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Abstract

We study F-rationality and F-regularity in diagonal subalgebras of multigraded rings, and use this to
construct large families of rings that are F-rational but not F-regular. We also use diagonal subalgebras to
construct rings with divisor class groups that are finitely generated but not discrete in the sense of Danilov.
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1. Introduction

We study the properties of F-rationality and F-regularity in multigraded rings and their diago-
nal subalgebras. The main focus is on diagonal subalgebras of bigraded rings: these constitute an
interesting class of rings since they arise naturally as homogeneous coordinate rings of blow-ups
of projective varieties.
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Let X be a projective variety over a field K, with homogeneous coordinate ring A. Let a C A
be a homogeneous ideal, and V C X the closed subvariety defined by a. For g an integer, we use
ag to denote the K -vector space consisting of homogeneous elements of a of degree g. If g > 0,
then a, defines a very ample complete linear system on the blow-up of X along V, and hence
K[ag] is a homogeneous coordinate ring for this blow-up. Since the ideals a” define the same
subvariety V, the rings K[(a") ¢] are homogeneous coordinate ring for the blow-up provided
g>h>0.

Suppose that A is a standard N-graded K -algebra, and consider the N2-grading on the Rees
algebra A[at], where degrt/ = (i, j) for r € A;. The connection with diagonal subalgebras stems
from the fact that if a” is generated by elements of degree less than or equal to g, then

K[(a"),]=ED Atat) i -

k=0

Using A = (g, h)Z to denote the (g, h)-diagonal in 72, the diagonal subalgebra Alat], =
Py Alat] gk nk) is a homogeneous coordinate ring for the blow-up of Proj A along the subva-
riety defined by a, whenever g > h > 0.

The papers [GG,GGH,GGP,Tr] use diagonal subalgebras in studying blow-ups of projective
space at finite sets of points. For A a polynomial ring and a a homogeneous ideal, the ring
theoretic properties of K[a,] are studied by Simis, Trung, and Valla in [STV] by realizing K[a, ]
as a diagonal subalgebra of the Rees algebra A[at]. In particular, they determine when K{a,]
is Cohen—Macaulay for a a complete intersection ideal generated by forms of equal degree, and
also for a the ideal of maximal minors of a generic matrix. Some of their results are extended by
Conca, Herzog, Trung, and Valla as in the following theorem.

Theorem 1.1. (See [CHTV, Theorem 4.6].) Let K|[x1, ..., x| be a polynomial ring over a field,
and let a be a complete intersection ideal minimally generated by forms of degrees d;, ..., d,.
Fix positive integers g and h with g/h > d = max{dy, ..., d,}.

Then K[(ah)g] is Cohen—Macaulay if and only if g > (h — 1)d —m + Z;:l d;.

When A is a polynomial ring and a an ideal for which A[at] is Cohen—Macaulay, Lavila-Vidal
[Lvl, Theorem 4.5] proved that the diagonal subalgebras K [(ah)g] are Cohen—Macaulay for
g > h > 0, thereby settling a conjecture from [CHTV]. In [CH] Cutkosky and Herzog obtain af-
firmative answers regarding the existence of a constant ¢ such that K [(a”) ¢] is Cohen-Macaulay
whenever g > ch. For more work on the Cohen—Macaulay and Gorenstein properties of diagonal
subalgebras, see [HHR,Hy2,Lv2] and [LvZ].

As a motivating example for some of the results of this paper, consider a polynomial ring
A =K][x1,...,x,] and an ideal a = (z1, z2) generated by relatively prime forms z; and z> of
degree d. Setting A = (d + 1, 1)Z, the diagonal subalgebra A[at] 4 is a homogeneous coordinate
ring for the blow-up of Proj A = P! along the subvariety defined by a. The Rees algebra A[at]
has a presentation

R=KI[x1,..., %m, y1, y21/(y221 — y122),

where degx; = (1,0) and degy; = (d, 1), and consequently R 4 is the subalgebra of R gener-
ated by the elements x;y;. When K has characteristic zero and z; and z; are general forms of
degree d, the results of Section 3 imply that R 5 has rational singularities if and only if d < m,
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and that it is of F-regular type if and only if d < m. As a consequence, we obtain large families of
rings of the form R 4, standard graded over a field, which have rational singularities, but which
are not of F-regular type.

It is worth pointing out that if R is an N?-graded ring over an infinite field R,00 =K, and
A = (g, h)Z for coprime positive integers g and &, then R  is the ring of invariants of the torus
K* acting on R via

Airi—s A8 where A€ K* andr € R jy-

Consequently there exist torus actions on hypersurfaces for which the rings of invariants have
rational singularities but are not of F-regular type.

