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Abstract

Let R be a local ring of prime characteristic. We study the ring of Frobenius operat-
ors F(E), where E is the injective hull of the residue field of R. In particular, we ex-
amine the finite generation of F(E) over its degree zero component F0(E), and show
that F(E) need not be finitely generated when R is a determinantal ring; nonetheless,
we obtain concrete descriptions of F(E) in good generality that we use, for example,
to prove the discreteness of F-jumping numbers for arbitrary ideals in determinantal
rings.

1. Introduction

Lyubeznik and Smith [LS] initiated the systematic study of rings of Frobenius oper-
ators and their applications to tight closure theory. Our focus here is on the Frobenius
operators on the injective hull of R/m, when (R, m) is a complete local ring of prime
characteristic.
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Definition 1·1. Let R be a ring of prime characteristic p, with Frobenius endomorph-

ism F . Following [LS, section 3], we set R{Fe} to be the ring extension of R obtained by
adjoining a noncommutative variable χ subject to the relations χr = r pe

χ for all r ∈ R.
Let M be an R-module. Extending the R-module structure on M to an R{Fe}-module

structure is equivalent to specifying an additive map ϕ : M → M that satisfies

ϕ(rm) = r pe
ϕ(m), for each r ∈ R and m ∈ M.

Define F e(M) to be the set of all such maps ϕ arising from R{Fe}-module structures on M ;
this is an Abelian group with a left R-module structure, where r ∈ R acts on ϕ ∈ F e(M) to
give the composition r ◦ ϕ. Given elements ϕ ∈ F e(M) and ϕ′ ∈ F e′

(M), the compositions
ϕ ◦ ϕ′ and ϕ′ ◦ ϕ are elements of the module F e+e′

(M). Thus,

F(M) = F0(M) ⊕ F1(M) ⊕ F2(M) ⊕ · · ·
has a ring structure; this is the ring of Frobenius operators on M .

Note that F(M) is an N-graded ring; it is typically not commutative. The degree 0 com-
ponent F0(M) = EndR(M) is a subring, with a natural R-algebra structure. Lyubeznik and
Smith [LS, section 3] ask whether F(M) is a finitely generated ring extension of F0(M).
From the point of view of tight closure theory, the main cases of interest are where (R, m)

is a complete local ring, and the module M is the local cohomology module H dim R
m (R)

or the injective hull of the residue field, ER(R/m), abbreviated E in the following discus-
sion. In the former case, the algebra F(M) is finitely generated under mild hypotheses, see
Example 1·2.2; an investigation of the latter case is our main focus here.

It follows from Example 1·2.2 that for a Gorenstein complete local ring (R, m), the
ring F(E) is a finitely generated extension of F0(E) ! R. This need not be true when R
is not Gorenstein: Katzman [Ka] constructed the first such examples. In Section 3 we study
the finite generation of F(E), and provide descriptions of F(E) even when it is not finitely
generated: this is in terms of a graded subgroup of the anticanonical cover of R, with a
Frobenius-twisted multiplication structure, see Theorem 3·3.

Section 4 studies the case of Q-Gorenstein rings. We show that F(E) is finitely generated
(though not necessarily principally generated) if R is Q-Gorenstein with index relatively
prime to the characteristic, Proposition 4·1; the dual statement for the Cartier algebra was
previously obtained by Schwede in [Sc, remark 4·5]. We also construct a Q-Gorenstein ring
for which the ring F(E) is not finitely generated over F0(E); in fact, we conjecture that this
is always the case for a Q-Gorenstein ring whose index is a multiple of the characteristic,
see Conjecture 4·2.

In Section 5 we show that F(E) need not be finitely generated for determinantal rings,
specifically for the ring F[X ]/I , where X is a 2 × 3 matrix of variables, and I is the ideal
generated by its size 2 minors; this proves a conjecture of Katzman, [Ka, conjecture 3·1].
The relevant calculations also extend a result of Fedder, [Fe, proposition 4·7].

One of the applications of our study of F(E) is the discreteness of F-jumping numbers; in
Section 6 we use the description of F(E), combined with the notion of gauge boundedness,
due to Blickle [Bl2], to obtain positive results on the discreteness of F-jumping numbers for
new classes of rings including determinantal rings, see Theorem 6·4. In the last section, we
obtain results on the linear growth of Castelnuovo-Mumford regularity for rings with finite
Frobenius representation type; this is also with an eye towards the discreteness of F-jumping
numbers.
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To set the stage, we summarize some previous results on the rings F(M).

Example 1·2. Let R be a ring of prime characteristic.
(1) For each e ! 0, the left R-module F e(R) is free of rank one, spanned by Fe; this

is [LS, example 3·6]. Hence, F(R)! R{F}.
(2) Let (R, m) be a local ring of dimension d. The Frobenius endomorphism F of R

induces, by functoriality, an additive map

F : H d
m(R) −→ H d

m(R),

which is the natural Frobenius action on H d
m(R). If the ring R is complete and S2,

then F e(H d
m(R)) is a free left R-module of rank one, spanned by Fe; for a proof of

this, see [LS, example 3·7]. It follows that

F
(
H d

m(R)
)

! R{F}.
In particular, F(H d

m(R)) is a finitely generated ring extension of F0(H d
m(R)).

