Rings of Frobenius operators

By MORDECHAI KATZMAN \dagger
Department of Pure Mathematics, University of Sheffield, Hicks Building, Sheffield, S3 7RH.
e-mail: M.Katzman@sheffield.ac.uk
KARL SCHWEDE \ddagger
Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, U.S.A.
e-mail: schwede@math.psu.edu
ANURAG K. SINGH§
Department of Mathematics, University of Utah, 155 S 1400 E, Salt Lake City, UT 84112, U.S.A.
e-mail: singh@math.utah.edu
AND WENLIANG ZHANG\|
Department of Mathematics, University of Nebraska, Lincoln, NE 68505, U.S.A.
e-mail: wzhang15@unl.edu

(Received 25 April 2013; revised 6 January 2014)

Abstract

Let R be a local ring of prime characteristic. We study the ring of Frobenius operators $\mathcal{F}(E)$, where E is the injective hull of the residue field of R. In particular, we examine the finite generation of $\mathcal{F}(E)$ over its degree zero component $\mathcal{F}^{0}(E)$, and show that $\mathcal{F}(E)$ need not be finitely generated when R is a determinantal ring; nonetheless, we obtain concrete descriptions of $\mathcal{F}(E)$ in good generality that we use, for example, to prove the discreteness of F-jumping numbers for arbitrary ideals in determinantal rings.

1. Introduction

Lyubeznik and Smith [LS] initiated the systematic study of rings of Frobenius operators and their applications to tight closure theory. Our focus here is on the Frobenius operators on the injective hull of R / \mathfrak{m}, when (R, \mathfrak{m}) is a complete local ring of prime characteristic.

[^0]Definition $1 \cdot 1$. Let R be a ring of prime characteristic p, with Frobenius endomorphism F. Following [LS, section 3], we set $R\left\{F^{e}\right\}$ to be the ring extension of R obtained by adjoining a noncommutative variable χ subject to the relations $\chi r=r^{p^{e}} \chi$ for all $r \in R$.

Let M be an R-module. Extending the R-module structure on M to an $R\left\{F^{e}\right\}$-module structure is equivalent to specifying an additive map $\varphi: M \rightarrow M$ that satisfies

$$
\varphi(r m)=r^{p^{e}} \varphi(m), \quad \text { for each } r \in R \text { and } m \in M
$$

Define $\mathcal{F}^{e}(M)$ to be the set of all such maps φ arising from $R\left\{F^{e}\right\}$-module structures on M; this is an Abelian group with a left R-module structure, where $r \in R$ acts on $\varphi \in \mathcal{F}^{e}(M)$ to give the composition $r \circ \varphi$. Given elements $\varphi \in \mathcal{F}^{e}(M)$ and $\varphi^{\prime} \in \mathcal{F}^{e^{\prime}}(M)$, the compositions $\varphi \circ \varphi^{\prime}$ and $\varphi^{\prime} \circ \varphi$ are elements of the module $\mathcal{F}^{e+e^{\prime}}(M)$. Thus,

$$
\mathcal{F}(M)=\mathcal{F}^{0}(M) \oplus \mathcal{F}^{1}(M) \oplus \mathcal{F}^{2}(M) \oplus \cdots
$$

has a ring structure; this is the ring of Frobenius operators on M.
Note that $\mathcal{F}(M)$ is an \mathbb{N}-graded ring; it is typically not commutative. The degree 0 component $\mathcal{F}^{0}(M)=\operatorname{End}_{R}(M)$ is a subring, with a natural R-algebra structure. Lyubeznik and Smith [LS, section 3] ask whether $\mathcal{F}(M)$ is a finitely generated ring extension of $\mathcal{F}^{0}(M)$. From the point of view of tight closure theory, the main cases of interest are where (R, \mathfrak{m}) is a complete local ring, and the module M is the local cohomology module $H_{\mathfrak{m}}^{\operatorname{dim} R}(R)$ or the injective hull of the residue field, $E_{R}(R / \mathfrak{m})$, abbreviated E in the following discussion. In the former case, the algebra $\mathcal{F}(M)$ is finitely generated under mild hypotheses, see Example 1.2.2; an investigation of the latter case is our main focus here.

It follows from Example 1.2 .2 that for a Gorenstein complete local ring (R, \mathfrak{m}), the ring $\mathcal{F}(E)$ is a finitely generated extension of $\mathcal{F}^{0}(E) \cong R$. This need not be true when R is not Gorenstein: Katzman [Ka] constructed the first such examples. In Section 3 we study the finite generation of $\mathcal{F}(E)$, and provide descriptions of $\mathcal{F}(E)$ even when it is not finitely generated: this is in terms of a graded subgroup of the anticanonical cover of R, with a Frobenius-twisted multiplication structure, see Theorem 3•3.

Section 4 studies the case of \mathbb{Q}-Gorenstein rings. We show that $\mathcal{F}(E)$ is finitely generated (though not necessarily principally generated) if R is \mathbb{Q}-Gorenstein with index relatively prime to the characteristic, Proposition $4 \cdot 1$; the dual statement for the Cartier algebra was previously obtained by Schwede in [Sc, remark 4.5]. We also construct a \mathbb{Q}-Gorenstein ring for which the ring $\mathcal{F}(E)$ is not finitely generated over $\mathcal{F}^{0}(E)$; in fact, we conjecture that this is always the case for a \mathbb{Q}-Gorenstein ring whose index is a multiple of the characteristic, see Conjecture 4.2.

In Section 5 we show that $\mathcal{F}(E)$ need not be finitely generated for determinantal rings, specifically for the ring $\mathbb{F}[X] / I$, where X is a 2×3 matrix of variables, and I is the ideal generated by its size 2 minors; this proves a conjecture of Katzman, [Ka, conjecture 3•1]. The relevant calculations also extend a result of Fedder, [Fe, proposition 4.7].

One of the applications of our study of $\mathcal{F}(E)$ is the discreteness of F-jumping numbers; in Section 6 we use the description of $\mathcal{F}(E)$, combined with the notion of gauge boundedness, due to Blickle [B12], to obtain positive results on the discreteness of F-jumping numbers for new classes of rings including determinantal rings, see Theorem 6.4. In the last section, we obtain results on the linear growth of Castelnuovo-Mumford regularity for rings with finite Frobenius representation type; this is also with an eye towards the discreteness of F-jumping numbers.