In Section 4 we use diagonal subalgebras to construct standard graded normal rings R, with
isolated singularities, for which H,% (R)y =0 and H%(R)] # 0. If S is the localization of such
aring R at its homogeneous maximal ideal, then, by Danilov’s results, the divisor class group
of § is a finitely generated abelian group, though S does not have a discrete divisor class group.
Such rings R are also of interest in view of the results of [RSS], where it is proved that the image
of H,%l(R)0 in Hi(R*) is annihilated by elements of R of arbitrarily small positive degree;
here R™ denotes the absolute integral closure of R. A corresponding result for H,%l(R)1 is not
known at this point, and the rings constructed in Section 4 constitute interesting test cases.

Section 2 summarizes some notation and conventions for multigraded rings and modules. In
Section 3 we carry out an analysis of diagonal subalgebras of bigraded hypersurfaces; this uses
results on rational singularities and F-regular rings proved in Sections 5 and 6, respectively.

2. Preliminaries

In this section, we provide a brief treatment of multigraded rings and modules; see [GW1,
GW2,HHR], and [HIO] for further details.
By an N"-graded ring we mean a ring

R= P Ra.

neN"

which is finitely generated over the subring Ry. If (Ro, m) is a local ring, then R has a unique
homogeneous maximal ideal M = mR + R, where Ry =D, .9 Ra-

For m = (my,...,m,;) and n = (ny,...,n,) in Z", we say n > m (resp. n > m) if n; > m;
(resp. n; = m;) for each i.

Let M be a Z"-graded R-module. For m € Z", we set

M}m = @ My,
nz=>m

which is a Z”-graded submodule of M. One writes M (m) for the Z"-graded R-module with
shifted grading [M (m)],, = M+ foreachn e Z".

Let M and N be Z’-graded R-modules. Then Homp (M, N) is the Z"-graded module with
[Homp (M, N)], being the abelian group consisting of degree preserving R-linear homomor-
phisms from M to N (n).
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The functor E_xt%z(M , —) is the ith derived functor of Homp (M, —) in the category of Z'-

graded R-modules. When M is finitely generated, E_thR(M ,N) and Extgz(M , N) agree as
underlying R-modules. For a homogeneous ideal a of R, the local cohomology modules of
M with support in a are the Z"-graded modules

HL(M) =limExty, (R/d", M).

n

Let ¢ : Z" —> Z° be a homomorphism of abelian groups satisfying ¢(N") C N*. We write
R? for the ring R with the N*-grading where

"= @ R

p(m)=n

If M is a Z"-graded R-module, then M? is the Z*-graded R¥-module with

)= @ M

p(m)=n
The change of grading functor (—) is exact; by [HHR, Lemma 1.1] one has
Hip(M)¥ = Hiyp, (M?).
Consider the projections ¢; : Z" —> Z with ¢; (m1, ..., m,;) = m;, and set
a(R¥) =max{a e Z | [HEm R (R)*] # 0};

this is the a-invariant of the N-graded ring R¥ in the sense of Goto and Watanabe [GW1]. As in
[HHR], the multigraded a-invariant of R is

a(R) = (a(R‘p‘), .. .,a(R‘/”)).

Let R be a Z?-graded ring and let g, i be positive integers. The subgroup A = (g, h)Z is a
diagonal in 72, and the corresponding diagonal subalgebra of R is

Ra=EPRgk.nm-
keZ

Similarly, if M is a Zz-graded R-module, we set

My = EB M gk, ni)»
keZ

which is a Z-graded module over the Z-graded ring R 4.
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Lemma 2.1. Let A and B be N-graded normal rings, finitely generated over a field Ag = K =
Bo. Set T = A @k B. Let g and h be positive integers and set A = (g, h)Z. Let a, b, and m
denote the homogeneous maximal ideals of A, B, and T respectively. Then, for each q > 0 and
i, j,k €Z, one has

Hen (T ) ), = (Aivok ® H (B) ) ® (HZ (A)iygr ® Bjik)

@ @ (Hgl(A)i+gk®Hg2(B)j+hk)‘
q1t+q2=q+1

Proof. Let A® and B’ denote the respective Veronese subrings of A and B. Set

A =P Ay and  B®) = Bjim,
keZ keZ

which are graded A®® and B modules respectively. Using # for the Segre product,

TG, j)a=ED Airek ®k Bjpm=AC #B"D.
keZ

The ideal Af) A is a-primary; likewise, B_(:Z)B is b-primary. The Kiinneth formula for local
cohomology, [GW1, Theorem 4.1.5], now gives the desired result. O

Notation 2.2. We use bold letters to denote lists of elements, e.g., 7 = 21,...,2s and y =
yl EREILC) yS'

3. Diagonal subalgebras of bigraded hypersurfaces

We prove the following theorem about diagonal subalgebras of N?-graded hypersurfaces. The
proof uses results proved later in Sections 5 and 6.

