0$.

We next record tight closure properties of general \mathbb{N}-graded hypersurfaces. The results for F-purity are essentially worked out in [HR].

Theorem 6.4. Let $A=K\left[x_{1}, \ldots, x_{m}\right]$ be a polynomial ring over a field K of positive characteristic. Let d be a nonnegative integer, and set $M=\binom{d+m-1}{d}-1$. Consider the affine space \mathbb{A}_{K}^{M} parameterizing the degree d forms in A in which x_{1}^{d} occurs with coefficient 1 .

Let U be the subset of \mathbb{A}_{K}^{M} corresponding to the forms f for which A / f A F-pure. Then U is a Zariski open set, and it is nonempty if and only if $d \leqslant m$.

Let V be the set corresponding to forms f for which $A / f A$ is F-regular. Then V contains a nonempty Zariski open set if $d<m$, and is empty otherwise.

Proof. The set U is Zariski open by [HR, p. 156] and it is empty if $d>m$ by [HR, Proposition 5.18]. If $d \leqslant m$, the square-free monomial $x_{1} \cdots x_{d}$ defines an F-pure hypersurface $A /\left(x_{1} \cdots x_{d}\right)$. A linear change of variables yields the polynomial

$$
f=x_{1}\left(x_{1}+x_{2}\right) \cdots\left(x_{1}+x_{d}\right)
$$

in which x_{1}^{d} occurs with coefficient 1 . Hence U is nonempty for $d \leqslant m$.
If $d \geqslant m$, then $A / f A$ has a-invariant $d-m \geqslant 0$ so $A / f A$ is not F-regular. Suppose $d<m$. Consider the set $W \subseteq \mathbb{A}_{K}^{M}$ parameterizing the forms f for which $A / f A$ is F-pure and $(A / f A)_{\bar{x}_{1}}$ is regular; W is a nonempty open subset of \mathbb{A}_{K}^{M}. Let f correspond to a point of W. The element $\bar{x}_{1} \in A / f A$ has a power which is a test element; since $A / f A$ is F-pure, it follows that \bar{x}_{1} is a test element. Note that $\bar{x}_{2}, \ldots, \bar{x}_{m}$ is a homogeneous system of parameters for $A / f A$ and that \bar{x}_{1}^{d-1} generates the socle modulo $\left(\bar{x}_{2}, \ldots, \bar{x}_{m}\right)$. Hence the ring $A / f A$ is F-regular if and only if there exists a power q of the prime characteristic p such that

$$
x_{1}^{(d-1) q+1} \notin\left(x_{2}^{q}, \ldots, x_{m}^{q}, f\right) A
$$

The set of such f corresponds to an open subset of W; it remains to verify that this subset is nonempty. For this, consider

$$
f=x_{1}^{d}+x_{2} \cdots x_{d+1}
$$

which corresponds to a point of W, and note that $A / f A$ is F-regular since

$$
x_{1}^{(d-1) p+1} \notin\left(x_{2}^{p}, \ldots, x_{m}^{p}, f\right) A .
$$

These ideas carry over to multi-graded hypersurfaces; we restrict below to the bigraded case. The set of forms in $K\left[x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right]$ of degree (d, e) in which $x_{1}^{d} y_{1}^{e}$ occurs with coefficient 1 is parametrized by the affine space \mathbb{A}_{K}^{N} where $N=\binom{d+m-1}{d}\binom{e+n-1}{e}-1$.

Theorem 6.5. Let $B=K\left[x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right]$ be a polynomial ring over a field K of positive characteristic. Consider the \mathbb{N}^{2}-grading on B with $\operatorname{deg} x_{i}=(1,0)$ and $\operatorname{deg} y_{j}=(0,1)$. Let d,e be nonnegative integers, and consider the affine space \mathbb{A}_{K}^{N} parameterizing forms of degree (d, e) in which $x_{1}^{d} y_{1}^{e}$ occurs with coefficient 1 .