To set the stage, we summarize some previous results on the rings $\mathcal{F}(M)$.
Example $1 \cdot 2$. Let R be a ring of prime characteristic.
(1) For each $e \geqslant 0$, the left R-module $\mathcal{F}^{e}(R)$ is free of rank one, spanned by F^{e}; this is [LS, example 3.6]. Hence, $\mathcal{F}(R) \cong R\{F\}$.
(2) Let (R, \mathfrak{m}) be a local ring of dimension d. The Frobenius endomorphism F of R induces, by functoriality, an additive map

$$
F: H_{\mathfrak{m}}^{d}(R) \longrightarrow H_{\mathfrak{m}}^{d}(R),
$$

which is the natural Frobenius action on $H_{\mathfrak{m}}^{d}(R)$. If the ring R is complete and S_{2}, then $\mathcal{F}^{e}\left(H_{\mathfrak{m}}^{d}(R)\right)$ is a free left R-module of rank one, spanned by F^{e}; for a proof of this, see [LS, example 3.7]. It follows that

$$
\mathcal{F}\left(H_{\mathfrak{m}}^{d}(R)\right) \cong R\{F\}
$$

In particular, $\mathcal{F}\left(H_{\mathfrak{m}}^{d}(R)\right)$ is a finitely generated ring extension of $\mathcal{F}^{0}\left(H_{\mathfrak{m}}^{d}(R)\right)$.
(3) Consider the local ring $R=\mathbb{F}[[x, y, z]] /(x y, y z)$ where \mathbb{F} is a field, and set E to be the injective hull of the residue field of R. Katzman [Ka] proved that $\mathcal{F}(E)$ is not a finitely generated ring extension of $\mathcal{F}^{0}(E)$.
(4) Let (R, \mathfrak{m}) be the completion of a Stanley-Reisner ring at its homogeneous maximal ideal, and let E be the injective hull of R / \mathfrak{m}. In [ABZ] Àlvarez, Boix and Zarzuela obtain necessary and sufficient conditions for the finite generation of $\mathcal{F}(E)$. Their work yields, in particular, Cohen-Macaulay examples where $\mathcal{F}(E)$ is not finitely generated over $\mathcal{F}^{0}(E)$. By [$\mathbf{A B Z}$, theorem 3.5], $\mathcal{F}(E)$ is either 1-generated or infinitely generated as a ring extension of $\mathcal{F}^{0}(E)$ in the Stanley-Reisner case.

Remark 1•3. Let $R^{(e)}$ denote the R-bimodule that agrees with R as a left R-module, and where the right module structure is given by

$$
x \cdot r=r^{p^{e}} x, \quad \text { for all } r \in R \text { and } x \in R^{(e)}
$$

For each R-module M, one then has a natural isomorphism

$$
\mathcal{F}^{e}(M) \cong \operatorname{Hom}_{R}\left(R^{(e)} \otimes_{R} M, M\right)
$$

where $\varphi \in \mathcal{F}^{e}(M)$ corresponds to $x \otimes m \mapsto x \varphi(m)$ and $\psi \in \operatorname{Hom}_{R}\left(R^{(e)} \otimes_{R} M, M\right)$ corresponds to $m \mapsto \psi(1 \otimes m)$; see [LS, remark 3•2].

Remark 1.4. Let R be a Noetherian ring of prime characteristic. If M is a Noetherian R-module, or if R is complete local and M is an Artinian R-module, then each graded component $\mathcal{F}^{e}(M)$ of $\mathcal{F}(M)$ is a finitely generated left R-module, and hence also a finitely generated left $\mathcal{F}^{0}(M)$-module; this is [LS, proposition 3•3].

Remark 1.5. Let R be a complete local ring of prime characteristic p; set E to be the injective hull of the residue field of R. Let A be a complete regular local ring with $R=A / I$. By [BI1, proposition 3.36], one then has an isomorphism of R-modules

$$
\mathcal{F}^{e}(E) \cong \frac{I^{\left[p^{e}\right]}:_{A} I}{I^{\left[p^{e}\right]}}
$$

2. Twisted multiplication

Let R be a complete local ring of prime characteristic; let E denote the injective hull of the residue field of R. In Theorem 3.3 we prove that $\mathcal{F}(E)$ is isomorphic to a subgroup of the
anticanonical cover of R, with a twisted multiplication structure; in this section, we describe this twisted construction in broad generality:

Definition $2 \cdot 1$. Given an \mathbb{N}-graded commutative ring \mathcal{R} of prime characteristic p, we define a new ring $\mathcal{T}(\mathcal{R})$ as follows: Consider the Abelian group

$$
\mathcal{T}(\mathcal{R})=\bigoplus_{e \geqslant 0} \mathcal{R}_{p^{e}-1}
$$

and define a multiplication $*$ on $\mathcal{T}(\mathcal{R})$ by

$$
a * b=a b^{p^{e}}, \quad \text { for } a \in \mathcal{T}(\mathcal{R})_{e} \text { and } b \in \mathcal{T}(\mathcal{R})_{e^{\prime}}
$$

It is a straightforward verification that $*$ is an associative binary operation; the prime characteristic assumption is used in verifying that + and $*$ are distributive. Moreover, for elements $a \in \mathcal{T}(\mathcal{R})_{e}$ and $b \in \mathcal{T}(\mathcal{R})_{e^{\prime}}$ one has

$$
a b^{p^{e}} \in \mathcal{R}_{p^{e}-1+p^{e}\left(p^{c^{\prime}}-1\right)}=\mathcal{R}_{p^{e+c^{\prime}}-1}
$$

and hence

$$
\mathcal{T}(\mathcal{R})_{e} * \mathcal{T}(\mathcal{R})_{e^{\prime}} \subseteq \mathcal{T}(\mathcal{R})_{e+e^{\prime}}
$$

Thus, $\mathcal{T}(\mathcal{R})$ is an \mathbb{N}-graded ring; we abbreviate its degree e component $\mathcal{T}(\mathcal{R})_{e}$ as \mathcal{T}_{e}. The ring $\mathcal{T}(\mathcal{R})$ is typically not commutative, and need not be a finitely generated extension ring of \mathcal{T}_{0} even when \mathcal{R} is Noetherian:

Example 2.2. We examine $\mathcal{T}(\mathcal{R})$ when \mathcal{R} is a standard graded polynomial ring over a field \mathbb{F}. We show that $\mathcal{T}(\mathcal{R})$ is a finitely generated ring extension of $\mathcal{T}_{0}=\mathbb{F}$ if $\operatorname{dim} \mathcal{R} \leqslant 2$, and that $\mathcal{T}(\mathcal{R})$ is not finitely generated if $\operatorname{dim} \mathcal{R} \geqslant 3$.
(1) If \mathcal{R} is a polynomial ring of dimension 1 , then $\mathcal{T}(\mathcal{R})$ is commutative and finitely generated over \mathbb{F} : take $\mathcal{R}=\mathbb{F}[x]$, in which case $\mathcal{T}_{e}=\mathbb{F} \cdot x^{p^{e}-1}$ and

$$
x^{p^{e}-1} * x^{p^{e^{\prime}}-1}=x^{p^{e+e^{\prime}}-1}=x^{p^{e^{\prime}}-1} * x^{p^{e}-1}
$$

Thus, $\mathcal{T}(\mathcal{R})$ is a polynomial ring in one variable.
(2) When \mathcal{R} is a polynomial ring of dimension 2 , we verify that $\mathcal{T}(\mathcal{R})$ is a noncommutative finitely generated ring extension of \mathbb{F}. Let $\mathcal{R}=\mathbb{F}[x, y]$. Then

$$
x^{p-1} * y^{p-1}=x^{p-1} y^{p^{2}-p} \quad \text { whereas } \quad y^{p-1} * x^{p-1}=x^{p^{2}-p} y^{p-1}
$$

so $\mathcal{T}(\mathcal{R})$ is not commutative. For finite generation, it suffices to show that

$$
\mathcal{T}_{e+1}=\mathcal{T}_{1} * \mathcal{T}_{e}, \quad \text { for each } e \geqslant 1
$$

Set $q=p^{e}$ and consider the elements

$$
x^{i} y^{p-1-i} \in \mathcal{T}_{1}, \quad 0 \leqslant i \leqslant p-1 \quad \text { and } \quad x^{j} y^{q-1-j} \in \mathcal{T}_{e}, \quad 0 \leqslant j \leqslant q-1
$$

Then $\mathcal{T}_{1} * \mathcal{T}_{e}$ contains the elements

$$
\left(x^{i} y^{p-1-i}\right) *\left(x^{j} y^{q-1-j}\right)=x^{i+p j} y^{p q-p j-i-1}
$$

for $0 \leqslant i \leqslant p-1$ and $0 \leqslant j \leqslant q-1$, and these are readily seen to span \mathcal{T}_{e+1}. Hence, the degree $p-1$ monomials in x and y generate $\mathcal{T}(\mathcal{R})$ as a ring extension of \mathbb{F}.
(3) For a polynomial $\operatorname{ring} \mathcal{R}$ of dimension 3 or higher, the $\operatorname{ring} \mathcal{T}(\mathcal{R})$ is noncommutative and not finitely generated over \mathbb{F}. The noncommutativity is immediate from (2); we give an argument that $\mathcal{T}(\mathcal{R})$ is not finitely generated for $\mathcal{R}=\mathbb{F}[x, y, z]$, and this carries over to polynomial rings \mathcal{R} of higher dimension.
Set $q=p^{e}$ where $e \geqslant 2$. We claim that the element

$$
x y^{q / p-1} z^{q-q / p-1} \in \mathcal{T}_{e}
$$

does not belong to $\mathcal{T}_{e_{1}} * \mathcal{T}_{e_{2}}$ for integers $e_{i}<e$ with $e_{1}+e_{2}=e$. Indeed, $\mathcal{T}_{e_{1}} * \mathcal{T}_{e_{2}}$ is spanned by the monomials

$$
\left(x^{i} y^{j} z^{q_{1}-i-j-1}\right) *\left(x^{k} y^{l} z^{q_{2}-k-l-1}\right)=x^{i+q_{1} k} y^{j+q_{1} l} z^{q-i-j-q_{1} k-q_{1} l-1}
$$

where $q_{i}=p^{e_{i}}$ and

$$
\begin{array}{ll}
0 \leqslant i \leqslant q_{1}-1, & 0 \leqslant j \leqslant q_{1}-1-i, \\
0 \leqslant k \leqslant q_{2}-1, & 0 \leqslant l \leqslant q_{2}-1-k,
\end{array}
$$

so it suffices to verify that the equations

$$
i+q_{1} k=1 \quad \text { and } \quad j+q_{1} l=q / p-1
$$

have no solution for integers i, j, k, l in the intervals displayed above. The first of the equations gives $i=1$, which then implies that $0 \leqslant j \leqslant q_{1}-2$. Since q_{1} divides q / p, the second equation gives $j \equiv-1 \bmod q_{1}$. But this has no solution with $0 \leqslant j \leqslant q_{1}-2$.

3. The ring structure of $\mathcal{F}(E)$

We describe the ring of Frobenius operators $\mathcal{F}(E)$ in terms of the symbolic Rees algebra \mathcal{R} and the twisted multiplication structure $\mathcal{T}(\mathcal{R})$ of the previous section. First, a notational point: $\omega^{\left[p^{e}\right]}$ below denotes the iterated Frobenius power of an ideal ω, and $\omega^{(n)}$ its symbolic power, which coincides with reflexive power for divisorial ideals ω. We realize that the notation $\omega^{[n]}$ is sometimes used for the reflexive power, hence this note of caution. We start with the following observation:

Lemma 3•1. Let (R, \mathfrak{m}) be a normal local ring of characteristic $p>0$. Let ω be a divisorial ideal of R, i.e., an ideal of pure height one. Then for each integer $e \geqslant 1$, the map

$$
H_{\mathfrak{m}}^{\operatorname{dim} R}\left(\omega^{\left[p^{e}\right]}\right) \longrightarrow H_{\mathfrak{m}}^{\operatorname{dim} R}\left(\omega^{\left(p^{e}\right)}\right)
$$

induced by the inclusion $\omega^{\left[p^{e}\right]} \subseteq \omega^{\left(p^{e}\right)}$, is an isomorphism.
Proof. Set $d=\operatorname{dim} R$. Since R is normal and ω has pure height one, $\omega R_{\mathfrak{p}}$ is principal for each prime ideal \mathfrak{p} of height one; hence $\left(\omega^{\left(p^{e}\right)} / \omega^{\left[p^{e}\right]}\right) R_{\mathfrak{p}}=0$. It follows that

$$
\operatorname{dim}\left(\omega^{\left(p^{e}\right)} / \omega^{\left[p^{e}\right]}\right) \leqslant d-2,
$$

which gives the vanishing of the outer terms of the exact sequence

$$
\left.H_{\mathfrak{m}}^{d-1}\left(\omega^{\left(p^{e}\right)} / \omega^{\left[p^{e}\right]}\right) \longrightarrow H_{\mathfrak{m}}^{d}\left(\omega^{\left[p^{e}\right]}\right) \longrightarrow H_{\mathfrak{m}}^{d}\left(\omega^{\left(p^{e}\right)}\right) \longrightarrow \omega^{\left(p^{e}\right)} / \omega^{\left[p^{e}\right]}\right),
$$

and thus the desired isomorphism.