Theorem 3.1. Let K be a field, let m, n be integers with m,n > 2, and let

R=KI[X1, o, Xms Y1seer Ynl/(f)

be a normal N?-graded hypersurface where degx; = (1,0), degy; = (0,1), and deg f =
(d, e) > (0,0). For positive integers g and h, set A = (g, h)Z. Then:

(1) The ring R s is Cohen—Macaulay if and only if |(d —m)/g| <e/h and |(e —n)/h] <d/g.
In particular, if d <m and e < n, then R 5 is Cohen—Macaulay for each diagonal A.

(2) The graded canonical module of R is R(d —m, e — n) 5. Hence R 4 is Gorenstein if and
only if (d —m)/g = (e — n)/ h, and this is an integer.

If K has characteristic zero, and f is a generic polynomial of degree (d, e), then:
(3) The ring R A has rational singularities if and only if it is Cohen—Macaulay and d < m or

e <n.
(4) The ring R is of F-regular type if and only if d < m and e < n.
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e Gorenstein: e=d—m +n
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Fig. 1. Properties of R 5 for A = (1, 1)Z.

Form,n >3 and A = (1, 1)Z, the properties of R 4, as determined by m, n, d, e, are summa-
rized in Fig. 1.

Remark 3.2. Let m, n > 2. A generic hypersurface of degree (d, ) > (0, 0) in m, n variables is
normal precisely when

m>min(2,d) and n > min(2,e).

Suppose that m =2 = n, and that f is nonzero. Then dim R 4 = 2; since R 4 is generated over a
field by elements of equal degree, R 4 is of F-regular type if and only if it has rational singulari-
ties; see [Wa2]. This is the case precisely if

Following a suggestion of Hara, the case n =2 and e = 1 was used in [Si, Example 7.3] to
construct examples of standard graded rings with rational singularities which are not of F-regular
type.

Proof of Theorem 3.1. Set A = K[x], B = K[y], and T = A ®kx B. By Lemma 2.1,
H{ (T») =0 for ¢ #m +n — 1. The local cohomology exact sequence induced by

0 —— T(—d,—e), —1— T4 Ra 0
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therefore gives Hgfl(’RA) = H%(T(—d, —e)p) for g <m + n — 2, and also shows that
Hn’ﬁ”‘”_z(R A) and H";{‘L”_1 (R ) are, respectively, the kernel and cokernel of

HIH N T (—d, —e)y)  —2—  HIVN(T)

[HI(A(~d)) ® H(B(—e))], —— [HI'(A)® H{(B)] .

The horizontal map above is surjective since its graded dual

[A(d —m) ® Ble —n)], «L— [A(=m) ® B(—n)I4

T(d—m,e—n), <L T(—m,—n)

is injective. In particular, dimRx =m +n — 2.

It follows from the above discussion that R, is Cohen—Macaulay if and only if
H (T (—d, —e),) =0 for each ¢ < m +n — 2. By Lemma 2.1, this is the case if and only
if, for each integer k, one has

A—digk ® Hy(B)_, 41 =0=H' (A)_y o ® B—ei-

Hence R 4 is Cohen—Macaulay if and only if there is no integer k satisfying
d/ig<k<(e—n)/h or e/h<k<(d—-m)/g,

which completes the proof of (1).
For (2), note that the graded canonical module of R 4 is the graded dual of H{QJF”_Z(R A)»
and hence that it equals

coker(T (—m, —n) 5 N T(d—m,e—n)p)=R(d—m,e—n),.

This module is principal if and only if R(d —m,e —n), = Ra(a) for some integer a, i.e.,
d—m=gaand e —n=ha.

When f is a general polynomial of degree (d, e), the ring R o has an isolated singularity.
Also, R 4 is normal since it is a direct summand of the normal ring R. By Theorem 5.1, R 5 has
rational singularities precisely if it is Cohen—Macaulay and a(R o) < O; this proves (3).

It remains to prove (4). If d < m and e < n, then Theorem 5.2 implies that R has rational
singularities. By Theorem 6.2, it follows that for almost all primes p, the characteristic p models
Rp of R are F-rational hypersurfaces which, therefore, are F-regular. Alternatively, R, is a
generic hypersurface of degree (d, e) < (m, n), so Theorem 6.5 implies that R, is F-regular.
Since (R,) 4 is a direct summand of R, it follows that (R ) , is F-regular. The rings (R ) ,
are characteristic p models of R 4, so we conclude that R 4 is of F-regular type.

Suppose R 4 has F-regular type, and let (R ) , be a characteristic p model which is F-regular.
Fix an integer k > d/g. Then Proposition 6.3 implies that there exists an integer ¢ = p° such that
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-2
rankg ((RP)A)k <rankg [H&""‘” (a)("))]k,

where w is the graded canonical module of (R ) ,. Using (2), we see that

Hnnz+n—2(w(l])) — H&n+n_2(Rp(qd —gqm,qge — Qn)A).