(3) Consider the local ring R = F[[x, y, z]]/(xy, yz) where F is a field, and set E to be
the injective hull of the residue field of R. Katzman [Ka] proved that F(E) is not a
finitely generated ring extension of F0(E).

(4) Let (R, m) be the completion of a Stanley–Reisner ring at its homogeneous maximal
ideal, and let E be the injective hull of R/m. In [ABZ] Àlvarez, Boix and Zarzuela
obtain necessary and sufficient conditions for the finite generation of F(E). Their
work yields, in particular, Cohen–Macaulay examples where F(E) is not finitely
generated over F0(E). By [ABZ, theorem 3·5], F(E) is either 1-generated or infin-
itely generated as a ring extension of F0(E) in the Stanley–Reisner case.

Remark 1·3. Let R(e) denote the R-bimodule that agrees with R as a left R-module, and
where the right module structure is given by

x · r = r pe
x, for all r ∈ R and x ∈ R(e).

For each R-module M , one then has a natural isomorphism

F e(M) ! HomR
(
R(e) ⊗R M, M

)

where ϕ ∈ F e(M) corresponds to x ⊗ m +→ xϕ(m) and ψ ∈ HomR(R(e) ⊗R M, M)

corresponds to m +→ ψ(1 ⊗ m); see [LS, remark 3·2].

Remark 1·4. Let R be a Noetherian ring of prime characteristic. If M is a Noetherian
R-module, or if R is complete local and M is an Artinian R-module, then each graded
component F e(M) of F(M) is a finitely generated left R-module, and hence also a finitely
generated left F0(M)-module; this is [LS, proposition 3·3].

Remark 1·5. Let R be a complete local ring of prime characteristic p; set E to be the
injective hull of the residue field of R. Let A be a complete regular local ring with R = A/I .
By [Bl1, proposition 3·36], one then has an isomorphism of R-modules

F e(E) !
I [pe] :A I

I [pe] .

2. Twisted multiplication

Let R be a complete local ring of prime characteristic; let E denote the injective hull of
the residue field of R. In Theorem 3·3 we prove that F(E) is isomorphic to a subgroup of the
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anticanonical cover of R, with a twisted multiplication structure; in this section, we describe
this twisted construction in broad generality:

Definition 2·1. Given an N-graded commutative ring R of prime characteristic p, we
define a new ring T (R) as follows: Consider the Abelian group

T (R) =
⊕

e!0

Rpe−1

and define a multiplication ! on T (R) by

a ! b = abpe
, for a ∈ T (R)e and b ∈ T (R)e′ .

It is a straightforward verification that ! is an associative binary operation; the prime
characteristic assumption is used in verifying that + and ! are distributive. Moreover, for
elements a ∈ T (R)e and b ∈ T (R)e′ one has

abpe ∈ Rpe−1+pe(pe′ −1) = Rpe+e′ −1

and hence

T (R)e ! T (R)e′ ⊆ T (R)e+e′ .

Thus, T (R) is an N-graded ring; we abbreviate its degree e component T (R)e as Te. The
ring T (R) is typically not commutative, and need not be a finitely generated extension ring
of T0 even when R is Noetherian:

Example 2·2. We examine T (R) when R is a standard graded polynomial ring over a
field F. We show that T (R) is a finitely generated ring extension of T0 = F if dimR " 2,
and that T (R) is not finitely generated if dimR ! 3.

(1) If R is a polynomial ring of dimension 1, then T (R) is commutative and finitely
generated over F: take R = F[x], in which case Te = F · x pe−1 and

x pe−1 ! x pe′ −1 = x pe+e′ −1 = x pe′ −1 ! x pe−1.

Thus, T (R) is a polynomial ring in one variable.
(2) When R is a polynomial ring of dimension 2, we verify that T (R) is a noncommut-

ative finitely generated ring extension of F. Let R = F[x, y]. Then

x p−1 ! y p−1 = x p−1 y p2−p whereas y p−1 ! x p−1 = x p2−p y p−1,

so T (R) is not commutative. For finite generation, it suffices to show that

Te+1 = T1 ! Te, for each e ! 1.

Set q = pe and consider the elements

xi y p−1−i ∈ T1, 0 " i " p − 1 and x j yq−1− j ∈ Te, 0 " j " q − 1.

Then T1 ! Te contains the elements
(
xi y p−1−i

)
!

