Rings of Frobenius operators

BY MORDECHAI KATZMAN[†]

Department of Pure Mathematics, University of Sheffield, Hicks Building, Sheffield, S3 7RH. e-mail: M.Katzman@sheffield.ac.uk

KARL SCHWEDE‡

Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, U.S.A. e-mail: schwede@math.psu.edu

ANURAG K. SINGH§

Department of Mathematics, University of Utah, 155 S 1400 E, Salt Lake City, UT 84112, U.S.A. e-mail: singh@math.utah.edu

AND WENLIANG ZHANG

Department of Mathematics, University of Nebraska, Lincoln, NE 68505, U.S.A. e-mail: wzhang15@unl.edu

(Received 25 April 2013; revised 6 January 2014)

Abstract

Let *R* be a local ring of prime characteristic. We study the ring of Frobenius operators $\mathcal{F}(E)$, where *E* is the injective hull of the residue field of *R*. In particular, we examine the finite generation of $\mathcal{F}(E)$ over its degree zero component $\mathcal{F}^0(E)$, and show that $\mathcal{F}(E)$ need not be finitely generated when *R* is a determinantal ring; nonetheless, we obtain concrete descriptions of $\mathcal{F}(E)$ in good generality that we use, for example, to prove the discreteness of *F*-jumping numbers for arbitrary ideals in determinantal rings.

1. Introduction

Lyubeznik and Smith [LS] initiated the systematic study of rings of Frobenius operators and their applications to tight closure theory. Our focus here is on the Frobenius operators on the injective hull of R/m, when (R, m) is a complete local ring of prime characteristic.

[†] Supported by EPSRC grant EP/I031405/1.
[‡] Supported by NSF grant DMS 1064485 and a Sloan Fellowship.
§ Supported by NSF grant DMS 1162585.
|| Supported by NSF grant DMS 1247354.

MORDECHAI KATZMAN ET AL.

Definition 1.1. Let R be a ring of prime characteristic p, with Frobenius endomorphism F. Following [LS, section 3], we set $R\{F^e\}$ to be the ring extension of R obtained by adjoining a noncommutative variable χ subject to the relations $\chi r = r^{p^e} \chi$ for all $r \in R$.

Let *M* be an *R*-module. Extending the *R*-module structure on *M* to an $R\{F^e\}$ -module structure is equivalent to specifying an additive map $\varphi \colon M \to M$ that satisfies

$$\varphi(rm) = r^{p^{e}}\varphi(m), \text{ for each } r \in R \text{ and } m \in M$$

Define $\mathcal{F}^{e}(M)$ to be the set of all such maps φ arising from $R\{F^{e}\}$ -module structures on M; this is an Abelian group with a left R-module structure, where $r \in R$ acts on $\varphi \in \mathcal{F}^{e}(M)$ to give the composition $r \circ \varphi$. Given elements $\varphi \in \mathcal{F}^{e}(M)$ and $\varphi' \in \mathcal{F}^{e'}(M)$, the compositions $\varphi \circ \varphi'$ and $\varphi' \circ \varphi$ are elements of the module $\mathcal{F}^{e+e'}(M)$. Thus,

$$\mathcal{F}(M) = \mathcal{F}^0(M) \oplus \mathcal{F}^1(M) \oplus \mathcal{F}^2(M) \oplus \cdots$$

has a ring structure; this is the ring of Frobenius operators on M.

Note that $\mathcal{F}(M)$ is an N-graded ring; it is typically not commutative. The degree 0 component $\mathcal{F}^0(M) = \operatorname{End}_R(M)$ is a subring, with a natural *R*-algebra structure. Lyubeznik and Smith [**LS**, section 3] ask whether $\mathcal{F}(M)$ is a finitely generated ring extension of $\mathcal{F}^0(M)$. From the point of view of tight closure theory, the main cases of interest are where (R, \mathfrak{m}) is a complete local ring, and the module *M* is the local cohomology module $H_{\mathfrak{m}}^{\dim R}(R)$ or the injective hull of the residue field, $E_R(R/\mathfrak{m})$, abbreviated *E* in the following discussion. In the former case, the algebra $\mathcal{F}(M)$ is finitely generated under mild hypotheses, see Example 1.2.2; an investigation of the latter case is our main focus here.

It follows from Example 1.2.2 that for a Gorenstein complete local ring (R, \mathfrak{m}) , the ring $\mathcal{F}(E)$ is a finitely generated extension of $\mathcal{F}^0(E) \cong R$. This need not be true when R is not Gorenstein: Katzman [**Ka**] constructed the first such examples. In Section 3 we study the finite generation of $\mathcal{F}(E)$, and provide descriptions of $\mathcal{F}(E)$ even when it is not finitely generated: this is in terms of a graded subgroup of the anticanonical cover of R, with a Frobenius-twisted multiplication structure, see Theorem 3.3.

Section 4 studies the case of Q-Gorenstein rings. We show that $\mathcal{F}(E)$ is finitely generated (though not necessarily principally generated) if *R* is Q-Gorenstein with index relatively prime to the characteristic, Proposition 4.1; the dual statement for the Cartier algebra was previously obtained by Schwede in [Sc, remark 4.5]. We also construct a Q-Gorenstein ring for which the ring $\mathcal{F}(E)$ is *not* finitely generated over $\mathcal{F}^0(E)$; in fact, we conjecture that this is always the case for a Q-Gorenstein ring whose index is a multiple of the characteristic, see Conjecture 4.2.

In Section 5 we show that $\mathcal{F}(E)$ need not be finitely generated for determinantal rings, specifically for the ring $\mathbb{F}[X]/I$, where X is a 2 × 3 matrix of variables, and I is the ideal generated by its size 2 minors; this proves a conjecture of Katzman, [Ka, conjecture 3.1]. The relevant calculations also extend a result of Fedder, [Fe, proposition 4.7].

One of the applications of our study of $\mathcal{F}(E)$ is the discreteness of *F*-jumping numbers; in Section 6 we use the description of $\mathcal{F}(E)$, combined with the notion of gauge boundedness, due to Blickle [**Bl2**], to obtain positive results on the discreteness of *F*-jumping numbers for new classes of rings including determinantal rings, see Theorem 6.4. In the last section, we obtain results on the linear growth of Castelnuovo-Mumford regularity for rings with finite Frobenius representation type; this is also with an eye towards the discreteness of *F*-jumping numbers. To set the stage, we summarize some previous results on the rings $\mathcal{F}(M)$.

Example 1.2. Let R be a ring of prime characteristic.

- (1) For each $e \ge 0$, the left *R*-module $\mathcal{F}^e(R)$ is free of rank one, spanned by F^e ; this is [LS, example 3.6]. Hence, $\mathcal{F}(R) \cong R\{F\}$.
- (2) Let (R, \mathfrak{m}) be a local ring of dimension d. The Frobenius endomorphism F of R induces, by functoriality, an additive map

$$F: H^d_{\mathfrak{m}}(R) \longrightarrow H^d_{\mathfrak{m}}(R),$$

which is the natural *Frobenius action* on $H^d_{\mathfrak{m}}(R)$. If the ring *R* is complete and S_2 , then $\mathcal{F}^e(H^d_{\mathfrak{m}}(R))$ is a free left *R*-module of rank one, spanned by F^e ; for a proof of this, see [**LS**, example 3.7]. It follows that

$$\mathcal{F}(H^d_{\mathfrak{m}}(R)) \cong R\{F\}.$$

In particular, $\mathcal{F}(H^d_\mathfrak{m}(R))$ is a finitely generated ring extension of $\mathcal{F}^0(H^d_\mathfrak{m}(R))$.