Let T, be a characteristic p model for T such that T),/fT, = R ,. Multiplication by f on T},
induces a local cohomology exact sequence

N H&”:‘”_Z(Tp(qd —qm,qe —qn) ) — Hn”ll:"_z(Rp(qd —qm.qe —qn) ,)

— H;l”;rnfl(Tp(qd—qm—d,qe—qn—e)A) —_—

Since HQ{:"_Z(TP (gd — gm, ge — qn) ,) vanishes by Lemma 2.1, we conclude that

rankg ((R,,)A)k <rankg [HQ:‘”_I (Tp(qd —gm—d,qge —qn — e)A)]k

— m n
= rankg Hap (Ap)qd—qm—d—i-gk ® Hbq (Bp)qe—qn—e—&-hk'
Hence gd —gm — d + gk < 0; as d — gk <0, we conclude d < m. Similarly,e <n. O

We conclude this section with an example where a local cohomology module of a standard
graded ring is not rigid in the sense that H%(R)O = 0 while Hé(R)1 # 0. Further such examples
are constructed in Section 4.

Proposition 3.3. Let K be a field and let

R = K|[x1,x2,x3, 1, y21/(f)

where degx; = (1,0), degy; = (0,1), and deg f = (d,e) ford >4 and e > 1. Let g and h be
positive integers such that g <d — 3 and h > e, and set A = (g, h)Z. Then Hé (Ra)g=0and
Hg(Ra); #0.

Proof. Using the resolution of R over the polynomial ring T as in the proof of Theorem 3.1, we
have an exact sequence

Hg(Ta) — Hyp(Ra) — Hp (T (=d, —€)a) —> Hy,(Ta).
Lemma 2.1 implies that H‘%(TA) =0= H%(TA). Hence, again by Lemma 2.1,

Hi(Ra)g=H(A)_4®B_,=0 and Hp(Ra)=H>(A)g q® By #0. O
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4. Non-rigid local cohomology modules

We construct examples of standard graded normal rings R over C, with only isolated singu-
larities, for which H2(R), =0 and HZ(R), # 0. Let S be the localization of such a ring R at
its homogeneous maximal ideal. By results of Danilov [Dal,Da2], Theorem 4.1 below, it follows
that the divisor class group of S is finitely generated, though S does not have a discrete divisor
class group, i.e., the natural map CI(S) —> CI(S[[¢]]) is not bijective. Here, remember that if A
is a Noetherian normal domain, then so is A[[#]].

Theorem 4.1. Let R be a standard graded normal ring, which is finitely generated as an algebra
over Ry = C. Assume, moreover, that X =Proj R is smooth. Set (S, m) to be the local ring of R
at its homogeneous maximal ideal, and S to be the m-adic completion of S. Then

(1) the group CI(S) is finitely generated if and only if H'(X, Ox) =0;

(2) the map CI(S) — CI(S) is bijective if and only if H (X, Ox (i)) = 0 for each integeri > 1;
and

(3) the map CI(S) —> CI(S[[t1]) is bijective if and only if H (X, Ox (i)) = 0 for each integer
i>=0.

The essential point in our construction is in the following theorem.

Theorem 4.2. Let A be a Cohen—Macaulay ring of dimension d > 2, which is a standard graded
algebra over a field K. For s > 2, let 71, ..., zs be a regular sequence in A, consisting of homo-
geneous elements of equal degree, say k. Consider the Rees ring R = Alz1t, ..., zst] with the
ZQ—grading where degx = (n, 0) for x € A,, and degz;t = (0, 1).

Let A = (g, h)Z where g, h are positive integers, and let m denote the homogeneous maximal

ideal of R a. Then:

() H{(Ra)=0ifqg#d —s+1,d;and
2) Hr‘é—S“(RA)i #0ifandonly if 1 <i < (a+ ks —k)/g, where a is the a-invariant of A.

In particular, R 4 is Cohen—Macaulay if and only if g > a + ks — k.

Example 4.3. For d > 3, let A = C[xo, ..., x4]/(f) be a standard graded hypersurface such that
Proj A is smooth over C. Take general k-forms zy,...,z4—1 € A, and consider the Rees ring
R =Alzit, ..., zq—1t]. Since (z) C A is aradical ideal,

2r((2), A) = A/ @)1, -+ -5 Ya-1]

is a reduced ring, and therefore R = A[z1t, ..., zg—1t] is integrally closed in A[¢]. Since A is
normal, so is R. Note that Proj R 4 is the blow-up of Proj A at the subvariety defined by (z), i.e.,
at k%=1 (deg f) points. It follows that Proj R » is smooth over C. Hence R 4 is a standard graded
C-algebra, which is normal and has an isolated singularity.