(
x j yq−1− j

)
= xi+pj y pq−pj−i−1,

for 0 " i " p −1 and 0 " j " q −1, and these are readily seen to span Te+1. Hence,
the degree p − 1 monomials in x and y generate T (R) as a ring extension of F.
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(3) For a polynomial ring R of dimension 3 or higher, the ring T (R) is noncommutative

and not finitely generated over F. The noncommutativity is immediate from (2); we
give an argument that T (R) is not finitely generated for R = F[x, y, z], and this
carries over to polynomial rings R of higher dimension.
Set q = pe where e ! 2. We claim that the element

xyq/p−1zq−q/p−1 ∈ Te

does not belong to Te1 ! Te2 for integers ei < e with e1 + e2 = e. Indeed, Te1 ! Te2 is
spanned by the monomials

(
xi y j zq1−i− j−1) !

(
xk yl zq2−k−l−1) = xi+q1k y j+q1l zq−i− j−q1k−q1l−1

where qi = pei and

0 " i " q1 − 1, 0 " j " q1 − 1 − i,

0 " k " q2 − 1, 0 " l " q2 − 1 − k,

so it suffices to verify that the equations

i + q1k = 1 and j + q1l = q/p − 1

have no solution for integers i, j, k, l in the intervals displayed above. The first of
the equations gives i = 1, which then implies that 0 " j " q1 − 2. Since q1

divides q/p, the second equation gives j ≡ −1 mod q1. But this has no solution
with 0 " j " q1 − 2.

3. The ring structure of F(E)

We describe the ring of Frobenius operators F(E) in terms of the symbolic Rees al-
gebra R and the twisted multiplication structure T (R) of the previous section. First, a nota-
tional point: ω[pe] below denotes the iterated Frobenius power of an ideal ω, and ω(n) its
symbolic power, which coincides with reflexive power for divisorial ideals ω. We realize
that the notation ω[n] is sometimes used for the reflexive power, hence this note of caution.
We start with the following observation:

LEMMA 3·1. Let (R, m) be a normal local ring of characteristic p > 0. Let ω be a
divisorial ideal of R, i.e., an ideal of pure height one. Then for each integer e ! 1, the map

H dim R
m

(
ω[pe]) −→ H dim R

m

(
ω(pe)

)

induced by the inclusion ω[pe] ⊆ ω(pe), is an isomorphism.

Proof. Set d = dim R. Since R is normal and ω has pure height one, ωRp is principal for
each prime ideal p of height one; hence

(
ω(pe)/ω[pe])Rp = 0. It follows that

dim
(
ω(pe)/ω[pe]) " d − 2,

which gives the vanishing of the outer terms of the exact sequence

H d−1
m

(
ω(pe)/ω[pe]) −−−−→ H d

m

(
ω[pe]) −−−−→ H d

m

(
ω(pe)

)
−−−−→ H d

m

(
ω(pe)/ω[pe]),

and thus the desired isomorphism.
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Definition 3·2. Let R be a normal ring that is either complete local, or N-graded and

finitely generated over R0. Let ω denote the canonical module of R. The symbolic Rees
algebra

R =
⊕

n!0

ω(−n)

is the anticanonical cover of R; it has a natural N-grading where Rn = ω(−n).

THEOREM 3·3. Let (R, m) be a normal complete local ring of characteristic p > 0. Set
d to be the dimension of R. Let ω denote the canonical module of R, and identify E, the
injective hull of the R/m, with H d

m(ω).
(1) Then F(E), the ring of Frobenius operators on E, may be identified with

⊕

e!0

ω(1−pe) Fe,

where Fe denotes the map H d
m(ω) → H d

m(ω(pe)) induced by ω → ω[pe].
(2) Let R be the anticanonical cover of R. Then one has an isomorphism of graded rings

F(E) ! T (R),

where T (R) is as in Definition 2·1.

Proof. By Remark 1·3, we have

F e
(
H d

m(ω)
)

! HomR
(
R(e) ⊗R H d

m(ω), H d
m(ω)

)
.

Moreover,

R(e) ⊗R H d
m(ω) ! H d

m

(
ω[pe]) ! H d

m

(
ω(pe)

)
,

where the first isomorphism of by [ILL+, exercise 9·7], and the second by Lemma 3·1. By
similar arguments

HomR
(
H d

m

(
ω(pe)

)
, H d

m(ω)
)
! HomR

(
H d

m

(
ω ⊗R ω(pe−1)

)
, H d

m(ω)
)

! HomR
(
ω(pe−1) ⊗R H d

m(ω), H d
m(ω)

)

! HomR
(
ω(pe−1), HomR

(
H d

m(ω), H d
m(ω)

))
,

with the last isomorphism using the adjointness of Hom and tensor. Since R is complete, the
module above is isomorphic to

HomR
(
ω(pe−1), R

)
! ω(1−pe).

Suppose ϕ ∈ F e(M) and ϕ′ ∈ F e′
(M) correspond respectively to aFe and a′Fe′

, for
elements a ∈ ω(1−pe) and a′ ∈ ω(1−pe′ ). Then ϕ ◦ ϕ′ corresponds to aFe ◦ bFe′ = abpe

Fe+e′
,

which agrees with the ring structure of T (R) since a ! b = abpe
.