Definition 3.2. Let R be a normal ring that is either complete local, or \mathbb{N}-graded and finitely generated over R_{0}. Let ω denote the canonical module of R. The symbolic Rees algebra

$$
\mathcal{R}=\bigoplus_{n \geqslant 0} \omega^{(-n)}
$$

is the anticanonical cover of R; it has a natural \mathbb{N}-grading where $\mathcal{R}_{n}=\omega^{(-n)}$.
THEOREM 3.3. Let (R, \mathfrak{m}) be a normal complete local ring of characteristic $p>0$. Set d to be the dimension of R. Let ω denote the canonical module of R, and identify E, the injective hull of the R / \mathfrak{m}, with $H_{\mathfrak{m}}^{d}(\omega)$.
(1) Then $\mathcal{F}(E)$, the ring of Frobenius operators on E, may be identified with

$$
\bigoplus_{e \geqslant 0} \omega^{\left(1-p^{e}\right)} F^{e},
$$

where F^{e} denotes the map $H_{\mathfrak{m}}^{d}(\omega) \rightarrow H_{\mathfrak{m}}^{d}\left(\omega^{\left(p^{e}\right)}\right)$ induced by $\omega \rightarrow \omega^{\left[p^{e}\right]}$.
(2) Let \mathcal{R} be the anticanonical cover of R. Then one has an isomorphism of graded rings

$$
\mathcal{F}(E) \cong \mathcal{T}(\mathcal{R})
$$

where $\mathcal{T}(\mathcal{R})$ is as in Definition $2 \cdot 1$.
Proof. By Remark 1•3, we have

$$
\mathcal{F}^{e}\left(H_{\mathfrak{m}}^{d}(\omega)\right) \cong \operatorname{Hom}_{R}\left(R^{(e)} \otimes_{R} H_{\mathfrak{m}}^{d}(\omega), H_{\mathfrak{m}}^{d}(\omega)\right)
$$

Moreover,

$$
R^{(e)} \otimes_{R} H_{\mathfrak{m}}^{d}(\omega) \cong H_{\mathfrak{m}}^{d}\left(\omega^{\left[p^{e}\right]}\right) \cong H_{\mathfrak{m}}^{d}\left(\omega^{\left(p^{e}\right)}\right)
$$

where the first isomorphism of by [ILL ${ }^{+}$, exercise 9.7], and the second by Lemma 3•1. By similar arguments

$$
\begin{aligned}
\operatorname{Hom}_{R}\left(H_{\mathfrak{m}}^{d}\left(\omega^{\left(p^{e}\right)}\right), H_{\mathfrak{m}}^{d}(\omega)\right) & \cong \operatorname{Hom}_{R}\left(H_{\mathfrak{m}}^{d}\left(\omega \otimes_{R} \omega^{\left(p^{e}-1\right)}\right), H_{\mathfrak{m}}^{d}(\omega)\right) \\
& \cong \operatorname{Hom}_{R}\left(\omega^{\left(p^{e}-1\right)} \otimes_{R} H_{\mathfrak{m}}^{d}(\omega), H_{\mathfrak{m}}^{d}(\omega)\right) \\
& \cong \operatorname{Hom}_{R}\left(\omega^{\left(p^{e}-1\right)}, \operatorname{Hom}_{R}\left(H_{\mathfrak{m}}^{d}(\omega), H_{\mathfrak{m}}^{d}(\omega)\right)\right),
\end{aligned}
$$

with the last isomorphism using the adjointness of Hom and tensor. Since R is complete, the module above is isomorphic to

$$
\operatorname{Hom}_{R}\left(\omega^{\left(p^{e}-1\right)}, R\right) \cong \omega^{\left(1-p^{e}\right)}
$$

Suppose $\varphi \in \mathcal{F}^{e}(M)$ and $\varphi^{\prime} \in \mathcal{F}^{e^{\prime}}(M)$ correspond respectively to $a F^{e}$ and $a^{\prime} F^{e^{\prime}}$, for elements $a \in \omega^{\left(1-p^{e}\right)}$ and $a^{\prime} \in \omega^{\left(1-p^{c^{e}}\right)}$. Then $\varphi \circ \varphi^{\prime}$ corresponds to $a F^{e} \circ b F^{e^{\prime}}=a b^{p^{e}} F^{e+e^{\prime}}$, which agrees with the ring structure of $\mathcal{T}(\mathcal{R})$ since $a * b=a b^{p^{e}}$.

Remark 3.4. Let R be a normal complete local ring of prime characteristic p; let A be a complete regular local ring with $R=A / I$. Using Remark 1.5 and Theorem 3.3, it is now a straightforward verification that $\mathcal{F}(E)$ is isomorphic, as a graded ring, to

$$
\bigoplus_{e \geqslant 0} \frac{I^{\left[p^{e}\right]}:_{A} I}{I^{\left[p^{e}\right]}}
$$

where the multiplication on this latter ring is the twisted multiplication $\%$. An example of the isomorphism is worked out in Proposition 5•1.

4. \mathbb{Q}-Gorenstein rings

We analyze the finite generation of $\mathcal{F}(E)$ when R is \mathbb{Q}-Gorenstein. The following result follows from the corresponding statement for Cartier algebras, [Sc, remark 4.5], but we include it here for the sake of completeness:

Proposition 4•1. Let (R, \mathfrak{m}) be a normal \mathbb{Q}-Gorenstein local ring of prime characteristic. Let ω denote the canonical module of R. If the order of ω is relatively prime to the characteristic of R, then $\mathcal{F}(E)$ is a finitely generated ring extension of $\mathcal{F}^{0}(E)$.

Proof. Since $\mathcal{F}^{0}(E)$ is isomorphic to the \mathfrak{m}-adic completion of R, the proposition reduces to the case where the ring R is assumed to be complete.

Let m be the order of ω, and p the characteristic of R. Then $p \bmod m$ is an element of the group $(\mathbb{Z} / m \mathbb{Z})^{\times}$, and hence there exists an integer e_{0} with $p^{e_{0}} \equiv 1 \bmod m$. We claim that $\mathcal{F}(E)$ is generated over $\mathcal{F}^{0}(E)$ by $[\mathcal{F}(E)]_{\leqslant e_{0}}$.