If A=(g,h)Z is a diagonal with 1 < g <degf +k(d—2)—(d+ 1) and h > 1, then
Theorem 4.2 implies that

H:(Ra)o=0 and HZ(Ra), #0.
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The rest of this section is devoted to proving Theorem 4.2. We may assume that the base field
K is infinite. Then one can find linear forms xi, ..., x4—s in A such that x1, ..., X4—s, 21, ..., s
is a maximal A-regular sequence.

We will use the following lemma; the notation is as in Theorem 4.2.

Lemma 4.4. Let a be the homogeneous maximal ideal of A. Set I = (z1,...,25)A. Let r be a
positive integer.

() HI(I"Y=0ifg#d—s+1,d.
(2) Assume d > s. Then, Hgl_‘Y'H(I’),- #0ifandonlyifi <a+ks+rk—k.
(3) Assume d =s. Then, Hg_”l(lr)i #0ifandonly if0<i <a+ks+rk—k.

Proof. Recall that A and A/I" are Cohen—Macaulay rings of dimension d and d — s, respec-
tively. By the exact sequence

0—I"—A—A/"' —0

we obtain
HI(A) ifg=d,
HI(I")={ HI=S(A/1I") ifqg=d—s+1,
0 ifg#d—s+1,d,

which proves (1).

Next we prove (2) and (3). Since A/I" is a standard graded Cohen—Macaulay ring of dimen-
sion d — s, it is enough to show that the a-invariant of this ring equals a + ks + rk — k. This is
straightforward if » = 1, and we proceed by induction. Consider the exact sequence

0— I"/ I — A/ — A/ —> 0.

Since z1, ..., 25 is a regular sequence of k-forms, 1" /1 r+l g isomorphic to
s—1+r
(A/D (i)
Thus, we have the following exact sequence:

0— HI((A /I)(—rk))(ﬂ“) —s HIS(A/IY) — HES(A/17) —> 0.

The a-invariant of (A/I)(—rk) equals a + ks + rk, and that of A/I" is a + ks + rk — k by the
inductive hypothesis. Thus, A/I”*! has a-invariant a + ks +rk. O

Proof of Theorem 4.2. Let B = K[y, ..., ys] be a polynomial ring, and set

T=AQ®k B=A[y,...,ys]

Consider the Z2-grading on T where degx = (1, 0) for x € A,, and degy; = (0, 1) for each i.
One has a surjective homomorphism of graded rings
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T — R=A[z1t,...,2st] where y; —> z;t,

and this induces an isomorphism

RzT/h(Zl zs).
yro--o Vs

The minimal free resolution of R over T is given by the Eagon—Northcott complex
0— F 6D _ L p-6=2_, ... 5 F0 0,

where FO = T(0,0), and F~i for 1 <i <s — 1is the direct sum of (iil) copies of
T(—k,—)®T(—2k,—( —1D)® - &T(—ik,—1).
Let n be the homogeneous maximal ideal of 7 4. One has the spectral sequence:
EYY = HP (H{(FY)) = HE (Ra).

Let G be the set of (n, m) such that T (n, m) appears in the Eagon—Northcott complex above,
i.e., the elements of G are

(0,0,
(=k, =1),
(—k, =2), (—2k, —1),
(—k, =3), (=2k, =2), (=3k, —1),

(=k,—=(s=1), ..., (=(—=Dk —1).

Let a and b be the homogeneous maximal ideal of A and B, respectively. For integers n and m,
the Kiinneth formula gives

H]! (T(n, m))
= Hy(A(n) ® B(m))

= (HI(Am) ® Bim)) & (A() @ H{ (Bim))) & O Hi(Am)® H] (B(m))
i+j=q+1

= H{(T(n.m)) ® H{ (T(.m)) & P HL(Am) ®x H](B(m)).
i+j=q+1

As A and B are Cohen—Macaulay of dimension d and s respectively, it follows that

HI(F*)=0 ifg#s,d,d+s—1.
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In the case where d > s, one has
H(F*) = By(F*) and HY(F*) = HI(F?).
and if d = s, then
H(F*) = HY(F*) @ 1y (F*).
We claim Hi (F*) , = 0. If not, there exists (n,m) € G and £ € Z such that
Hg (T (n, m))(gz,he) #0.
This implies that
Hy (T (n,m)) oy = Al ge @k Hy(B(m)),,, = Ansge ®k Hy(B),, 10

is nonzero, SO

n+gf>0 and m+4hé < —s,

and hence

which is not possible. This proves that Hy (F*) , = 0. Thus, we have

)a

0 ifg#d,d+s—1,
q . —
Hi(F )A—{Hgl(F')A ifg=d.

It follows that
EPY = HP (H{ (F3)) = EL
for each p and ¢. Therefore,
Hyy(Ra) = Ey ! = ™ (H{(F})) = B/ (H{(F*) ) = H{(R) 5
ford —s+1<i<d-—1,and

HL(Ra)=0  fori<d—s+1.
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We next study Hé (R). Since

R=ASIK) DI’ S - I (k) D ---,

we have
H(R) = Hy(A) & H () (k) ® Hy(I*)2k) & -+~ & Hy(I")(rk) & - .