Remark 3·4. Let R be a normal complete local ring of prime characteristic p; let A be a
complete regular local ring with R = A/I . Using Remark 1·5 and Theorem 3·3, it is now a
straightforward verification that F(E) is isomorphic, as a graded ring, to

⊕

e!0

I [pe] :A I
I [pe] ,

where the multiplication on this latter ring is the twisted multiplication !. An example of
the isomorphism is worked out in Proposition 5·1.
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4. Q-Gorenstein rings

We analyze the finite generation of F(E) when R is Q-Gorenstein. The following result
follows from the corresponding statement for Cartier algebras, [Sc, remark 4·5], but we
include it here for the sake of completeness:

PROPOSITION 4·1. Let (R, m) be a normal Q-Gorenstein local ring of prime character-
istic. Let ω denote the canonical module of R. If the order of ω is relatively prime to the
characteristic of R, then F(E) is a finitely generated ring extension of F0(E).

Proof. Since F0(E) is isomorphic to the m-adic completion of R, the proposition reduces
to the case where the ring R is assumed to be complete.

Let m be the order of ω, and p the characteristic of R. Then p mod m is an element of
the group (Z/mZ)×, and hence there exists an integer e0 with pe0 ≡ 1 mod m. We claim
that F(E) is generated over F0(E) by [F(E)]"e0

.
We use the identification F(E) = T (R) from Theorem 3·3. Since ω(m) is a cyclic module,

one has

ω(n+km) = ω(n)ω(km), for all integers k, n.

Thus, for each e > e0, one has

Te−e0 ! Te0 = ω(1−pe−e0 ) ! ω(1−pe0 )

= ω(1−pe−e0 ) ·
(
ω(1−pe0 )

)[pe−e0 ]

= ω(1−pe−e0 ) · ω(pe−e0 (1−pe0 ))

= ω(1−pe−e0 +pe−e0 −pe)

= ω(1−pe)

= Te,

which proves the claim.

We conjecture that Proposition 4·1 has a converse in the following sense:

Conjecture 4·2. Let (R, m) be a normal Q-Gorenstein ring of prime characteristic, such
that the order of the canonical module in the divisor class group is a multiple of the charac-
teristic of R. Then F(E) is not a finitely generated ring extension of F0(E).

Veronese subrings. Let F be a field of characteristic p > 0, and A = F[x1, . . . , xd] a
polynomial ring. Given a positive integer n, we denote the n-th Veronese subring of A by

A(n) =
⊕

k!0

Ank ;

this differs from the standard notation, e.g., [GW], since we reserve superscripts ( )(n)

for symbolic powers. The cyclic module x1 · · · xd A is the graded canonical module for the
polynomial ring A. By [GW, corollary 3·1·3], the Veronese submodule

(
x1 · · · xd A

)
(n)

=
⊕

k!0

[
x1 · · · xd A

]
nk
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is the graded canonical module for the subring A(n). Let m denote the homogeneous maximal
ideal of A(n). The injective hull of A(n)/m in the category of graded A(n)-modules is

H d
m

((
x1 · · · xd A

)
(n)

)
=

[
H d

m

(
x1 · · · xd A

)]
(n)

=
[

Ax1···xd∑
i x1 · · · xd Ax1···̂xi ···xd

]

(n)

,

see [GW, theorem 3·1·1]. By [GW, theorem 1·2·5], this is also the injective hull in the
category of all A(n)-modules.

Let R be the m-adic completion of A(n). As it is m-torsion, the module displayed above is
also an R-module; it is the injective hull of R/mR in the category of R-modules.

PROPOSITION 4·3. Let F be a field of characteristic p > 0, and let A = F[x1, . . . , xd]
be a polynomial ring of dimension d. Let n be a positive integer, and R be the completion of
the n-th Veronese subring of A at its homogeneous maximal ideal. Set E = M/N where

M = Rxn
1 ···xn

d

and N is the R-submodule spanned by elements xi1
1 · · · xid

d ∈ M with ik ! 1 for some k; the
module E is the injective hull of the residue field of R.

Then F e(E) is the left R-module generated by the elements

1
xα1

1 · · · xαd
d

Fe,

where F is the pth power map, αk " pe − 1 for each k, and
∑

αk ≡ 0 mod n.

Remark 4·4. We use F for the Frobenius endomorphism of the ring M . The condition∑
αk ≡ 0 mod n, or equivalently xα1

1 · · · xαd
d ∈ M , implies that

1
xα1

1 · · · xαd
d

Fe ∈ F e(M).

When αk " pe − 1 for each k, the map displayed above stabilizes N and thus induces an
element of F e(M/N ); we reuse F for the pth power map on M/N .