We use the identification $\mathcal{F}(E)=\mathcal{T}(\mathcal{R})$ from Theorem 3•3. Since $\omega^{(m)}$ is a cyclic module, one has

$$
\omega^{(n+k m)}=\omega^{(n)} \omega^{(k m)}, \quad \text { for all integers } k, n
$$

Thus, for each $e>e_{0}$, one has

$$
\begin{aligned}
\mathcal{T}_{e-e_{0}} * \mathcal{T}_{e_{0}} & =\omega^{\left(1-p^{e-e_{0}}\right)} * \omega^{\left(1-p^{e_{0}}\right)} \\
& =\omega^{\left(1-p^{e-e_{0}}\right)} \cdot\left(\omega^{\left(1-p^{e_{0}}\right)}\right)^{\left[p^{\left.e-e_{0}\right]}\right.} \\
& =\omega^{\left(1-p^{e-e_{0}}\right)} \cdot \omega^{\left(p^{e-e_{0}}\left(1-p^{e}\right)\right)} \\
& =\omega^{\left(1-p^{e-e_{0}}+p^{e-e_{0}}-p^{e}\right)} \\
& =\omega^{\left(1-p^{e}\right)} \\
& =\mathcal{T}_{e},
\end{aligned}
$$

which proves the claim.
We conjecture that Proposition $4 \cdot 1$ has a converse in the following sense:
Conjecture 4.2. Let (R, \mathfrak{m}) be a normal \mathbb{Q}-Gorenstein ring of prime characteristic, such that the order of the canonical module in the divisor class group is a multiple of the characteristic of R. Then $\mathcal{F}(E)$ is not a finitely generated ring extension of $\mathcal{F}^{0}(E)$.

Veronese subrings. Let \mathbb{F} be a field of characteristic $p>0$, and $A=\mathbb{F}\left[x_{1}, \ldots, x_{d}\right]$ a polynomial ring. Given a positive integer n, we denote the n-th Veronese subring of A by

$$
A_{(n)}=\bigoplus_{k \geqslant 0} A_{n k} ;
$$

this differs from the standard notation, e.g., [GW], since we reserve superscripts ($)^{(n)}$ for symbolic powers. The cyclic module $x_{1} \cdots x_{d} A$ is the graded canonical module for the polynomial ring A. By [$\mathbf{G W}$, corollary $3 \cdot 1 \cdot 3$], the Veronese submodule

$$
\left(x_{1} \cdots x_{d} A\right)_{(n)}=\bigoplus_{k \geqslant 0}\left[x_{1} \cdots x_{d} A\right]_{n k}
$$

is the graded canonical module for the subring $A_{(n)}$. Let \mathfrak{m} denote the homogeneous maximal ideal of $A_{(n)}$. The injective hull of $A_{(n)} / \mathfrak{m}$ in the category of graded $A_{(n)}$-modules is

$$
\begin{aligned}
H_{\mathfrak{m}}^{d}\left(\left(x_{1} \cdots x_{d} A\right)_{(n)}\right) & =\left[H_{\mathfrak{m}}^{d}\left(x_{1} \cdots x_{d} A\right)\right]_{(n)} \\
& =\left[\frac{A_{x_{1} \cdots x_{d}}}{\sum_{i} x_{1} \cdots x_{d} A_{x_{1} \cdots \widehat{x}_{i} \cdots x_{d}}}\right]_{(n)}
\end{aligned}
$$

see [GW, theorem $3 \cdot 1 \cdot 1$]. By [$\mathbf{G W}$, theorem $1 \cdot 2 \cdot 5$], this is also the injective hull in the category of all $A_{(n)}$-modules.

Let R be the \mathfrak{m}-adic completion of $A_{(n)}$. As it is \mathfrak{m}-torsion, the module displayed above is also an R-module; it is the injective hull of $R / \mathfrak{m} R$ in the category of R-modules.

Proposition 4.3. Let \mathbb{F} be a field of characteristic $p>0$, and let $A=\mathbb{F}\left[x_{1}, \ldots, x_{d}\right]$ be a polynomial ring of dimension d. Let n be a positive integer, and R be the completion of the n-th Veronese subring of A at its homogeneous maximal ideal. Set $E=M / N$ where

$$
M=R_{x_{1}^{n} \ldots x_{d}^{n}}
$$

and N is the R-submodule spanned by elements $x_{1}^{i_{1}} \cdots x_{d}^{i_{d}} \in M$ with $i_{k} \geqslant 1$ for some k; the module E is the injective hull of the residue field of R.

Then $\mathcal{F}^{e}(E)$ is the left R-module generated by the elements

$$
\frac{1}{x_{1}^{\alpha_{1}} \cdots x_{d}^{\alpha_{d}}} F^{e}
$$

where F is the pth power map, $\alpha_{k} \leqslant p^{e}-1$ for each k, and $\sum \alpha_{k} \equiv 0 \bmod n$.
Remark 4.4. We use F for the Frobenius endomorphism of the ring M. The condition $\sum \alpha_{k} \equiv 0 \bmod n$, or equivalently $x_{1}^{\alpha_{1}} \cdots x_{d}^{\alpha_{d}} \in M$, implies that

$$
\frac{1}{x_{1}^{\alpha_{1}} \cdots x_{d}^{\alpha_{d}}} F^{e} \in \mathcal{F}^{e}(M)
$$

When $\alpha_{k} \leqslant p^{e}-1$ for each k, the map displayed above stabilizes N and thus induces an element of $\mathcal{F}^{e}(M / N)$; we reuse F for the p th power map on M / N.