Theorem 4.2 (1) now follow using Lemma 4.4 (1).

Assume that d > s. Then, by Lemma 4.4 (2), Hgl_”l (I"(rk)); # 0 if and only if
i<a-+ks—k.

Assume that d = s. Then, by Lemma 4.4 (3), H=T1(I" (rk)); # 0 if and only if —rk <i <
a+ks—k.

In each case, H? =St (R) (4 iy # 0 if and only if

ga—i—ks—k.
g

5. Rational singularities

Let R be a normal domain, essentially of finite type over a field of characteristic zero, and
consider a desingularization f : Z — Spec R, i.e., a proper birational morphism with Z a non-
singular variety. One says R has rational singularities if R’ f,Oz = 0 for each i > 1; this does
not depend on the choice of the desingularization f. For N-graded rings, one has the following
criterion due to Flenner [F1] and Watanabe [Wal].

Theorem 5.1. Let R be a normal N-graded ring which is finitely generated over a field Ry
of characteristic zero. Then R has rational singularities if and only if it is Cohen—Macaulay,
a(R) <0, and the localization Ry has rational singularities for each p € Spec R\ {R4}.

When R has an isolated singularity, the above theorem gives an effective criterion for deter-
mining if R has rational singularities. However, a multigraded hypersurface typically does not
have an isolated singularity, and the following variation turns out to be useful.

Theorem 5.2. Let R be a normal N"-graded ring such that Ry is a local ring essentially of finite
type over a field of characteristic zero, and R is generated over Ry by elements

xllsxlzs"'sxlllv x21»x22»"-»x212a s xrla-xr2v-"7xrtr»

where degx;; is a positive integer multiple of the ith unit vector e; € N'. Then R has rational
singularities if and only if

(1) R is Cohen—Macaulay,
(2) Ry has rational singularities for each p belonging to

Spec R\ (V(x11, %12, ..., X1 ) U+ - UV (X1, X2, ..., Xp,)),  and
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3) a(R) <0, i.e, a(R¥) <0 for each coordinate projection ¢; : N' — N.
Before proceeding with the proof, we record some preliminary results.

Remark 5.3. Let R be an N-graded ring. We use R’ to denote the Rees algebra with respect to
the filtration F,, = R>,, i.e.,

RI=FR®@FT®FRT*®--

When considering Proj RY, we use the N-grading on R" where [R?], = F,T". The inclusion
R =[R"]y = R’ gives a map

Proj R* —f> Spec R.

Also, the inclusions R, < F, give rise to an injective homomorphism of graded rings R < R’,
which induces a surjection

Proj R 5 Proj R.

Lemma 5.4. Let R be an N-graded ring which is finitely generated over Ry, and assume that R
is essentially of finite type over a field of characteristic zero.

If Ry, has rational singularities for all primes p € Spec R \ V (R, then Proj R has rational
singularities.

Proof. Note that Proj R is covered by affine open sets D, (»T") for integers n > 1 and homoge-

neous elements r € R>,. Consequently, it suffices to check that [R ET,, ], has rational singularities.
Next, note that

1 1
[REraly= R+ Rz + 5 [Rl500 +

In the case degr > n, the ring above is simply R,, which has rational singularities by the hypoth-
esis of the lemma. If degr = n, then

[Ripa]o=[R130

The Z-graded ring R, has rational singularities and so, by [Wal, Lemma 2.5], the ring [Rr]>0
has rational singularities as well. O

Lemma 5.5. (See [Hy2, Lemma 2.3].) Let R be an N-graded ring which is finitely generated over
a local ring (Rg, m). Suppose [ m+R+(R)] =0foralli > 0. Then, for all ideals a of Ry, one

has

[ a+R+(R)] =0 foralli>0.

We are now in a position to prove the following theorem, which is a variation of [FI, Satz 3.1],
[Wal, Theorem 2.2], and [Hy1, Theorem 1.5].
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Theorem 5.6. Let R be an N-graded normal ring which is finitely generated over Ry, and assume
that Ry is a local ring essentially of finite type over a field of characteristic zero. Then R has
rational singularities if and only if

(1) R is Cohen—Macaulay,

(2) Ry has rational singularities for all p € Spec R\ V(R,), and

3) a(R) <0.