Proof of Proposition 4·3 In view of the above remark, it remains to establish that the
given elements are indeed generators for F e(E). The canonical module of R is

ωR =
(
x1 · · · xd A

)
(n)

R

and, indeed, H d
m(ωR) = E . Thus, Theorem 3·3 implies that

F e(E) = ω
(1−q)
R Fe,

where q = pe. But ω
(1−q)
R is the completion of the A(n)-module

[
1

xq−1
1 · · · xq−1

d

A

]

(n)

=
(

1
xα1

1 · · · xαd
d

| αk " q − 1 for each k,
∑

αk ≡ 0 mod n
)

A(n),

which completes the proof.

Example 4·5. Consider d = 2 and n = 3 in Proposition 4·3, i.e.,

R = F[[x3, x2 y, xy2, y3]].
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Then ω = (x2 y, xy2)R has order 3 in the divisor class group of R; indeed,

ω(2) = (x4 y2, x3 y3, x2 y4)R and ω(3) = (x3 y3)R.

(1) If p ≡ 1 mod 3, then ω(1−q) = (xy)1−q R is cyclic for each q = pe and

F e(E) = 1
(xy)q−1

Fe.

Since
1

(xy)p−1
F ◦ 1

(xy)q−1
Fe = 1

(xy)pq−1
Fe+1,

it follows that

F(E) = R
{

1
(xy)p−1

F
}

.

(2) If p ≡ 2 mod 3 and q = pe, then ω(1−q) = (xy)1−q R for e even and

ω(1−q) =
(

1
xq−3 yq−1

,
1

xq−2 yq−2
,

1
xq−1 yq−3

)
R

for e odd. The proof of Proposition 4·1 shows that F(E) is generated by its elements
of degree " 2 and hence

F(E) = R
{

1
x p−3 y p−1

F,
1

x p−2 y p−2
F,

1
x p−1 y p−3

F,
1

x p2−1 y p2−1
F2

}
.

In the case p = 2, the above reads

F(E) = R
{

x
y

F, F,
y
x

F,
1

x3 y3
F2

}
.

(3) When p = 3, one has

ω(1−q) = 1
xq yq

(
x2 y, xy2)R =

(
1

xq−2 yq−1
,

1
xq−1 yq−2

)
R

for each q = pe. In this case,

F(E) = R
{

1
xy2

F,
1

x2 y
F,

1
x7 y8

F2,
1

x8 y7
F2,

1
x25 y26

F3,
1

x26 y25
F3, . . .

}
,

and F(E) is not a finitely generated extension ring of F0(E) = R; indeed,

ω(1−q) ! ω(1−q ′) = 1
xq yq

(x2 y, xy2)R ! 1
xq ′ yq ′ (x2 y, xy2)R

= 1
xqq ′+q yqq ′+q

(x2 y, xy2) · (x2q yq, xq y2q)R

= 1
xqq ′ yqq ′ (xq+2 y, xq+1 y2, x2 yq+1, xyq+2)R

= 1
xqq ′ yqq ′ (x2 y, xy2) · (xq, yq)R

= (xq, yq) ω(1−qq ′)

for q = pe and q ′ = pe′
, where e and e′ are positive integers.
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5. A determinantal ring

Let R be the determinantal ring F[X ]/I , where X is a 2 × 3 matrix of variables over a
field of characteristic p > 0, and I is the ideal generated by the size 2 minors of X . Set m to
be the homogeneous maximal ideal of R. We show that the algebra of Frobenius operators
F(E) is not finitely generated over F0(E) = R̂; this proves [Ka, conjecture 3·1]. We also
extend Fedder’s calculation of the ideals I [p] : I to the ideals I [q] : I for all q = pe.

The ring R is isomorphic to the affine semigroup ring

F
[

sx, sy, sz,
t x, t y, t z

]
⊆ F[s, t, x, y, z].

Using this identification, R is the Segre product A#B of the polynomial rings A = F[s, t]
and B = F[x, y, z]. By [GW, theorem 4·3·1], the canonical module of R is the Segre
product of the graded canonical modules st A and xyzB of the respective polynomial rings,
i.e.,

ωR = st A # xyzB = (s2t xyz, st2xyz)R.

Let e be a nonnegative integer, and q = pe. Then

ω
(1−q)
R = 1

(st)q−1
A #

1
(xyz)q−1

B

is the R module spanned by the elements

1
(st)q−1xk yl zm

with k + l + m = 2q − 2 and k, l, m " q − 1.
View E as M/N where M = Rs2t xyz , and N is the R-submodule spanned by the elements

si t j xk yl zm in M that have at least one positive exponent. Then F e(E) is the left R̂-module
generated by

1
(st)q−1xk yl zm

Fe,

where F is the pth power map, k + l + m = 2q − 2, and k, l, m " q − 1. Using this descrip-
tion, it is an elementary—though somewhat tedious—verification that F(E) is not finitely
generated over F0(E); alternatively, note that the symbolic powers of the height one prime
ideals (sx, sy, sz)R̂ and (sx, t x)R̂ agree with the ordinary powers by [BV, corollary 7·10].
Thus, the anticanonical cover of R̂ is the ring R with

Rn = 1
(s2t xyz)n

(sx, sy, sz)n R̂

and so

Te = 1
(s2t xyz)q−1

(sx, sy, sz)q−1 R̂.
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Thus,

Te1 ! Te2 = 1
(s2t xyz)q1−1

(sx, sy, sz)q1−1 !
1

(s2t xyz)q2−1
(sx, sy, sz)q2−1

= 1
(s2t xyz)q1q2−1

(sx, sy, sz)q1−1 ·
(
(sx, sy, sz)q2−1)[q1]

= 1
(s2t xyz)q1q2−1

(sx, sy, sz)q1−1 ·
(
(sx)q1, (sy)q1, (sz)q1

)q2−1

where qi = pei . We claim that

Te "
e−1∑

e1=1

Te1 ! Te−e1 .