Proof of Proposition 4.3 In view of the above remark, it remains to establish that the given elements are indeed generators for $\mathcal{F}^{e}(E)$. The canonical module of R is

$$
\omega_{R}=\left(x_{1} \cdots x_{d} A\right)_{(n)} R
$$

and, indeed, $H_{\mathfrak{m}}^{d}\left(\omega_{R}\right)=E$. Thus, Theorem 3.3 implies that

$$
\mathcal{F}^{e}(E)=\omega_{R}^{(1-q)} F^{e},
$$

where $q=p^{e}$. But $\omega_{R}^{(1-q)}$ is the completion of the $A_{(n)}$-module

$$
\left[\frac{1}{x_{1}^{q-1} \cdots x_{d}^{q-1}} A\right]_{(n)}=\left(\left.\frac{1}{x_{1}^{\alpha_{1}} \cdots x_{d}^{\alpha_{d}}} \right\rvert\, \alpha_{k} \leqslant q-1 \text { for each } k, \sum \alpha_{k} \equiv 0 \bmod n\right) A_{(n)}
$$

which completes the proof.
Example 4.5. Consider $d=2$ and $n=3$ in Proposition 4•3, i.e.,

$$
R=\mathbb{F}\left[\left[x^{3}, x^{2} y, x y^{2}, y^{3}\right]\right]
$$

Then $\omega=\left(x^{2} y, x y^{2}\right) R$ has order 3 in the divisor class group of R; indeed,

$$
\omega^{(2)}=\left(x^{4} y^{2}, x^{3} y^{3}, x^{2} y^{4}\right) R \quad \text { and } \quad \omega^{(3)}=\left(x^{3} y^{3}\right) R .
$$

(1) If $p \equiv 1 \bmod 3$, then $\omega^{(1-q)}=(x y)^{1-q} R$ is cyclic for each $q=p^{e}$ and

$$
\mathcal{F}^{e}(E)=\frac{1}{(x y)^{q-1}} F^{e} .
$$

Since

$$
\frac{1}{(x y)^{p-1}} F \circ \frac{1}{(x y)^{q-1}} F^{e}=\frac{1}{(x y)^{p q-1}} F^{e+1},
$$

it follows that

$$
\mathcal{F}(E)=R\left\{\frac{1}{(x y)^{p-1}} F\right\} .
$$

(2) If $p \equiv 2 \bmod 3$ and $q=p^{e}$, then $\omega^{(1-q)}=(x y)^{1-q} R$ for e even and

$$
\omega^{(1-q)}=\left(\frac{1}{x^{q-3} y^{q-1}}, \frac{1}{x^{q-2} y^{q-2}}, \frac{1}{x^{q-1} y^{q-3}}\right) R
$$

for e odd. The proof of Proposition $4 \cdot 1$ shows that $\mathcal{F}(E)$ is generated by its elements of degree $\leqslant 2$ and hence

$$
\mathcal{F}(E)=R\left\{\frac{1}{x^{p-3} y^{p-1}} F, \frac{1}{x^{p-2} y^{p-2}} F, \frac{1}{x^{p-1} y^{p-3}} F, \frac{1}{x^{p^{2}-1} y^{p^{2}-1}} F^{2}\right\} .
$$

In the case $p=2$, the above reads

$$
\mathcal{F}(E)=R\left\{\frac{x}{y} F, F, \frac{y}{x} F, \frac{1}{x^{3} y^{3}} F^{2}\right\} .
$$

(3) When $p=3$, one has

$$
\omega^{(1-q)}=\frac{1}{x^{q} y^{q}}\left(x^{2} y, x y^{2}\right) R=\left(\frac{1}{x^{q-2} y^{q-1}}, \frac{1}{x^{q-1} y^{q-2}}\right) R
$$

for each $q=p^{e}$. In this case,

$$
\mathcal{F}(E)=R\left\{\frac{1}{x y^{2}} F, \frac{1}{x^{2} y} F, \frac{1}{x^{7} y^{8}} F^{2}, \frac{1}{x^{8} y^{7}} F^{2}, \frac{1}{x^{25} y^{26}} F^{3}, \frac{1}{x^{26} y^{25}} F^{3}, \ldots\right\},
$$

and $\mathcal{F}(E)$ is not a finitely generated extension ring of $\mathcal{F}^{0}(E)=R$; indeed,

$$
\begin{aligned}
\omega^{(1-q)} * \omega^{\left(1-q^{\prime}\right)} & =\frac{1}{x^{q} y^{q}}\left(x^{2} y, x y^{2}\right) R * \frac{1}{x^{q^{\prime}} y^{q^{\prime}}}\left(x^{2} y, x y^{2}\right) R \\
& =\frac{1}{x^{q q^{\prime}+q} y^{q q^{\prime}+q}}\left(x^{2} y, x y^{2}\right) \cdot\left(x^{2 q} y^{q}, x^{q} y^{2 q}\right) R \\
& =\frac{1}{x^{q q^{\prime}} y^{q q^{\prime}}}\left(x^{q+2} y, x^{q+1} y^{2}, x^{2} y^{q+1}, x y^{q+2}\right) R \\
& =\frac{1}{x^{q q^{\prime}} y^{q q^{\prime}}}\left(x^{2} y, x y^{2}\right) \cdot\left(x^{q}, y^{q}\right) R \\
& =\left(x^{q}, y^{q}\right) \omega^{\left(1-q q^{\prime}\right)}
\end{aligned}
$$

for $q=p^{e}$ and $q^{\prime}=p^{e^{\prime}}$, where e and e^{\prime} are positive integers.

5. A determinantal ring

Let R be the determinantal ring $\mathbb{F}[X] / I$, where X is a 2×3 matrix of variables over a field of characteristic $p>0$, and I is the ideal generated by the size 2 minors of X. Set \mathfrak{m} to be the homogeneous maximal ideal of R. We show that the algebra of Frobenius operators $\mathcal{F}(E)$ is not finitely generated over $\mathcal{F}^{0}(E)=\widehat{R}$; this proves [Ka, conjecture 3.1]. We also extend Fedder's calculation of the ideals $I^{[p]}: I$ to the ideals $I^{[q]}: I$ for all $q=p^{e}$.

The ring R is isomorphic to the affine semigroup ring

$$
\mathbb{F}\left[\begin{array}{l}
s x, s y, s z, \\
t x, t y, t z
\end{array}\right] \subseteq \mathbb{F}[s, t, x, y, z]
$$