- (3) Consider the local ring $R = \mathbb{F}[[x, y, z]]/(xy, yz)$ where \mathbb{F} is a field, and set *E* to be the injective hull of the residue field of *R*. Katzman [**Ka**] proved that $\mathcal{F}(E)$ is not a finitely generated ring extension of $\mathcal{F}^0(E)$.
- (4) Let (R, m) be the completion of a Stanley–Reisner ring at its homogeneous maximal ideal, and let E be the injective hull of R/m. In [ABZ] Àlvarez, Boix and Zarzuela obtain necessary and sufficient conditions for the finite generation of F(E). Their work yields, in particular, Cohen–Macaulay examples where F(E) is not finitely generated over F⁰(E). By [ABZ, theorem 3.5], F(E) is either 1-generated or infinitely generated as a ring extension of F⁰(E) in the Stanley–Reisner case.

Remark 1.3. Let $R^{(e)}$ denote the *R*-bimodule that agrees with *R* as a left *R*-module, and where the right module structure is given by

$$x \cdot r = r^{p^e} x$$
, for all $r \in R$ and $x \in R^{(e)}$.

For each R-module M, one then has a natural isomorphism

$$\mathcal{F}^{e}(M) \cong \operatorname{Hom}_{R}\left(R^{(e)} \otimes_{R} M, M\right)$$

where $\varphi \in \mathcal{F}^{e}(M)$ corresponds to $x \otimes m \mapsto x\varphi(m)$ and $\psi \in \operatorname{Hom}_{R}(R^{(e)} \otimes_{R} M, M)$ corresponds to $m \mapsto \psi(1 \otimes m)$; see [LS, remark 3·2].

Remark 1.4. Let *R* be a Noetherian ring of prime characteristic. If *M* is a Noetherian *R*-module, or if *R* is complete local and *M* is an Artinian *R*-module, then each graded component $\mathcal{F}^{e}(M)$ of $\mathcal{F}(M)$ is a finitely generated left *R*-module, and hence also a finitely generated left $\mathcal{F}^{0}(M)$ -module; this is [**LS**, proposition 3.3].

Remark 1.5. Let *R* be a complete local ring of prime characteristic *p*; set *E* to be the injective hull of the residue field of *R*. Let *A* be a complete regular local ring with R = A/I. By [**Bl1**, proposition 3.36], one then has an isomorphism of *R*-modules

$$\mathcal{F}^{e}(E) \cong \frac{I^{\lfloor p^{e} \rfloor}:_{A} I}{I^{\lfloor p^{e} \rfloor}}.$$

2. Twisted multiplication

Let *R* be a complete local ring of prime characteristic; let *E* denote the injective hull of the residue field of *R*. In Theorem 3.3 we prove that $\mathcal{F}(E)$ is isomorphic to a subgroup of the

anticanonical cover of R, with a twisted multiplication structure; in this section, we describe this twisted construction in broad generality:

Definition 2.1. Given an \mathbb{N} -graded commutative ring \mathcal{R} of prime characteristic p, we define a new ring $\mathcal{T}(\mathcal{R})$ as follows: Consider the Abelian group

$$\mathcal{T}(\mathcal{R}) = \bigoplus_{e \geqslant 0} \mathcal{R}_{p^e - 1}$$

and define a multiplication * on $\mathcal{T}(\mathcal{R})$ by

$$a * b = ab^{p^e}$$
, for $a \in \mathcal{T}(\mathcal{R})_e$ and $b \in \mathcal{T}(\mathcal{R})_{e'}$.

It is a straightforward verification that * is an associative binary operation; the prime characteristic assumption is used in verifying that + and * are distributive. Moreover, for elements $a \in \mathcal{T}(\mathcal{R})_{e}$ and $b \in \mathcal{T}(\mathcal{R})_{e'}$ one has

$$ab^{p^{e}} \in \mathcal{R}_{p^{e}-1+p^{e}(p^{e'}-1)} = \mathcal{R}_{p^{e+e'}-1}$$

and hence

$$\mathcal{T}(\mathcal{R})_e * \mathcal{T}(\mathcal{R})_{e'} \subseteq \mathcal{T}(\mathcal{R})_{e+e'}.$$

Thus, $\mathcal{T}(\mathcal{R})$ is an N-graded ring; we abbreviate its degree *e* component $\mathcal{T}(\mathcal{R})_e$ as \mathcal{T}_e . The ring $\mathcal{T}(\mathcal{R})$ is typically not commutative, and need not be a finitely generated extension ring of \mathcal{T}_0 even when \mathcal{R} is Noetherian:

Example 2.2. We examine $\mathcal{T}(\mathcal{R})$ when \mathcal{R} is a standard graded polynomial ring over a field \mathbb{F} . We show that $\mathcal{T}(\mathcal{R})$ is a finitely generated ring extension of $\mathcal{T}_0 = \mathbb{F}$ if dim $\mathcal{R} \leq 2$, and that $\mathcal{T}(\mathcal{R})$ is not finitely generated if dim $\mathcal{R} \geq 3$.

(1) If \mathcal{R} is a polynomial ring of dimension 1, then $\mathcal{T}(\mathcal{R})$ is commutative and finitely generated over \mathbb{F} : take $\mathcal{R} = \mathbb{F}[x]$, in which case $\mathcal{T}_e = \mathbb{F} \cdot x^{p^e - 1}$ and

$$x^{p^{e}-1} * x^{p^{e'}-1} = x^{p^{e'+e'}-1} = x^{p^{e'}-1} * x^{p^{e}-1}.$$

Thus, $\mathcal{T}(\mathcal{R})$ is a polynomial ring in one variable.

(2) When \mathcal{R} is a polynomial ring of dimension 2, we verify that $\mathcal{T}(\mathcal{R})$ is a noncommutative finitely generated ring extension of \mathbb{F} . Let $\mathcal{R} = \mathbb{F}[x, y]$. Then

$$x^{p-1} * y^{p-1} = x^{p-1} y^{p^2-p}$$
 whereas $y^{p-1} * x^{p-1} = x^{p^2-p} y^{p-1}$

so $\mathcal{T}(\mathcal{R})$ is not commutative. For finite generation, it suffices to show that

$$\mathcal{T}_{e+1} = \mathcal{T}_1 * \mathcal{T}_e$$
, for each $e \ge 1$.

Set $q = p^e$ and consider the elements

$$x^i y^{p-1-i} \in \mathcal{T}_1, \quad 0 \leqslant i \leqslant p-1 \quad \text{and} \quad x^j y^{q-1-j} \in \mathcal{T}_e, \quad 0 \leqslant j \leqslant q-1.$$

Then $T_1 * T_e$ contains the elements

$$(x^{i}y^{p-1-i}) * (x^{j}y^{q-1-j}) = x^{i+pj}y^{pq-pj-i-1},$$

for $0 \le i \le p-1$ and $0 \le j \le q-1$, and these are readily seen to span \mathcal{T}_{e+1} . Hence, the degree p-1 monomials in x and y generate $\mathcal{T}(\mathcal{R})$ as a ring extension of \mathbb{F} .