Let U be the subset of \mathbb{A}_{K}^{N} corresponding to forms f for which $B / f B$ is F-pure. Then U is a Zariski open set, and it is nonempty if and only if $d \leqslant m$ and $e \leqslant n$.

Let V be the set corresponding to forms f for which $B / f B$ is F-regular. Then V contains a nonempty Zariski open set if $d<m$ and $e<n$, and is empty otherwise.

Proof. The argument for F-purity is similar to the proof of Theorem 6.4; if $d \leqslant m$ and $e \leqslant n$, then the polynomial $x_{1} \cdots x_{d} y_{1} \cdots y_{e}$ defines an F-pure hypersurface.

If $B / f B$ is F-regular, then $\boldsymbol{a}(B / f B)<\mathbf{0}$ implies $d<m$ and $e<n$. Conversely, if $d<m$ and $e<n$, then there is a nonempty open set W corresponding to forms f for which the hypersurface
$B / f B$ is F-pure and $(B / f B)_{\bar{x}_{1} \bar{y}_{1}}$ is regular. In this case, $\bar{x}_{1} \bar{y}_{1} \in B / f B$ is a test element. The socle modulo the parameter ideal $\left(x_{1}-y_{1}, x_{2}, \ldots, x_{m}, y_{2}, \ldots, y_{n}\right) B / f B$ is generated by \bar{x}_{1}^{d+e-1}, so $B / f B$ is F-regular if and only if there exists a power $q=p^{e}$ such that

$$
x_{1}^{(d+e-1) q+1} \notin\left(x_{1}^{q}-y_{1}^{q}, x_{2}^{q}, \ldots, x_{m}^{q}, y_{2}^{q}, \ldots, y_{n}^{q}, f\right) B .
$$

The subset of W corresponding to such f is open; it remains to verify that it is nonempty. For this, use $f=x_{1}^{d} y_{1}^{e}+x_{2} \cdots x_{d+1} y_{2} \cdots y_{e+1}$.

Acknowledgments

The authors would like to thank Shiro Goto and Ken-ichi Yoshida for their valuable comments.