Using this identification, R is the Segre product $A \# B$ of the polynomial rings $A=\mathbb{F}[s, t]$ and $B=\mathbb{F}[x, y, z]$. By $[\mathbf{G W}$, theorem 4.3•1], the canonical module of R is the Segre product of the graded canonical modules st A and $x y z B$ of the respective polynomial rings, i.e.,

$$
\omega_{R}=s t A \# x y z B=\left(s^{2} t x y z, s t^{2} x y z\right) R
$$

Let e be a nonnegative integer, and $q=p^{e}$. Then

$$
\omega_{R}^{(1-q)}=\frac{1}{(s t)^{q-1}} A \# \frac{1}{(x y z)^{q-1}} B
$$

is the R module spanned by the elements

$$
\frac{1}{(s t)^{q-1} x^{k} y^{l} z^{m}}
$$

with $k+l+m=2 q-2$ and $k, l, m \leqslant q-1$.
View E as M / N where $M=R_{S^{2} t x y z}$, and N is the R-submodule spanned by the elements $s^{i} t^{j} x^{k} y^{l} z^{m}$ in M that have at least one positive exponent. Then $\mathcal{F}^{e}(E)$ is the left \widehat{R}-module generated by

$$
\frac{1}{(s t)^{q-1} x^{k} y^{l} z^{m}} F^{e}
$$

where F is the p th power map, $k+l+m=2 q-2$, and $k, l, m \leqslant q-1$. Using this description, it is an elementary-though somewhat tedious-verification that $\mathcal{F}(E)$ is not finitely generated over $\mathcal{F}^{0}(E)$; alternatively, note that the symbolic powers of the height one prime ideals $(s x, s y, s z) \widehat{R}$ and $(s x, t x) \widehat{R}$ agree with the ordinary powers by [BV, corollary $7 \cdot 10]$. Thus, the anticanonical cover of \widehat{R} is the ring \mathcal{R} with

$$
\mathcal{R}_{n}=\frac{1}{\left(s^{2} t x y z\right)^{n}}(s x, s y, s z)^{n} \widehat{R}
$$

and so

$$
\mathcal{T}_{e}=\frac{1}{\left(s^{2} t x y z\right)^{q-1}}(s x, s y, s z)^{q-1} \widehat{R}
$$

Thus,

$$
\begin{aligned}
\mathcal{T}_{e_{1}} * \mathcal{T}_{e_{2}} & =\frac{1}{\left(s^{2} t x y z\right)^{q_{1}-1}}(s x, s y, s z)^{q_{1}-1} * \frac{1}{\left(s^{2} t x y z\right)^{q_{2}-1}}(s x, s y, s z)^{q_{2}-1} \\
& =\frac{1}{\left(s^{2} t x y z\right)^{q_{1} q_{2}-1}}(s x, s y, s z)^{q_{1}-1} \cdot\left((s x, s y, s z)^{q_{2}-1}\right)^{\left[q_{1}\right]} \\
& =\frac{1}{\left(s^{2} t x y z\right)^{q_{1} q_{2}-1}}(s x, s y, s z)^{q_{1}-1} \cdot\left((s x)^{q_{1}},(s y)^{q_{1}},(s z)^{q_{1}}\right)^{q_{2}-1}
\end{aligned}
$$

where $q_{i}=p^{e_{i}}$. We claim that

$$
\mathcal{T}_{e} \neq \sum_{e_{1}=1}^{e-1} \mathcal{T}_{e_{1}} * \mathcal{T}_{e-e_{1}}
$$

For this, it suffices to show that

$$
\frac{1}{\left(s^{2} t x y z\right)^{q-1}} s x(s y)^{q / p-1}(s z)^{q-q / p-1}
$$

does not belong to $\mathcal{T}_{e_{1}} * \mathcal{T}_{e_{2}}$ for integers $e_{i}<e$ with $e_{1}+e_{2}=e$. By the description of $\mathcal{T}_{e_{1}} * \mathcal{T}_{e_{2}}$ above, this is tantamount to proving that

$$
s x(s y)^{q / p-1}(s z)^{q-q / p-1} \notin(s x, s y, s z)^{q_{1}-1} \cdot\left((s x)^{q_{1}},(s y)^{q_{1}},(s z)^{q_{1}}\right)^{q_{2}-1}
$$

but this is essentially Example $2 \cdot 2 \cdot 3$.
Fedder's computation. Let A be the power series ring $\mathbb{F}[[u, v, w, x, y, z]]$ for \mathbb{F} a field of characteristic $p>0$, and let I be the ideal generated by the size 2 minors of the matrix

$$
\left(\begin{array}{lll}
u & v & w \\
x & y & z
\end{array}\right)
$$

In [Fe, proposition 4•7], Fedder shows that

$$
I^{[p]}: I=I^{2 p-2}+I^{[p]} .
$$

We extend this next by calculating the ideals $I^{[q]}: I$ for each prime power $q=p^{e}$.
Proposition 5•1. Let A be the power series ring $\mathbb{F}[[u, v, w, x, y, z]]$ where K a field of characteristic $p>0$. Let I be the ideal of A generated by $\Delta_{1}=v z-w y, \Delta_{2}=w x-u z$, and $\Delta_{3}=u y-v x$.
(1) For $q=p^{e}$ and nonnegative integers s, t with $s+t \leqslant q-1$, one has

$$
y^{s} z^{t}\left(\Delta_{2} \Delta_{3}\right)^{q-1} \in I^{[q]}+x^{s+t} A
$$

(2) For q, s, t as above, let $f_{s, t}$ be an element of A with

$$
y^{s} z^{t}\left(\Delta_{2} \Delta_{3}\right)^{q-1} \equiv x^{s+t} f_{s, t} \bmod I^{[q]}
$$

Then $f_{s, t}$ is well-defined modulo $I^{[q]}$. Moreover, $f_{s, t} \in I^{[q]}:_{A} I$, and

$$
I^{[q]}:_{A} I=I^{[q]}+\left(f_{s, t} \mid s+t \leqslant q-1\right) A .
$$

For $q=p$, the above recovers Fedder's computation that $I^{[p]}: I=I^{2 p-2}+I^{[p]}$, though for $q>p$, the ideal $I^{[p]}: I$ is strictly bigger than $I^{2 p-2}+I^{[p]}$.

Proof. (1) Note that the element

$$
y^{s} z^{t}\left(\Delta_{2} \Delta_{3}\right)^{q-1}=y^{s} z^{t}(w x-u z)^{q-1}(u y-v x)^{q-1}
$$

belongs to the ideals

$$
(x, u)^{2 q-2} \subseteq\left(x^{q-1}, u^{q}\right) \subseteq\left(x^{s+t}, u^{q}\right)
$$

and also to

$$
y^{s} z^{t}(x, z)^{q-1}(x, y)^{q-1} \subseteq y^{s} z^{t}\left(x^{t}, z^{q-t}\right)\left(x^{s}, y^{q-s}\right) \subseteq\left(x^{s+t}, z^{q}, y^{q}\right)
$$

Hence,

$$
\begin{aligned}
y^{s} z^{t}\left(\Delta_{2} \Delta_{3}\right)^{q-1} & \in\left(x^{s+t}, u^{q}\right) A \cap\left(x^{s+t}, z^{q}, y^{q}\right) A \\
& =\left(x^{s+t}, u^{q} z^{q}, u^{q} y^{q}\right) A \\
& \subseteq\left(x^{s+t}, \Delta_{1}^{q}, \Delta_{2}^{q}, \Delta_{3}^{q}\right) A .
\end{aligned}
$$

(2) The ideals I and $I^{[q]}$ have the same associated primes, [ILL ${ }^{+}$, corollary 21•11]. As I is prime, it is the only prime associated to $I^{[q]}$. Hence x^{s+t} is a nonzerodivisor modulo $I^{[q]}$, and it follows that $f_{s, t} \bmod I^{[q]}$ is well-defined.