Proof. It is straightforward to see that conditions (1)—(3) hold when R has rational singularities,
and we focus on the converse. Consider the morphism

Y = Proj R —f> Spec R

as in Remark 5.3. Let g : Z — Y be a desingularization of Y; the composition

Z—g>Yl>SpecR

is then a desingularization of Spec R. Note that ¥ = ProjR" has rational singularities by
Lemma 5.4, so

g+07z =0y and R9,0;,=0 forallg>1.
Consequently the Leray spectral sequence
EY?=HP(Y,R1,0;) = H'"(Z,0y)
degenerates, and we get H”(Z, Oz) = HP (Y, Oy) for all p > 1. Since Spec R is affine, we also

have RP(g o f)«Oz = HP(Z, Ogz). To prove that R has rational singularities, it now suffices to
show that H? (Y, Oy) =0 for all p > 1. Consider the map 7 : ¥ —> X = Proj R. We have

HP(Y, Oy) = H? (X, 1,0x) = @) H? (X, Ox () = [HF T (R)]_ .
n>0 ~

By condition (1), we have [H£1+R+ (R)]>O =0 for all p > 0, and so Lemma 5.5 implies that
P _ cad
[HR+ (R)]>0 =0forall p >0asdesired. O

Proof of theorem 5.2. If R has rational singularities, it is easily seen that conditions (1)—(3)
must hold. For the converse, we proceed by induction on r. The case r = 1 is Theorem 5.6
established above, so assume r > 2. It suffices to show that Rgy has rational singularities where
M is the homogeneous maximal ideal of R. Set

m=<"MnN [R‘/"]O,

and consider the N-graded ring S obtained by inverting the multiplicative set [R¥ ]y \ m in R¥".
Since Rgy is a localization of S, it suffices to show that S has rational singularities. Note that
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a(S) = a(R?), which is a negative integer by (1). Using Theorem 5.6, it is therefore enough
to show that Ry has rational singularities for all ‘3 € Spec R\ V (x,1, xs2, ..., X,). Fix such a
prime ‘3, and let

v Z — 7!

be the projection to the first 7 — 1 coordinates. Note that RY is the ring R regraded such that
degx,; =0, and the degrees of x;; for i < r are unchanged. Set

p=PN[R"],
and let T be the ring obtained by inverting the multiplicative set [RY ]y \ p in R . It suffices to

show that T has rational singularities. Note that 7 is an N"~!-graded ring defined over a local
ring (Ty, p), and that it has homogeneous maximal ideal p + b7 where

b=(RV), =(xijli <r)R.

Using the inductive hypothesis, it remains to verify that a(7) < 0. By condition (1), for all
integers 1 < j <r — 1, we have

[H%(R)Wj]>o =0 foralli>0,
and using Lemma 5.5 it follows that

[H£+5(R)‘”f]>0 =0 foralli>0.
Consequently a(T%/) <0 for 1 < j <r — 1, which completes the proof. O
6. F-regularity

For the theory of tight closure, we refer to the papers [HH1,HH2] and [HH3]. We summarize
results about F-rational and F-regular rings:

Theorem 6.1. The following hold for rings of prime characteristic.

(1) Regular rings are F-regular.

(2) Direct summands of F-regular rings are F-regular.

(3) F-rational rings are normal; an F-rational ring which is a homomorphic image of a Cohen—
Macaulay ring is Cohen—Macaulay.

(4) F-rational Gorenstein rings are F-regular.

(5) Let R be an N-graded ring which is finitely generated over a field Ry. If R is weakly F-
regular, then it is F-regular.

Proof. For (1) and (2) see [HH1, Theorem 4.6] and [HH1, Proposition 4.12] respectively; (3)
is part of [HH2, Theorem 4.2], and for (4) see [HH2, Corollary 4.7], Lastly, (5) is [LS, Corol-
lary 4.4]. O
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The characteristic zero aspects of tight closure are developed in [HH4]. Let K be a field of
characteristic zero. A finitely generated K -algebra R = K[xy, ..., x;,]/a is of F-regular type if
there exists a finitely generated Z-algebra A C K, and a finitely generated free A-algebra

Ra=Alx1,...,xul/04,

such that R = R4 ®4 K and, for all maximal ideals p in a Zariski dense subset of Spec A, the
fiber rings R4 ®4 A/ are F-regular rings of characteristic p > 0. Similarly, R is of F-rational
type if for a dense subset of 1, the fiber rings R4 ® 4 A/ are F-rational. Combining results from
[Ha,HW,MS,Sm] one has:

Theorem 6.2. Let R be a ring which is finitely generated over a field of characteristic zero. Then
R has rational singularities if and only if it is of F-rational type. If R is Q-Gorenstein, then it
has log terminal singularities if and only if it is of F-regular type.

Proposition 6.3. Let K be a field of characteristic p > 0, and R an N-graded normal ring which
is finitely generated over Ry = K. Let w denote the graded canonical module of R, and set
d =dimR.

Suppose R is F-regular. Then, for each integer k, there exists g = p° such that

rankg Ry < rankg [Ht‘f1 (a)(q))]k.

Proof. If d < 1, then R is regular and the assertion is elementary. Assume d > 2. Let & €
[Hf,l1 (w)]o be an element which generates the socle of H,ﬁﬁ (w). Since the map ol — @
is an isomorphism in codimension one, F¢(£) may be viewed as an element of Hgl (@) as
in [Wa2].