For this, it suffices to show that

1
(s2t xyz)q−1

sx(sy)q/p−1(sz)q−q/p−1

does not belong to Te1 ! Te2 for integers ei < e with e1 + e2 = e. By the description of
Te1 ! Te2 above, this is tantamount to proving that

sx(sy)q/p−1(sz)q−q/p−1 ! (sx, sy, sz)q1−1 ·
(
(sx)q1, (sy)q1, (sz)q1

)q2−1
,

but this is essentially Example 2·2·3.

Fedder’s computation. Let A be the power series ring F[[u, v, w, x, y, z]] for F a field of
characteristic p > 0, and let I be the ideal generated by the size 2 minors of the matrix

(
u v w

x y z

)
,

In [Fe, proposition 4·7], Fedder shows that

I [p] : I = I 2p−2 + I [p].

We extend this next by calculating the ideals I [q] : I for each prime power q = pe.

PROPOSITION 5·1. Let A be the power series ring F[[u, v, w, x, y, z]] where K a field
of characteristic p > 0. Let I be the ideal of A generated by &1 = vz −wy, &2 = wx −uz,
and &3 = uy − vx.

(1) For q = pe and nonnegative integers s, t with s + t " q − 1, one has

ys zt(&2&3)
q−1 ∈ I [q] + xs+t A.

(2) For q, s, t as above, let fs,t be an element of A with

ys zt(&2&3)
q−1 ≡ xs+t fs,t mod I [q].

Then fs,t is well-defined modulo I [q]. Moreover, fs,t ∈ I [q] :A I , and

I [q] :A I = I [q] +
(

fs,t | s + t " q − 1
)

A.

For q = p, the above recovers Fedder’s computation that I [p] : I = I 2p−2 + I [p], though
for q > p, the ideal I [p] : I is strictly bigger than I 2p−2 + I [p].
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Proof. (1) Note that the element

ys zt(&2&3)
q−1 = ys zt(wx − uz)q−1(uy − vx)q−1

belongs to the ideals

(x, u)2q−2 ⊆ (xq−1, uq) ⊆ (xs+t , uq)

and also to

ys zt(x, z)q−1(x, y)q−1 ⊆ ys zt(xt , zq−t)(xs, yq−s) ⊆ (xs+t , zq, yq).

Hence,

ys zt(&2&3)
q−1 ∈

(
xs+t , uq

)
A "

(
xs+t , zq, yq

)
A

=
(
xs+t , uq zq, uq yq

)
A

⊆
(
xs+t , &

q
1, &

q
2, &

q
3

)
A.

(2) The ideals I and I [q] have the same associated primes, [ILL+, corollary 21·11]. As I
is prime, it is the only prime associated to I [q]. Hence xs+t is a nonzerodivisor modulo I [q],
and it follows that fs,t mod I [q] is well-defined.

We next claim that

I 2q−1 ⊆ I [q].

By the earlier observation on associated primes, it suffices to verify this in the local ring RI .
But RI is a regular local ring of dimension 2, so I RI is generated by two elements, and the
claim follows from the pigeonhole principle. The claim implies that

xs+t fs,t I ∈ I [q],

and using, again, that xs+t is a nonzerodivisor modulo I [q], we see that fs,t I ⊆ I [q], in other
words, that fs,t ∈ I [q] :A I as desired.

By Theorem 3·3 and Remark 3·4, one has the R-module isomorphisms

ω
(1−q)
R ! F e(E) !

I [q] :A I
I [q] .

Choosing ω
(−1)
R = (x, y, z)R, we claim that the map

(x, y, z)q−1 R −→ I [q] :A I
I [q]

xq−1−s−t ys zt +→ fs,t

is an isomorphism. Since the modules in question are reflexive R-modules of rank one, it
suffices to verify that the map is an isomorphism in codimension 1. Upon inverting x , the
above map induces

Rx −→ I [q] Ax :Ax I Ax

I [q] Ax

xq−1 +→ (&2&3)
q−1

which is readily seen to be an isomorphism since I Ax = (&2, &3)Ax .
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6. Cartier algebras and gauge boundedness

For a ring R of prime characteristic p > 0, one can interpret F e(E) in a dual way as a
collection of p−e-linear operators on R. This point of view was studied by Blickle [Bl2] and
Schwede [Sc].