(3) For a polynomial ring \mathcal{R} of dimension 3 or higher, the ring $\mathcal{T}(\mathcal{R})$ is noncommutative and not finitely generated over \mathbb{F} . The noncommutativity is immediate from (2); we give an argument that $\mathcal{T}(\mathcal{R})$ is not finitely generated for $\mathcal{R} = \mathbb{F}[x, y, z]$, and this carries over to polynomial rings \mathcal{R} of higher dimension.

Set $q = p^e$ where $e \ge 2$. We claim that the element

$$xy^{q/p-1}z^{q-q/p-1} \in T_e$$

does not belong to $T_{e_1} * T_{e_2}$ for integers $e_i < e$ with $e_1 + e_2 = e$. Indeed, $T_{e_1} * T_{e_2}$ is spanned by the monomials

$$(x^{i}y^{j}z^{q_{1}-i-j-1}) * (x^{k}y^{l}z^{q_{2}-k-l-1}) = x^{i+q_{1}k}y^{j+q_{1}l}z^{q-i-j-q_{1}k-q_{1}l-1}$$

where $q_i = p^{e_i}$ and

$$\begin{array}{ll} 0 \leqslant i \leqslant q_1 - 1, & 0 \leqslant j \leqslant q_1 - 1 - i, \\ 0 \leqslant k \leqslant q_2 - 1, & 0 \leqslant l \leqslant q_2 - 1 - k, \end{array}$$

so it suffices to verify that the equations

$$i + q_1 k = 1$$
 and $j + q_1 l = q/p - 1$

have no solution for integers i, j, k, l in the intervals displayed above. The first of the equations gives i = 1, which then implies that $0 \le j \le q_1 - 2$. Since q_1 divides q/p, the second equation gives $j \equiv -1 \mod q_1$. But this has no solution with $0 \le j \le q_1 - 2$.

3. The ring structure of $\mathcal{F}(E)$

We describe the ring of Frobenius operators $\mathcal{F}(E)$ in terms of the symbolic Rees algebra \mathcal{R} and the twisted multiplication structure $\mathcal{T}(\mathcal{R})$ of the previous section. First, a notational point: $\omega^{[p^e]}$ below denotes the iterated Frobenius power of an ideal ω , and $\omega^{(n)}$ its symbolic power, which coincides with reflexive power for divisorial ideals ω . We realize that the notation $\omega^{[n]}$ is sometimes used for the reflexive power, hence this note of caution. We start with the following observation:

LEMMA 3.1. Let (R, \mathfrak{m}) be a normal local ring of characteristic p > 0. Let ω be a divisorial ideal of R, i.e., an ideal of pure height one. Then for each integer $e \ge 1$, the map

$$H^{\dim R}_{\mathfrak{m}}\left(\omega^{[p^e]}
ight)\longrightarrow H^{\dim R}_{\mathfrak{m}}\left(\omega^{(p^e)}
ight)$$

induced by the inclusion $\omega^{[p^e]} \subseteq \omega^{(p^e)}$, is an isomorphism.

Proof. Set $d = \dim R$. Since R is normal and ω has pure height one, ωR_p is principal for each prime ideal p of height one; hence $(\omega^{(p^e)}/\omega^{[p^e]})R_p = 0$. It follows that

$$\dim\left(\omega^{(p^e)}/\omega^{[p^e]}\right)\leqslant d-2,$$

which gives the vanishing of the outer terms of the exact sequence

$$H^{d-1}_{\mathfrak{m}}\left(\omega^{(p^{e})}/\omega^{[p^{e}]}\right) \longrightarrow H^{d}_{\mathfrak{m}}\left(\omega^{[p^{e}]}\right) \longrightarrow H^{d}_{\mathfrak{m}}\left(\omega^{(p^{e})}\right) \longrightarrow H^{d}_{\mathfrak{m}}\left(\omega^{(p^{e})}/\omega^{[p^{e}]}\right)$$

and thus the desired isomorphism.

Definition 3.2. Let R be a normal ring that is either complete local, or \mathbb{N} -graded and finitely generated over R_0 . Let ω denote the canonical module of R. The symbolic Rees algebra

$$\mathcal{R} = \bigoplus_{n \geqslant 0} \omega^{(-n)}$$

is the *anticanonical cover* of *R*; it has a natural \mathbb{N} -grading where $\mathcal{R}_n = \omega^{(-n)}$.

THEOREM 3.3. Let (R, \mathfrak{m}) be a normal complete local ring of characteristic p > 0. Set d to be the dimension of R. Let ω denote the canonical module of R, and identify E, the injective hull of the R/\mathfrak{m} , with $H^d_\mathfrak{m}(\omega)$.

(1) Then $\mathcal{F}(E)$, the ring of Fröbenius operators on E, may be identified with

$$\bigoplus_{e\geqslant 0}\omega^{(1-p^e)}F^e,$$

where F^e denotes the map $H^d_{\mathfrak{m}}(\omega) \to H^d_{\mathfrak{m}}(\omega^{(p^e)})$ induced by $\omega \to \omega^{[p^e]}$. (2) Let \mathcal{R} be the anticanonical cover of R. Then one has an isomorphism of graded rings

$$\mathcal{F}(E) \cong \mathcal{T}(\mathcal{R}),$$

where $T(\mathcal{R})$ is as in Definition 2.1.

Proof. By Remark 1.3, we have

$$\mathcal{F}^{e}(H^{d}_{\mathfrak{m}}(\omega)) \cong \operatorname{Hom}_{R}(R^{(e)} \otimes_{R} H^{d}_{\mathfrak{m}}(\omega), H^{d}_{\mathfrak{m}}(\omega))$$

Moreover,

$$R^{(e)} \otimes_R H^d_{\mathfrak{m}}(\omega) \cong H^d_{\mathfrak{m}}(\omega^{[p^e]}) \cong H^d_{\mathfrak{m}}(\omega^{(p^e)}),$$

where the first isomorphism of by [ILL⁺, exercise 9.7], and the second by Lemma 3.1. By similar arguments

$$\operatorname{Hom}_{R}\left(H_{\mathfrak{m}}^{d}(\omega^{(p^{e})}), \ H_{\mathfrak{m}}^{d}(\omega)\right) \cong \operatorname{Hom}_{R}\left(H_{\mathfrak{m}}^{d}(\omega \otimes_{R} \omega^{(p^{e}-1)}), \ H_{\mathfrak{m}}^{d}(\omega)\right)$$
$$\cong \operatorname{Hom}_{R}\left(\omega^{(p^{e}-1)} \otimes_{R} H_{\mathfrak{m}}^{d}(\omega), \ H_{\mathfrak{m}}^{d}(\omega)\right)$$
$$\cong \operatorname{Hom}_{R}\left(\omega^{(p^{e}-1)}, \ \operatorname{Hom}_{R}\left(H_{\mathfrak{m}}^{d}(\omega), \ H_{\mathfrak{m}}^{d}(\omega)\right)\right),$$

with the last isomorphism using the adjointness of Hom and tensor. Since R is complete, the module above is isomorphic to

$$\operatorname{Hom}_{R}(\omega^{(p^{e}-1)}, R) \cong \omega^{(1-p^{e})}.$$

Suppose $\varphi \in \mathcal{F}^{e}(M)$ and $\varphi' \in \mathcal{F}^{e'}(M)$ correspond respectively to aF^{e} and $a'F^{e'}$, for elements $a \in \omega^{(1-p^{e'})}$ and $a' \in \omega^{(1-p^{e'})}$. Then $\varphi \circ \varphi'$ corresponds to $aF^{e} \circ bF^{e'} = ab^{p^{e}}F^{e+e'}$, which agrees with the ring structure of $\mathcal{T}(\mathcal{R})$ since $a \not \approx b = ab^{p^{e}}$.