Fix an integer k. For each e € N, set V, to be the kernel of the vector space homomorphism

Ry —> [HE (0'P7)],.  where c—> cF(£). (6.3.1)

If cFetl(g) =0, then F(cF¢(§)) = cPFetl(§) = 0; since R is F-pure, it follows that
cF¢(&) =0. Consequently the vector spaces V, form a descending sequence

Vi2V,2V32---.

The hypothesis that R is F-regular implies ), V. = 0. Since each V, has finite rank, V, = 0 for
e > 0. Hence the homomorphism (6.3.1) is injective for e > 0. O

We next record tight closure properties of general N-graded hypersurfaces. The results for
F-purity are essentially worked out in [HR].

Theorem 6.4. Let A = K|[x1, ..., x;] be a polynomial ring over a field K of positive character-
istic. Let d be a nonnegative integer, and set M = (d+2’_1) — 1. Consider the affine space AAK/I
parameterizing the degree d forms in A in which xil occurs with coefficient 1.

Let U be the subset of A% corresponding to the forms f for which A/f A F-pure. Then U is
a Zariski open set, and it is nonempty if and only if d < m.
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Let V be the set corresponding to forms f for which A/f A is F-regular. Then V contains a
nonempty Zariski open set if d < m, and is empty otherwise.

Proof. The set U is Zariski open by [HR, p. 156] and it is empty if d > m by [HR, Propo-
sition 5.18]. If d < m, the square-free monomial x;---x; defines an F-pure hypersurface
A/(x1---xq). A linear change of variables yields the polynomial

f=x1(x1+x2)- - (x1 + xq)

in which xf occurs with coefficient 1. Hence U is nonempty for d < m.

If d > m, then A/f A has a-invariant d —m > 0 so A/f A is not F-regular. Suppose d < m.
Consider the set W C AAK’I parameterizing the forms f for which A/f A is F-pure and (A/f A)z,
is regular; W is a nonempty open subset of AZI\(’I . Let f correspond to a point of W. The element
X1 € A/f A has a power which is a test element; since A/f A is F-pure, it follows that X is a test

element. Note that X», ..., X, is a homogeneous system of parameters for A/f A and that )?'il_l
generates the socle modulo (x, ..., X,,). Hence the ring A/f A is F-regular if and only if there

exists a power ¢ of the prime characteristic p such that

d—1)g+1
xf ) ¢(xg,...,x,(,11,f)A.

The set of such f corresponds to an open subset of W; it remains to verify that this subset is
nonempty. For this, consider

f=x{+x2xap1,
which corresponds to a point of W, and note that A/f A is F-regular since
d—1)p+1
xi P ¢(x§,...,x£,f)A. O

These ideas carry over to multi-graded hypersurfaces; we restrict below to the bigraded case.

The set of forms in K[x1,...,Xn, Y1, ..., yn] of degree (d, e) in which xfyf occurs with coeffi-
cient 1 is parametrized by the affine space AY where N = (/T =) (¢*"~1) — 1.

Theorem 6.5. Let B= K|[x1,...,Xm, Y1, ..., Yu] be a polynomial ring over a field K of positive
characteristic. Consider the N*-grading on B with degx; =(1,0) and degy; = (0, 1). Let d, e
be nonnegative integers, and consider the affine space AII\(’ parameterizing forms of degree (d, e)
in which xfyf occurs with coefficient 1.

Let U be the subset of Al,\(’ corresponding to forms f for which B/f B is F-pure. Then U is a
Zariski open set, and it is nonempty if and only if d < m and e < n.

Let V be the set corresponding to forms f for which B/f B is F-regular. Then V contains a
nonempty Zariski open set if d < m and e < n, and is empty otherwise.

Proof. The argument for F-purity is similar to the proof of Theorem 6.4; if d < m and e < n,
then the polynomial xi - - - x4y1 - - - y. defines an F-pure hypersurface.

If B/f B is F-regular, then a(B/f B) < 0 implies d < m and e < n. Conversely, if d < m and
e < n, then there is a nonempty open set W corresponding to forms f for which the hypersurface
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B/f B is F-pure and (B/f B)z,y, is regular. In this case, X1y; € B/f B is a test element. The

socle modulo the parameter ideal (x1 — y1, X2, ..., Xm, Y2, ..., yn) B/f B is generated by )?‘lHe*l s

so B/f B is F-regular if and only if there exists a power ¢ = p° such that

(d+e—1)g+1 q q .9 q 4 q
'xl ¢(‘x1_ylvxza"'sxmay27---vynvf)B'

The subset of W corresponding to such f is open; it remains to verify that it is nonempty. For
this, use f =x{y{ + X2+ Xg11y2+ Yey1. O
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