Definition 6·1. Let R be a ring of prime characteristic p > 0. For each e ! 0, set CR
e to

be set of additive maps ϕ : R → R satisfying

ϕ(r pe
x) = rϕ(x), for r, x ∈ R.

The total Cartier algebra is the direct sum

CR =
⊕

e!0

CR
e .

For ϕ ∈ CR
e and ϕ′ ∈ CR

e′ , the compositions ϕ ◦ ϕ′ and ϕ′ ◦ ϕ are elements of CR
e+e′ . This

gives CR the structure of an N-graded ring; it is typically not a commutative ring. As pointed
out in [ABZ, 2·2·1], if (R, m) is an F-finite complete local ring, then the ring of Frobenius
operators F(E) is isomorphic to CR .

Each CR
e has a left and a right R-module structure: for ϕ ∈ CR

e and r ∈ R, we define r · ϕ

to be the map x +→ rϕ(x), and ϕ · r to be the map x +→ ϕ(r x).

Definition 6·2. Blickle [Bl2] introduced a notion of boundedness for Cartier algebras:
Let R = A/I for a polynomial ring A = F[x1, . . . , xd] over an F-finite field F. Set Rn to be
the finite dimensional F-vector subspace of R spanned by the images of the monomials

xλ1
1 · · · xλd

d , for 0 " λ j " n.

Following [An] and [Bl2], we define a map δ : R −→ Z by δ(r) = n if r ∈ Rn " Rn−1; the
map δ is a gauge. If I = 0, then δ(r) " deg(r) for each r ∈ R. We recall some properties
from [An, proposition 1] and [Bl2, lemma 4·2]:

δ(r + r ′) " max{δ(r), δ(r ′)},
δ(r · r ′) " δ(r) + δ(r ′).

The ring CR is gauge bounded if there exists a constant K , and elements ϕe,i in CR
e for

each e ! 1 generating CR
e as a left R-module, such that

δ(ϕe,i (x)) " δ(x)

pe
+ K , for each e and i.

Remark 6·3. We record two key facts that will be used in our proof of Theorem 6·4:
(1) If there exists a constant C such that I [pe] :A I is generated by elements of degree at

most Cpe for each e ! 1, then CR is gauge bounded; this is [KZ, lemma 2·2].
(2) If CR is gauge bounded, then for each ideal a of R, the F-jumping numbers of

τ (R, at) are a subset of the real numbers with no limit points; in particular, they
form a discrete set. This is [Bl2, theorem 4·18].

We now prove the main result of the section:

THEOREM 6·4. Let R be a normal N-graded that is finitely generated over an F-finite
field R0. (The ring R need not be standard graded.)

Suppose that the anticanonical cover of R is finitely generated as an R-algebra. Then CR

is gauge bounded. Hence, for each ideal a of R, the set of F-jumping numbers of τ (R, at) is
a subset of the real numbers with no limit points.
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Proof. Let A be a polynomial ring, with a possibly non-standard N-grading, such that

R = A/I . It suffices to obtain a constant C such that the ideals I [pe] :A I are generated by
elements of degree at most Cpe for each e ! 1.

There exists a ring isomorphism
⊕

e!0 ω(1−pe) !
⊕

e!0(I [pe] :A I )/I [pe] by Remark 3·4
that respects the eth graded components. After replacing ω by an isomorphic R-module
with a possible graded shift, we may assume that the isomorphism above induces degree
preserving R-module isomorphisms ω(1−pe) ! (I [pe] :A I )/I [pe] for each e ! 0. While ω is
no longer canonically graded, we still have the finite generation of the anticanonical cover⊕

n!0 ω(−n). It suffices to check that there exists a constant C such that ω(1−pe) is generated,
as an R-module, by elements of degree at most Cpe.

Choose finitely many homogeneous R-algebra generators z1, . . . , zk for
⊕

n!0 ω(−n), say
with zi ∈ ω(− ji ). Set C to be the maximum of deg z1, . . . , deg zk . Then the monomials

zλ = zλ1
1 zλ2

2 · · · zλk
k , with

∑
λi ji = pe − 1

generate the R-module ω(1−pe), and it is readily seen that

deg zλ =
∑

λi deg zi " C
∑

λi " C(pe − 1).

By [KZ, lemma 2·2], it follows that CR is gauge bounded; the assertion now follows from
[Bl2, theorem 4·18].

COROLLARY 6·5. Let R be the determinantal ring F[X ]/I , where X is a matrix of in-
determinates over an F-finite field F of prime characteristic, and I is the ideal generated
by the minors of X of an arbitrary but fixed size. Then, for each ideal a of R, the set of
F-jumping numbers of τ (R, at) is a subset of the real numbers with no limit points.

Proof. Since R is a determinantal ring, the symbolic powers of the ideal ω(−1) agree with
the ordinary powers by [BV, corollary 7·10]. Hence the anticanonical cover of R is finitely
generated, and the result follows from Theorem 6·4.