Remark 3.4. Let *R* be a normal complete local ring of prime characteristic *p*; let *A* be a complete regular local ring with R = A/I. Using Remark 1.5 and Theorem 3.3, it is now a straightforward verification that $\mathcal{F}(E)$ is isomorphic, as a graded ring, to

$$\bigoplus_{e\geqslant 0}\frac{I^{\lfloor p^e\rfloor}:_{A}I}{I^{\lfloor p^e\rfloor}},$$

where the multiplication on this latter ring is the twisted multiplication *. An example of the isomorphism is worked out in Proposition 5.1.

4. Q-Gorenstein rings

We analyze the finite generation of $\mathcal{F}(E)$ when *R* is Q-Gorenstein. The following result follows from the corresponding statement for Cartier algebras, [Sc, remark 4.5], but we include it here for the sake of completeness:

PROPOSITION 4-1. Let (R, \mathfrak{m}) be a normal \mathbb{Q} -Gorenstein local ring of prime characteristic. Let ω denote the canonical module of R. If the order of ω is relatively prime to the characteristic of R, then $\mathcal{F}(E)$ is a finitely generated ring extension of $\mathcal{F}^0(E)$.

Proof. Since $\mathcal{F}^0(E)$ is isomorphic to the m-adic completion of *R*, the proposition reduces to the case where the ring *R* is assumed to be complete.

Let *m* be the order of ω , and *p* the characteristic of *R*. Then *p* mod *m* is an element of the group $(\mathbb{Z}/m\mathbb{Z})^{\times}$, and hence there exists an integer e_0 with $p^{e_0} \equiv 1 \mod m$. We claim that $\mathcal{F}(E)$ is generated over $\mathcal{F}^0(E)$ by $[\mathcal{F}(E)]_{\leq e_0}$.

We use the identification $\mathcal{F}(E) = \mathcal{T}(\mathcal{R})$ from Theorem 3.3. Since $\omega^{(m)}$ is a cyclic module, one has

$$\omega^{(n+km)} = \omega^{(n)} \omega^{(km)}$$
, for all integers k, n.

Thus, for each $e > e_0$, one has

$$\begin{aligned} \mathcal{T}_{e-e_0} * \mathcal{T}_{e_0} &= \omega^{(1-p^{e-e_0})} * \omega^{(1-p^{e_0})} \\ &= \omega^{(1-p^{e-e_0})} \cdot \left(\omega^{(1-p^{e_0})} \right)^{[p^{e-e_0}]} \\ &= \omega^{(1-p^{e-e_0})} \cdot \omega^{(p^{e-e_0}(1-p^{e_0}))} \\ &= \omega^{(1-p^{e-e_0}+p^{e-e_0}-p^e)} \\ &= \omega^{(1-p^e)} \\ &= \mathcal{T}_e, \end{aligned}$$

which proves the claim.

We conjecture that Proposition 4.1 has a converse in the following sense:

Conjecture 4.2. Let (R, \mathfrak{m}) be a normal \mathbb{Q} -Gorenstein ring of prime characteristic, such that the order of the canonical module in the divisor class group is a multiple of the characteristic of *R*. Then $\mathcal{F}(E)$ is not a finitely generated ring extension of $\mathcal{F}^0(E)$.

Veronese subrings. Let \mathbb{F} be a field of characteristic p > 0, and $A = \mathbb{F}[x_1, \dots, x_d]$ a polynomial ring. Given a positive integer n, we denote the n-th Veronese subring of A by

$$A_{(n)} = \bigoplus_{k \ge 0} A_{nk};$$

this differs from the standard notation, e.g., **[GW]**, since we reserve superscripts ($)^{(n)}$ for symbolic powers. The cyclic module $x_1 \cdots x_d A$ is the graded canonical module for the polynomial ring A. By **[GW**, corollary 3.1.3], the Veronese submodule

$$(x_1\cdots x_d A)_{(n)} = \bigoplus_{k\geqslant 0} [x_1\cdots x_d A]_{nk}$$

is the graded canonical module for the subring $A_{(n)}$. Let m denote the homogeneous maximal ideal of $A_{(n)}$. The injective hull of $A_{(n)}/\mathfrak{m}$ in the category of graded $A_{(n)}$ -modules is

$$H^{d}_{\mathfrak{m}}((x_{1}\cdots x_{d}A)_{(n)}) = \left[H^{d}_{\mathfrak{m}}(x_{1}\cdots x_{d}A)\right]_{(n)}$$
$$= \left[\frac{A_{x_{1}\cdots x_{d}}}{\sum_{i} x_{1}\cdots x_{d}A_{x_{1}\cdots \widehat{x_{i}}\cdots x_{d}}}\right]_{(n)}$$

see [**GW**, theorem 3.1.1]. By [**GW**, theorem 1.2.5], this is also the injective hull in the category of all $A_{(n)}$ -modules.

Let *R* be the m-adic completion of $A_{(n)}$. As it is m-torsion, the module displayed above is also an *R*-module; it is the injective hull of $R/\mathfrak{m}R$ in the category of *R*-modules.

PROPOSITION 4.3. Let \mathbb{F} be a field of characteristic p > 0, and let $A = \mathbb{F}[x_1, \dots, x_d]$ be a polynomial ring of dimension d. Let n be a positive integer, and R be the completion of the n-th Veronese subring of A at its homogeneous maximal ideal. Set E = M/N where

$$M = R_{x_1^n \cdots x_d^n}$$

and N is the R-submodule spanned by elements $x_1^{i_1} \cdots x_d^{i_d} \in M$ with $i_k \ge 1$ for some k; the module E is the injective hull of the residue field of R.

Then $\mathcal{F}^{e}(E)$ is the left *R*-module generated by the elements

$$\frac{1}{x_1^{\alpha_1}\cdots x_d^{\alpha_d}}F^e,$$

where *F* is the pth power map, $\alpha_k \leq p^e - 1$ for each *k*, and $\sum \alpha_k \equiv 0 \mod n$.

Remark 4.4. We use *F* for the Frobenius endomorphism of the ring *M*. The condition $\sum \alpha_k \equiv 0 \mod n$, or equivalently $x_1^{\alpha_1} \cdots x_d^{\alpha_d} \in M$, implies that

$$\frac{1}{x_1^{\alpha_1}\cdots x_d^{\alpha_d}}F^e \in \mathcal{F}^e(M).$$

When $\alpha_k \leq p^e - 1$ for each k, the map displayed above stabilizes N and thus induces an element of $\mathcal{F}^e(M/N)$; we reuse F for the pth power map on M/N.

Proof of Proposition 4.3 In view of the above remark, it remains to establish that the given elements are indeed generators for $\mathcal{F}^e(E)$. The canonical module of *R* is

$$\omega_R = \left(x_1 \cdots x_d A \right)_{(n)} R$$

and, indeed, $H_m^d(\omega_R) = E$. Thus, Theorem 3.3 implies that

$$\mathcal{F}^e(E) = \omega_R^{(1-q)} F^e$$

where $q = p^e$. But $\omega_R^{(1-q)}$ is the completion of the $A_{(n)}$ -module

$$\left\lfloor \frac{1}{x_1^{q-1} \cdots x_d^{q-1}} A \right\rfloor_{(n)} = \left(\frac{1}{x_1^{\alpha_1} \cdots x_d^{\alpha_d}} \mid \alpha_k \leqslant q-1 \text{ for each } k, \ \sum \alpha_k \equiv 0 \mod n \right) A_{(n)},$$

which completes the proof.