References

[CHTV] A. Conca, J. Herzog, N.V. Trung, G. Valla, Diagonal subalgebras of bigraded algebras and embeddings of blow-ups of projective spaces, Amer. J. Math. 119 (1997) 859-901.
[CH] S.D. Cutkosky, J. Herzog, Cohen-Macaulay coordinate rings of blowup schemes, Comment. Math. Helv. 72 (1997) 605-617.
[Da1] V.I. Danilov, The group of ideal classes of a completed ring, Math. USSR Sb. 6 (1968) 493-500.
[Da2] V.I. Danilov, Rings with a discrete group of divisor classes, Math. USSR Sb. 12 (1970) 368-386.
[Fl] H. Flenner, Rationale quasihomogene Singularitäten, Arch. Math. 36 (1981) 35-44.
[GG] A.V. Geramita, A. Gimigliano, Generators for the defining ideal of certain rational surfaces, Duke Math. J. 62 (1991) 61-83.
[GGH] A.V. Geramita, A. Gimigliano, B. Harbourne, Projectively normal but superabundant embeddings of rational surfaces in projective space, J. Algebra 169 (1994) 791-804.
[GGP] A.V. Geramita, A. Gimigliano, Y. Pitteloud, Graded Betti numbers of some embedded rational n-folds, Math. Ann. 301 (1995) 363-380.
[GW1] S. Goto, K.-i. Watanabe, On graded rings. I, J. Math. Soc. Japan 30 (1978) 179-213.
[GW2] S. Goto, K.-i. Watanabe, On graded rings. II \mathbb{Z}^{n}-graded rings, Tokyo J. Math. 1 (1978) 237-261.
[Ha] N. Hara, A characterisation of rational singularities in terms of injectivity of Frobenius maps, Amer. J. Math. 120 (1998) 981-996.
[HW] N. Hara, K.-i. Watanabe, F-regular and F-pure rings vs. log terminal and \log canonical singularities, J. Algebraic Geom. 11 (2002) 363-392.
[HH1] M. Hochster, C. Huneke, Tight closure, invariant theory, and the Briançon-Skoda theorem, J. Amer. Math. Soc. 3 (1990) 31-116.
[HH2] M. Hochster, C. Huneke, F-regularity, test elements, and smooth base change, Trans. Amer. Math. Soc. 346 (1994) 1-62.
[HH3] M. Hochster, C. Huneke, Tight closure of parameter ideals and splitting in module-finite extensions, J. Algebraic Geom. 3 (1994) 599-670.
[HH4] M. Hochster, C. Huneke, Tight closure in equal characteristic zero, in preparation.
[HHR] M. Herrmann, E. Hyry, J. Ribbe, On the Cohen-Macaulay and Gorenstein properties of multigraded Rees algebras, Manuscripta Math. 79 (1993) 343-377.
[HIO] M. Herrmann, S. Ikeda, U. Orbanz, Equimultiplicity and Blowing Up: An Algebraic Study, Springer-Verlag, Berlin, New York, 1988.
[HR] M. Hochster, J. Roberts, The purity of the Frobenius and local cohomology, Adv. Math. 21 (1976) 117-172.
[Hy1] E. Hyry, Blow-up rings and rational singularities, Manuscripta Math. 98 (1999) 377-390.
[Hy2] E. Hyry, The diagonal subring and the Cohen-Macaulay property of a multigraded ring, Trans. Amer. Math. Soc. 351 (1999) 2213-2232.
[Lv1] O. Lavila-Vidal, On the Cohen-Macaulay property of diagonal subalgebras of the Rees algebra, Manuscripta Math. 95 (1998) 47-58.
[Lv2] O. Lavila-Vidal, On the diagonals of a Rees algebra, thesis, Universitat de Barcelona, 1999.
[LvZ] O. Lavila-Vidal, S. Zarzuela, On the Gorenstein property of the diagonals of the Rees algebra, Collect. Math. 49 (1998) 383-397.
[LS] G. Lyubeznik, K.E. Smith, Strong and weak F-regularity are equivalent for graded rings, Amer. J. Math. 121 (1999) 1279-1290.
[MS] V.B. Mehta, V. Srinivas, A characterization of rational singularities, Asian J. Math. 1 (1997) 249-271.
[RSS] P. Roberts, A.K. Singh, V. Srinivas, Annihilators of local cohomology in characteristic zero, Illinois J. Math. 51 (2007) 237-254.
[STV] A. Simis, N.V. Trung, G. Valla, The diagonal subalgebra of a blow-up algebra, J. Pure Appl. Algebra 125 (1998) 305-328.
[Si] A.K. Singh, Veronese subrings and tight closure, Pacific J. Math. 192 (2000) 399-413.
[Sm] K.E. Smith, F-rational rings have rational singularities, Amer. J. Math. 119 (1997) 159-180.
[Tr] N.V. Trung, Diagonal subalgebras and blow-ups of projective spaces, Vietnam J. Math. 28 (2000) 1-15.
[Wa1] K.-i. Watanabe, Rational singularities with k^{*}-action, in: Commutative Algebra, Trento, 1981, in: Lect. Notes Pure Appl. Math., vol. 84, Dekker, New York, 1983, pp. 339-351.
[Wa2] K.-i. Watanabe, F-regular and F-pure normal graded rings, J. Pure Appl. Algebra 71 (1991) 341-350.

[^0]: * Corresponding author.

 E-mail addresses: kurano@math.meiji.ac.jp (K. Kurano), esato@ math.kyushu-u.ac.jp (E.-i. Sato), singh@math.utah.edu (A.K. Singh), watanabe@math.chs.nihon-u.ac.jp (K.-i. Watanabe).
 1 Was supported by NSF grants DMS 0300600 and DMS 0600819.