Remark 6·6. It would be natural to remove the hypothesis that R is graded in
Theorem 6·4. However, we do not know how to do this: when R is not graded, it is un-
clear if one can choose gauges that are compatible with the ring isomorphism

⊕

e!0

ω(1−pe) !
⊕

e!0

(I [pe] :A I )/I [pe].

7. Linear growth of Castelnuovo–Mumford regularity for rings of finite Frobenius
representation type

Let A be a standard graded polynomial ring over a field F, with homogeneous maximal
ideal m. We recall the definition of the Castelnuovo-Mumford regularity of a graded module
following [Ei, chapter 4]:

Definition 7·1. Let M = ⊕
d∈Q Md be a graded A-module. If M is Artinian, we set

reg M = max{d | Md " 0} ;
for an arbitrary graded module we define

reg M = max
k!0

{reg H k
m(M) + k}.



Rings of Frobenius operators 165
Definition 7·2. Let I and J be homogeneous ideals of A. We say that the regularity

of A/(I + J [pe]) has linear growth with respect to pe, if there is a constant C , such that

reg A/(I + J [pe]) " Cpe, for each e ! 0.

It follows from [KZ, corollary 2·4] that if reg A/(I + J [pe]) has linear growth for each
homogeneous ideal J , then C A/I is gauge-bounded.

Remark 7·3. Let R = A/I for a homogeneous ideal I . We define a grading on the bimod-
ule R(e) introduced in Remark 1·3: when an element r of R is viewed as an element of R(e),
we denote it by r (e). For a homogeneous element r ∈ R, we set

deg′ r (e) = 1
pe

deg r.

For each ideal J of R, one has an isomorphism

R(e) ⊗R R/J
!−−−−→ R/J [pe]

under which r (e) ⊗ s +→ rs pe . To make this isomorphism degree-preserving for a homogen-
eous ideal J , we define a grading on R/J [pe] as follows:

deg′ r = 1
pe

deg r , for a homogeneous element r of R.

The notion of finite Frobenius representation type was introduced by Smith and Van den
Bergh [SV]; we recall the definition in the graded context:

Definition 7·4. Let R be an N-graded Noetherian ring of prime characteristic p. Then R
has finite graded Frobenius-representation type by finitely generated Q-graded R-modules
M1, . . . , Ms , if for every e ∈ N, the Q-graded R-module R(e) is isomorphic to a finite direct
sum of the modules Mi with possible graded shifts, i.e., if there exist rational numbers α

(e)
i j ,

such that there exists a Q-graded isomorphism

R(e) !
⊕

i, j

Mi
(
α

(e)
i j

)
.

Remark 7·5. Suppose R has finite graded Frobenius-representation type. With the nota-
tion as above, there exists a constant C such that

α
(e)
i j " C, for all e, i, j ;

see the proof of [TT, theorem 2·9].

We now prove the main result of this section; compare with [TT, theorem 4·8].

THEOREM 7·6. Let A be a standard graded polynomial ring over an F-finite field of
characteristic p > 0. Let I be a homogeneous ideal of A.

Suppose R = A/I has finite graded F-representation type. Then reg A/(I + J [pe]) has
linear growth for each homogeneous ideal J . In particular, CR is gauge bounded, and for
each ideal a of R, the set of F-jumping numbers of τ (R, at) is a subset of the real numbers
with no limit points.

Proof. We use J for the ideal of A, and also for its image in R. Let a′(H k
m(R/J [pe]))

denote the largest degree of a nonzero element of H k
m(R/J [pe]) under the deg′-grading, i.e.,

a′(H k
m(R/J [pe])

)
= 1

pe
reg H k

m

(
R/J [pe]).
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Since we have degree-preserving isomorphisms R(e) ⊗R R/J ! R/J [pe], and

R(e) !
⊕

i, j

Mi
(
α

(e)
i j

)
,

it follows that

H k
m(R/J [pe]) ! H k

m(R(e) ⊗R R/J )

!
⊕

i, j

H k
m

(
Mi

(
α

(e)
i j

)
⊗R R/J

)

!
⊕

i, j

H k
m(Mi/J Mi )

(
α

(e)
i j

)
.

The numbers α
(e)
i j are bounded by Remark 7·5; thus,

a′(H k
m(R/J [pe])

)
" max

i

{
a′(H k

m(Mi/J Mi )) + C
}
.

Since there are only finitely many modules Mi and finitely many homological indices k, it
follows that a′(H k

m(R/J [pe])) " C ′, where C ′ is a constant independent of e and k. Hence

reg H k
m(R/J [pe]) " C ′ pe, for all e, k,

and so

reg A/(I + J [pe]) = max
k

{
reg H k

m(R/J [pe]) + k
}

" C ′ pe + dim A.

This proves that reg A/J [pe] has linear growth; [KZ, corollary 2·4] implies that CR is gauge
bounded, and the discreetness assertion follows from [Bl2, theorem 4·18].
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