Example 4.5. Consider d = 2 and n = 3 in Proposition 4.3, i.e.,

$$R = \mathbb{F}[[x^3, x^2y, xy^2, y^3]].$$

Then $\omega = (x^2y, xy^2)R$ has order 3 in the divisor class group of *R*; indeed,

$$\omega^{(2)} = (x^4 y^2, x^3 y^3, x^2 y^4) R$$
 and $\omega^{(3)} = (x^3 y^3) R$

(1) If $p \equiv 1 \mod 3$, then $\omega^{(1-q)} = (xy)^{1-q} R$ is cyclic for each $q = p^e$ and

$$\mathcal{F}^e(E) = \frac{1}{(xy)^{q-1}} F^e.$$

Since

$$\frac{1}{(xy)^{p-1}}F \circ \frac{1}{(xy)^{q-1}}F^e = \frac{1}{(xy)^{pq-1}}F^{e+1},$$

it follows that

$$\mathcal{F}(E) = R\left\{\frac{1}{(xy)^{p-1}}F\right\}.$$

(2) If $p \equiv 2 \mod 3$ and $q = p^e$, then $\omega^{(1-q)} = (xy)^{1-q} R$ for *e* even and

$$\omega^{(1-q)} = \left(\frac{1}{x^{q-3}y^{q-1}}, \frac{1}{x^{q-2}y^{q-2}}, \frac{1}{x^{q-1}y^{q-3}}\right) R$$

for *e* odd. The proof of Proposition 4.1 shows that $\mathcal{F}(E)$ is generated by its elements of degree ≤ 2 and hence

$$\mathcal{F}(E) = R\left\{\frac{1}{x^{p-3}y^{p-1}}F, \ \frac{1}{x^{p-2}y^{p-2}}F, \ \frac{1}{x^{p-1}y^{p-3}}F, \ \frac{1}{x^{p^{2}-1}y^{p^{2}-1}}F^{2}\right\}.$$

In the case p = 2, the above reads

$$\mathcal{F}(E) = R\left\{\frac{x}{y}F, F, \frac{y}{x}F, \frac{1}{x^3y^3}F^2\right\}.$$

(3) When p = 3, one has

$$\omega^{(1-q)} = \frac{1}{x^q y^q} (x^2 y, \ x y^2) R = \left(\frac{1}{x^{q-2} y^{q-1}}, \ \frac{1}{x^{q-1} y^{q-2}}\right) R$$

for each $q = p^e$. In this case,

$$\mathcal{F}(E) = R\left\{\frac{1}{xy^2}F, \ \frac{1}{x^2y}F, \ \frac{1}{x^7y^8}F^2, \ \frac{1}{x^8y^7}F^2, \ \frac{1}{x^{25}y^{26}}F^3, \ \frac{1}{x^{26}y^{25}}F^3, \ \dots\right\},$$

and $\mathcal{F}(E)$ is not a finitely generated extension ring of $\mathcal{F}^0(E) = R$; indeed,

$$\begin{split} \omega^{(1-q)} & \ast \omega^{(1-q')} = \frac{1}{x^q y^q} (x^2 y, \ xy^2) R \\ & = \frac{1}{x^{qq'+q} y^{qq'+q}} (x^2 y, \ xy^2) \cdot (x^{2q} y^q, \ x^q y^{2q}) R \\ & = \frac{1}{x^{qq'} y^{qq'}} (x^{q+2} y, \ x^{q+1} y^2, \ x^2 y^{q+1}, \ xy^{q+2}) R \\ & = \frac{1}{x^{qq'} y^{qq'}} (x^2 y, \ xy^2) \cdot (x^q, \ y^q) R \\ & = (x^q, \ y^q) \, \omega^{(1-qq')} \end{split}$$

for $q = p^e$ and $q' = p^{e'}$, where e and e' are positive integers.

MORDECHAI KATZMAN ET AL.

5. A determinantal ring

Let *R* be the determinantal ring $\mathbb{F}[X]/I$, where *X* is a 2 × 3 matrix of variables over a field of characteristic p > 0, and *I* is the ideal generated by the size 2 minors of *X*. Set m to be the homogeneous maximal ideal of *R*. We show that the algebra of Frobenius operators $\mathcal{F}(E)$ is not finitely generated over $\mathcal{F}^0(E) = \widehat{R}$; this proves [**Ka**, conjecture 3·1]. We also extend Fedder's calculation of the ideals $I^{[p]} : I$ to the ideals $I^{[q]} : I$ for all $q = p^e$.

The ring R is isomorphic to the affine semigroup ring

$$\mathbb{F}\begin{bmatrix}sx, sy, sz, \\ tx, ty, tz\end{bmatrix} \subseteq \mathbb{F}[s, t, x, y, z].$$

Using this identification, *R* is the Segre product A#B of the polynomial rings $A = \mathbb{F}[s, t]$ and $B = \mathbb{F}[x, y, z]$. By [**GW**, theorem 4.3.1], the canonical module of *R* is the Segre product of the graded canonical modules *stA* and *xyzB* of the respective polynomial rings, i.e.,

$$\omega_R = stA \# xyzB = (s^2 txyz, st^2 xyz)R.$$

Let *e* be a nonnegative integer, and $q = p^e$. Then

$$\omega_R^{(1-q)} = \frac{1}{(st)^{q-1}} A \# \frac{1}{(xyz)^{q-1}} B$$

is the *R* module spanned by the elements

$$\frac{1}{(st)^{q-1}x^k y^l z^m}$$

with k + l + m = 2q - 2 and $k, l, m \leq q - 1$.

View *E* as M/N where $M = R_{s^2 txyz}$, and *N* is the *R*-submodule spanned by the elements $s^i t^j x^k y^l z^m$ in *M* that have at least one positive exponent. Then $\mathcal{F}^e(E)$ is the left \widehat{R} -module generated by

$$\frac{1}{(st)^{q-1}x^k y^l z^m} F^e$$

where *F* is the *p*th power map, k + l + m = 2q - 2, and $k, l, m \leq q - 1$. Using this description, it is an elementary—though somewhat tedious—verification that $\mathcal{F}(E)$ is not finitely generated over $\mathcal{F}^0(E)$; alternatively, note that the symbolic powers of the height one prime ideals $(sx, sy, sz)\hat{R}$ and $(sx, tx)\hat{R}$ agree with the ordinary powers by [**BV**, corollary 7.10]. Thus, the anticanonical cover of \hat{R} is the ring \mathcal{R} with

$$\mathcal{R}_n = \frac{1}{(s^2 t x y z)^n} (sx, sy, sz)^n \widehat{R}$$

and so

$$\mathcal{T}_e = \frac{1}{(s^2 t x y z)^{q-1}} (sx, sy, sz)^{q-1} \widehat{R}$$

Thus,

$$\begin{aligned} \mathcal{T}_{e_1} & \ast \mathcal{T}_{e_2} = \frac{1}{(s^2 t x y z)^{q_1 - 1}} (sx, sy, sz)^{q_1 - 1} & \ast \frac{1}{(s^2 t x y z)^{q_2 - 1}} (sx, sy, sz)^{q_2 - 1} \\ & = \frac{1}{(s^2 t x y z)^{q_1 q_2 - 1}} (sx, sy, sz)^{q_1 - 1} \cdot \left((sx, sy, sz)^{q_2 - 1} \right)^{[q_1]} \\ & = \frac{1}{(s^2 t x y z)^{q_1 q_2 - 1}} (sx, sy, sz)^{q_1 - 1} \cdot \left((sx)^{q_1}, (sy)^{q_1}, (sz)^{q_1} \right)^{q_2 - 1} \end{aligned}$$

where $q_i = p^{e_i}$. We claim that

$$\mathcal{T}_e \ + \ \sum_{e_1=1}^{e-1} \mathcal{T}_{e_1} \ * \ \mathcal{T}_{e-e_1}.$$

For this, it suffices to show that

$$\frac{1}{(s^2 t x y z)^{q-1}} s x (s y)^{q/p-1} (s z)^{q-q/p-1}$$

does not belong to $\mathcal{T}_{e_1} * \mathcal{T}_{e_2}$ for integers $e_i < e$ with $e_1 + e_2 = e$. By the description of $\mathcal{T}_{e_1} * \mathcal{T}_{e_2}$ above, this is tantamount to proving that

$$(sx(sy)^{q/p-1}(sz)^{q-q/p-1} \notin (sx, sy, sz)^{q_1-1} \cdot ((sx)^{q_1}, (sy)^{q_1}, (sz)^{q_1})^{q_2-1},$$

but this is essentially Example $2 \cdot 2 \cdot 3$.

Fedder's computation. Let A be the power series ring $\mathbb{F}[[u, v, w, x, y, z]]$ for \mathbb{F} a field of characteristic p > 0, and let I be the ideal generated by the size 2 minors of the matrix

$$\begin{pmatrix} u & v & w \\ x & y & z \end{pmatrix},$$

In [Fe, proposition 4.7], Fedder shows that

$$I^{[p]}: I = I^{2p-2} + I^{[p]}.$$

We extend this next by calculating the ideals $I^{[q]}$: I for each prime power $q = p^e$.

PROPOSITION 5.1. Let A be the power series ring $\mathbb{F}[[u, v, w, x, y, z]]$ where K a field of characteristic p > 0. Let I be the ideal of A generated by $\Delta_1 = vz - wy$, $\Delta_2 = wx - uz$, and $\Delta_3 = uy - vx$.

(1) For $q = p^e$ and nonnegative integers s, t with $s + t \leq q - 1$, one has

$$y^{s}z^{t}(\Delta_{2}\Delta_{3})^{q-1} \in I^{[q]} + x^{s+t}A.$$

(2) For q, s, t as above, let $f_{s,t}$ be an element of A with

$$y^{s}z^{t}(\Delta_{2}\Delta_{3})^{q-1} \equiv x^{s+t}f_{s,t} \mod I^{[q]}.$$

Then $f_{s,t}$ is well-defined modulo $I^{[q]}$. Moreover, $f_{s,t} \in I^{[q]} :_A I$, and

$$I^{[q]}:_{A} I = I^{[q]} + (f_{s,t} \mid s+t \leq q-1)A.$$

For q = p, the above recovers Fedder's computation that $I^{[p]} : I = I^{2p-2} + I^{[p]}$, though for q > p, the ideal $I^{[p]} : I$ is strictly bigger than $I^{2p-2} + I^{[p]}$.

Proof. (1) Note that the element

$$y^{s}z^{t}(\Delta_{2}\Delta_{3})^{q-1} = y^{s}z^{t}(wx - uz)^{q-1}(uy - vx)^{q-1}$$

belongs to the ideals

$$(x, u)^{2q-2} \subseteq (x^{q-1}, u^q) \subseteq (x^{s+t}, u^q)$$

and also to

$$y^{s}z^{t}(x,z)^{q-1}(x,y)^{q-1} \subseteq y^{s}z^{t}(x^{t},z^{q-t})(x^{s},y^{q-s}) \subseteq (x^{s+t},z^{q},y^{q}).$$

Hence,

$$y^{s}z^{t}(\Delta_{2}\Delta_{3})^{q-1} \in (x^{s+t}, u^{q})A \cap (x^{s+t}, z^{q}, y^{q})A$$

= $(x^{s+t}, u^{q}z^{q}, u^{q}y^{q})A$
 $\subseteq (x^{s+t}, \Delta_{1}^{q}, \Delta_{2}^{q}, \Delta_{3}^{q})A.$

(2) The ideals I and $I^{[q]}$ have the same associated primes, [**ILL**⁺, corollary 21·11]. As I is prime, it is the only prime associated to $I^{[q]}$. Hence x^{s+t} is a nonzerodivisor modulo $I^{[q]}$, and it follows that $f_{s,t} \mod I^{[q]}$ is well-defined.

We next claim that

 $I^{2q-1} \subseteq I^{[q]}.$

By the earlier observation on associated primes, it suffices to verify this in the local ring R_I . But R_I is a regular local ring of dimension 2, so IR_I is generated by two elements, and the claim follows from the pigeonhole principle. The claim implies that

$$x^{s+t}f_{s,t}I \in I^{[q]},$$

and using, again, that x^{s+t} is a nonzerodivisor modulo $I^{[q]}$, we see that $f_{s,t}I \subseteq I^{[q]}$, in other words, that $f_{s,t} \in I^{[q]} :_A I$ as desired.

By Theorem 3.3 and Remark 3.4, one has the *R*-module isomorphisms

$$\omega_R^{(1-q)} \cong \mathcal{F}^e(E) \cong \frac{I^{[q]}:_A I}{I^{[q]}}.$$

Choosing $\omega_R^{(-1)} = (x, y, z)R$, we claim that the map

$$(x, y, z)^{q-1}R \longrightarrow \frac{I^{[q]}:_A I}{I^{[q]}}$$
$$x^{q-1-s-t}y^s z^t \mapsto f_{s,t}$$

is an isomorphism. Since the modules in question are reflexive R-modules of rank one, it suffices to verify that the map is an isomorphism in codimension 1. Upon inverting x, the above map induces

$$R_x \longrightarrow \frac{I^{[q]}A_x :_{A_x} IA_x}{I^{[q]}A_x}$$
$$x^{q-1} \mapsto (\Delta_2 \Delta_3)^{q-1}$$

which is readily seen to be an isomorphism since $IA_x = (\Delta_2, \Delta_3)A_x$.

162

6. Cartier algebras and gauge boundedness

For a ring *R* of prime characteristic p > 0, one can interpret $\mathcal{F}^{e}(E)$ in a dual way as a collection of p^{-e} -linear operators on *R*. This point of view was studied by Blickle [**Bl2**] and Schwede [**Sc**].

Definition 6.1. Let R be a ring of prime characteristic p > 0. For each $e \ge 0$, set C_e^R to be set of additive maps $\varphi \colon R \to R$ satisfying

$$\varphi(r^{p^{e}}x) = r\varphi(x), \text{ for } r, x \in R.$$

The total Cartier algebra is the direct sum

$$\mathcal{C}^R = \bigoplus_{e \ge 0} \mathcal{C}_e^R.$$

For $\varphi \in C_e^R$ and $\varphi' \in C_{e'}^R$, the compositions $\varphi \circ \varphi'$ and $\varphi' \circ \varphi$ are elements of $C_{e+e'}^R$. This gives C^R the structure of an \mathbb{N} -graded ring; it is typically not a commutative ring. As pointed out in [**ABZ**, 2·2·1], if (R, \mathfrak{m}) is an *F*-finite complete local ring, then the ring of Frobenius operators $\mathcal{F}(E)$ is isomorphic to C^R .

Each C_e^R has a left and a right *R*-module structure: for $\varphi \in C_e^R$ and $r \in R$, we define $r \cdot \varphi$ to be the map $x \mapsto r\varphi(x)$, and $\varphi \cdot r$ to be the map $x \mapsto \varphi(rx)$.

Definition 6.2. Blickle [**Bl2**] introduced a notion of boundedness for Cartier algebras: Let R = A/I for a polynomial ring $A = \mathbb{F}[x_1, \dots, x_d]$ over an *F*-finite field \mathbb{F} . Set R_n to be the finite dimensional \mathbb{F} -vector subspace of *R* spanned by the images of the monomials

$$x_1^{\lambda_1} \cdots x_d^{\lambda_d}$$
, for $0 \leq \lambda_j \leq n$.

Following [An] and [Bl2], we define a map $\delta: R \longrightarrow \mathbb{Z}$ by $\delta(r) = n$ if $r \in R_n \setminus R_{n-1}$; the map δ is a *gauge*. If I = 0, then $\delta(r) \leq \deg(r)$ for each $r \in R$. We recall some properties from [An, proposition 1] and [Bl2, lemma 4.2]:

$$\delta(r+r') \leqslant \max{\delta(r), \delta(r')},$$

 $\delta(r \cdot r') \leqslant \delta(r) + \delta(r').$

The ring C^R is *gauge bounded* if there exists a constant K, and elements $\varphi_{e,i}$ in C_e^R for each $e \ge 1$ generating C_e^R as a left *R*-module, such that

$$\delta(\varphi_{e,i}(x)) \leqslant \frac{\delta(x)}{p^e} + K$$
, for each *e* and *i*.

Remark 6.3. We record two key facts that will be used in our proof of Theorem 6.4:

- (1) If there exists a constant C such that $I^{[p^e]} :_A I$ is generated by elements of degree at most Cp^e for each $e \ge 1$, then C^R is gauge bounded; this is [**KZ**, lemma 2.2].
- (2) If C^R is gauge bounded, then for each ideal \mathfrak{a} of R, the *F*-jumping numbers of $\tau(R, \mathfrak{a}')$ are a subset of the real numbers with no limit points; in particular, they form a discrete set. This is [**B12**, theorem 4.18].

We now prove the main result of the section:

THEOREM 6.4. Let *R* be a normal \mathbb{N} -graded that is finitely generated over an *F*-finite field R_0 . (The ring *R* need not be standard graded.)

Suppose that the anticanonical cover of R is finitely generated as an R-algebra. Then C^R is gauge bounded. Hence, for each ideal \mathfrak{a} of R, the set of F-jumping numbers of $\tau(R, \mathfrak{a}^l)$ is a subset of the real numbers with no limit points.

Proof. Let A be a polynomial ring, with a possibly non-standard \mathbb{N} -grading, such that R = A/I. It suffices to obtain a constant C such that the ideals $I^{[p^e]} :_A I$ are generated by elements of degree at most Cp^e for each $e \ge 1$.

There exists a ring isomorphism $\bigoplus_{e \ge 0} \omega^{(1-p^e)} \cong \bigoplus_{e \ge 0} (I^{[p^e]} :_A I)/I^{[p^e]}$ by Remark 3.4 that respects the *e*th graded components. After replacing ω by an isomorphic *R*-module with a possible graded shift, we may assume that the isomorphism above induces degree preserving *R*-module isomorphisms $\omega^{(1-p^e)} \cong (I^{[p^e]} :_A I)/I^{[p^e]}$ for each $e \ge 0$. While ω is no longer canonically graded, we still have the finite generation of the anticanonical cover $\bigoplus_{n\ge 0} \omega^{(-n)}$. It suffices to check that there exists a constant *C* such that $\omega^{(1-p^e)}$ is generated, as an *R*-module, by elements of degree at most Cp^e .

Choose finitely many homogeneous *R*-algebra generators z_1, \ldots, z_k for $\bigoplus_{n \ge 0} \omega^{(-n)}$, say with $z_i \in \omega^{(-j_i)}$. Set *C* to be the maximum of deg z_1, \ldots , deg z_k . Then the monomials

 $z^{\lambda} = z_1^{\lambda_1} z_2^{\lambda_2} \cdots z_k^{\lambda_k}, \quad \text{with } \sum \lambda_i j_i = p^e - 1$

generate the *R*-module $\omega^{(1-p^e)}$, and it is readily seen that

$$\deg z^{\lambda} = \sum \lambda_i \deg z_i \leqslant C \sum \lambda_i \leqslant C(p^e - 1).$$

By [**KZ**, lemma 2·2], it follows that C^R is gauge bounded; the assertion now follows from [**Bl2**, theorem 4·18].

COROLLARY 6.5. Let *R* be the determinantal ring $\mathbb{F}[X]/I$, where *X* is a matrix of indeterminates over an *F*-finite field \mathbb{F} of prime characteristic, and *I* is the ideal generated by the minors of *X* of an arbitrary but fixed size. Then, for each ideal \mathfrak{a} of *R*, the set of *F*-jumping numbers of $\tau(R, \mathfrak{a}^t)$ is a subset of the real numbers with no limit points.

Proof. Since *R* is a determinantal ring, the symbolic powers of the ideal $\omega^{(-1)}$ agree with the ordinary powers by [**BV**, corollary 7.10]. Hence the anticanonical cover of *R* is finitely generated, and the result follows from Theorem 6.4.

Remark 6.6. It would be natural to remove the hypothesis that R is graded in Theorem 6.4. However, we do not know how to do this: when R is not graded, it is unclear if one can choose gauges that are compatible with the ring isomorphism

$$\bigoplus_{e \geqslant 0} \omega^{(1-p^e)} \cong \bigoplus_{e \geqslant 0} (I^{[p^e]} :_A I) / I^{[p^e]}.$$

7. Linear growth of Castelnuovo–Mumford regularity for rings of finite Frobenius representation type

Let A be a standard graded polynomial ring over a field \mathbb{F} , with homogeneous maximal ideal m. We recall the definition of the Castelnuovo-Mumford regularity of a graded module following [**Ei**, chapter 4]:

Definition 7.1. Let $M = \bigoplus_{d \in \mathbb{O}} M_d$ be a graded A-module. If M is Artinian, we set

$$\operatorname{reg} M = \max\{d \mid M_d \neq 0\};$$

for an arbitrary graded module we define

$$\operatorname{reg} M = \max_{k \ge 0} \{\operatorname{reg} H^k_{\mathfrak{m}}(M) + k\}.$$

Definition 7.2. Let I and J be homogeneous ideals of A. We say that the regularity of $A/(I + J^{[p^e]})$ has *linear growth* with respect to p^e , if there is a constant C, such that

$$\operatorname{reg} A/(I + J^{[p^e]}) \leq Cp^e$$
, for each $e \geq 0$.

It follows from [**KZ**, corollary 2.4] that if reg $A/(I + J^{[p^e]})$ has linear growth for each homogeneous ideal J, then $C^{A/I}$ is gauge-bounded.

Remark 7.3. Let R = A/I for a homogeneous ideal *I*. We define a grading on the bimodule $R^{(e)}$ introduced in Remark 1.3: when an element *r* of *R* is viewed as an element of $R^{(e)}$, we denote it by $r^{(e)}$. For a homogeneous element $r \in R$, we set

$$\deg' r^{(e)} = \frac{1}{p^e} \deg r.$$

For each ideal J of R, one has an isomorphism

$$R^{(e)} \otimes_R R/J \xrightarrow{\cong} R/J^{[p^e]}$$

under which $r^{(e)} \otimes \overline{s} \mapsto \overline{rs^{p^e}}$. To make this isomorphism degree-preserving for a homogeneous ideal *J*, we define a grading on $R/J^{[p^e]}$ as follows:

$$\deg' \overline{r} = \frac{1}{p^e} \deg \overline{r}$$
, for a homogeneous element r of R .

The notion of finite Frobenius representation type was introduced by Smith and Van den Bergh [SV]; we recall the definition in the graded context:

Definition 7.4. Let *R* be an \mathbb{N} -graded Noetherian ring of prime characteristic *p*. Then *R* has *finite graded Frobenius-representation type* by finitely generated \mathbb{Q} -graded *R*-modules M_1, \ldots, M_s , if for every $e \in \mathbb{N}$, the \mathbb{Q} -graded *R*-module $R^{(e)}$ is isomorphic to a finite direct sum of the modules M_i with possible graded shifts, i.e., if there exist rational numbers $\alpha_{ij}^{(e)}$, such that there exists a \mathbb{Q} -graded isomorphism

$$R^{(e)} \cong \bigoplus_{i,j} M_i(\alpha_{ij}^{(e)}).$$

Remark 7.5. Suppose *R* has finite graded Frobenius-representation type. With the notation as above, there exists a constant *C* such that

$$lpha_{ij}^{(e)} \leqslant C$$
, for all e, i, j ;

see the proof of $[\mathbf{TT}, \text{ theorem } 2.9]$.

(

We now prove the main result of this section; compare with [TT, theorem 4.8].

THEOREM 7.6. Let A be a standard graded polynomial ring over an F-finite field of characteristic p > 0. Let I be a homogeneous ideal of A.

Suppose R = A/I has finite graded F-representation type. Then reg $A/(I + J^{[p^e]})$ has linear growth for each homogeneous ideal J. In particular, C^R is gauge bounded, and for each ideal \mathfrak{a} of R, the set of F-jumping numbers of $\tau(R, \mathfrak{a}^t)$ is a subset of the real numbers with no limit points.

Proof. We use J for the ideal of A, and also for its image in R. Let $a'(H_{\mathfrak{m}}^{k}(R/J^{[p^{e}]}))$ denote the largest degree of a nonzero element of $H_{\mathfrak{m}}^{k}(R/J^{[p^{e}]})$ under the deg'-grading, i.e.,

$$a'\left(H_{\mathfrak{m}}^{k}(R/J^{[p^{e}]})\right) = \frac{1}{p^{e}}\operatorname{reg} H_{\mathfrak{m}}^{k}\left(R/J^{[p^{e}]}\right).$$

Since we have degree-preserving isomorphisms $R^{(e)} \otimes_R R/J \cong R/J^{[p^e]}$, and

$$R^{(e)} \cong \bigoplus_{i,j} M_i(\alpha_{ij}^{(e)}),$$

it follows that

$$\begin{aligned} H^k_{\mathfrak{m}}(R/J^{[p^e]}) &\cong H^k_{\mathfrak{m}}(R^{(e)}\otimes_R R/J) \\ &\cong \bigoplus_{i,j} H^k_{\mathfrak{m}}\big(M_i\big(\alpha_{ij}^{(e)}\big)\otimes_R R/J\big) \\ &\cong \bigoplus_{i,j} H^k_{\mathfrak{m}}(M_i/JM_i)\big(\alpha_{ij}^{(e)}\big). \end{aligned}$$

The numbers $\alpha_{ii}^{(e)}$ are bounded by Remark 7.5; thus,

$$a'(H^k_{\mathfrak{m}}(R/J^{[p^e]})) \leqslant \max_i \{a'(H^k_{\mathfrak{m}}(M_i/JM_i)) + C\}.$$

Since there are only finitely many modules M_i and finitely many homological indices k, it follows that $a'(H^k_{\mathfrak{m}}(R/J^{[p^e]})) \leq C'$, where C' is a constant independent of e and k. Hence

reg
$$H^k_{\mathfrak{m}}(R/J^{\lfloor p^e \rfloor}) \leq C' p^e$$
, for all e, k ,

and so

$$\operatorname{reg} A/(I+J^{[p^e]}) = \max_k \left\{ \operatorname{reg} H^k_{\mathfrak{m}}(R/J^{[p^e]}) + k \right\} \leqslant C' p^e + \dim A.$$

This proves that reg $A/J^{[p^e]}$ has linear growth; [**KZ**, corollary 2.4] implies that C^R is gauge bounded, and the discreteness assertion follows from [**Bl2**, theorem 4.18].

REFERENCES

- [ABZ] J. ÀLVAREZ MONTANER, A. F. BOIX and S. ZARZUELA. Frobenius and Cartier algebras of Stanley–Reisner rings. J. Algebra. 358 (2012), 162–177.
 - [An] G. W. ANDERSON. An elementary approach to L-functions mod p. J. Number Theory. 80 (2000), 291–303.
 - [B11] M. BLICKLE. The intersection homology D-module in finite characteristic. Ph.D. thesis. University of Michigan (2001), arXiv:math/0110244 [math.AG].
 - **[B12]** M. BLICKLE. Test ideals via algebras of p^{-e} -linear maps. J. Algebraic Geom. 22 (2013), 49–83.
 - [BV] W. BRUNS and U. VETTER. Determinantal rings. *Lecture Notes in Math.* 1327 (Springer-Verlag, Berlin, 1988).
 - [Ei] D. EISENBUD. *The geometry of syzygies*. Graduate Texts in Math. 229 (Springer-Verlag, New York, 2005).
 - [Fe] R. FEDDER. F-purity and rational singularity. Trans. Amer. Math. Soc. 278 (1983), 461–480.
- [GW] S. GOTO and K.-I. WATANABE. On graded rings I. J. Math. Soc. Japan. 30 (1978), 179– 213.
- [ILL⁺] S. B. IYENGAR, G. J. LEUSCHKE, A. LEYKIN, C. MILLER, E. MILLER, A. K. SINGH and U. WALTHER. *Twenty-four hours of local cohomology*. Grad. Stud. Math. 87 (American Mathematical Society, Providence, RI, 2007).
 - [Ka] M. KATZMAN. A non-finitely generated algebra of Frobenius maps. Proc. Amer. Math. Soc. 138 (2010), 2381–2383.
 - [KZ] M. KATZMAN and W. ZHANG. Castelnuovo–Mumford regularity and the discreteness of Fjumping coefficients in graded rings. Trans. Amer. Math. Soc., to appear, arXiv:1110.2093 [math.AC].
 - [LS] G. LYUBEZNIK and K. E. SMITH. On the commutation of the test ideal with localization and completion. *Trans. Amer. Math. Soc.* 353 (2001), 3149–3180.

166

- [Sc] K. SCHWEDE. Test ideals in non-Q-Gorenstein rings. Trans. Amer. Math. Soc. 363 (2011), 5925–5941.
- [SV] K. E. SMITH and M. VAN DEN BERGH. Simplicity of rings of differential operators in prime characteristic. Proc. London Math. Soc. (3). 75 (1997), 32–62.
- [TT] S. TAKAGI and R. TAKAHASHI. *D*-modules over rings with finite *F*-representation type. *Math. Res. Lett.* **15** (2008), 563–581.