We next claim that

$$
I^{2 q-1} \subseteq I^{[q]}
$$

By the earlier observation on associated primes, it suffices to verify this in the local ring R_{I}. But R_{I} is a regular local ring of dimension 2 , so $I R_{I}$ is generated by two elements, and the claim follows from the pigeonhole principle. The claim implies that

$$
x^{s+t} f_{s, t} I \in I^{[q]},
$$

and using, again, that x^{s+t} is a nonzerodivisor modulo $I^{[q]}$, we see that $f_{s, t} I \subseteq I^{[q]}$, in other words, that $f_{s, t} \in I^{[q]}:_{A} I$ as desired.

By Theorem $3 \cdot 3$ and Remark 3.4, one has the R-module isomorphisms

$$
\omega_{R}^{(1-q)} \cong \mathcal{F}^{e}(E) \cong \frac{I^{[q]}:_{A} I}{I^{[q]}}
$$

Choosing $\omega_{R}^{(-1)}=(x, y, z) R$, we claim that the map

$$
\begin{aligned}
(x, y, z)^{q-1} R & \longrightarrow \frac{I^{[q]}:_{A} I}{I^{[q]}} \\
x^{q-1-s-t} y^{s} z^{t} & \mapsto f_{s, t}
\end{aligned}
$$

is an isomorphism. Since the modules in question are reflexive R-modules of rank one, it suffices to verify that the map is an isomorphism in codimension 1 . Upon inverting x, the above map induces

$$
\begin{aligned}
R_{x} & \longrightarrow \frac{I^{[q]} A_{x}:_{A_{x}} I A_{x}}{I^{[q]} A_{x}} \\
x^{q-1} & \mapsto\left(\Delta_{2} \Delta_{3}\right)^{q-1}
\end{aligned}
$$

which is readily seen to be an isomorphism since $I A_{x}=\left(\Delta_{2}, \Delta_{3}\right) A_{x}$.

Rings of Frobenius operators

6. Cartier algebras and gauge boundedness

For a ring R of prime characteristic $p>0$, one can interpret $\mathcal{F}^{e}(E)$ in a dual way as a collection of p^{-e}-linear operators on R. This point of view was studied by Blickle [B12] and Schwede [Sc].

Definition 6•1. Let R be a ring of prime characteristic $p>0$. For each $e \geqslant 0$, set \mathcal{C}_{e}^{R} to be set of additive maps $\varphi: R \rightarrow R$ satisfying

$$
\varphi\left(r^{p^{e}} x\right)=r \varphi(x), \quad \text { for } r, x \in R
$$

The total Cartier algebra is the direct sum

$$
\mathcal{C}^{R}=\bigoplus_{e \geqslant 0} \mathcal{C}_{e}^{R}
$$

For $\varphi \in \mathcal{C}_{e}^{R}$ and $\varphi^{\prime} \in \mathcal{C}_{e^{\prime}}^{R}$, the compositions $\varphi \circ \varphi^{\prime}$ and $\varphi^{\prime} \circ \varphi$ are elements of $\mathcal{C}_{e+e^{\prime}}^{R}$. This gives \mathcal{C}^{R} the structure of an \mathbb{N}-graded ring; it is typically not a commutative ring. As pointed out in [ABZ, 2•2•1], if (R, \mathfrak{m}) is an F-finite complete local ring, then the ring of Frobenius operators $\mathcal{F}(E)$ is isomorphic to \mathcal{C}^{R}.

Each \mathcal{C}_{e}^{R} has a left and a right R-module structure: for $\varphi \in \mathcal{C}_{e}^{R}$ and $r \in R$, we define $r \cdot \varphi$ to be the map $x \mapsto r \varphi(x)$, and $\varphi \cdot r$ to be the map $x \mapsto \varphi(r x)$.

Definition 6.2. Blickle [B12] introduced a notion of boundedness for Cartier algebras: Let $R=A / I$ for a polynomial ring $A=\mathbb{F}\left[x_{1}, \ldots, x_{d}\right]$ over an F-finite field \mathbb{F}. Set R_{n} to be the finite dimensional \mathbb{F}-vector subspace of R spanned by the images of the monomials

$$
x_{1}^{\lambda_{1}} \cdots x_{d}^{\lambda_{d}}, \quad \text { for } 0 \leqslant \lambda_{j} \leqslant n .
$$

Following [An] and [B12], we define a map $\delta: R \longrightarrow \mathbb{Z}$ by $\delta(r)=n$ if $r \in R_{n} \backslash R_{n-1}$; the map δ is a gauge. If $I=0$, then $\delta(r) \leqslant \operatorname{deg}(r)$ for each $r \in R$. We recall some properties from [An, proposition 1] and [B12, lemma 4.2]:

$$
\begin{aligned}
\delta\left(r+r^{\prime}\right) & \leqslant \max \left\{\delta(r), \delta\left(r^{\prime}\right)\right\}, \\
\delta\left(r \cdot r^{\prime}\right) & \leqslant \delta(r)+\delta\left(r^{\prime}\right) .
\end{aligned}
$$

The ring \mathcal{C}^{R} is gauge bounded if there exists a constant K, and elements $\varphi_{e, i}$ in \mathcal{C}_{e}^{R} for each $e \geqslant 1$ generating \mathcal{C}_{e}^{R} as a left R-module, such that

$$
\delta\left(\varphi_{e, i}(x)\right) \leqslant \frac{\delta(x)}{p^{e}}+K, \quad \text { for each } e \text { and } i .
$$

Remark 6.3. We record two key facts that will be used in our proof of Theorem 6.4:
(1) If there exists a constant C such that $I^{\left[p^{e}\right]}:_{A} I$ is generated by elements of degree at most $C p^{e}$ for each $e \geqslant 1$, then \mathcal{C}^{R} is gauge bounded; this is [KZ, lemma 2.2].
(2) If \mathcal{C}^{R} is gauge bounded, then for each ideal \mathfrak{a} of R, the F-jumping numbers of $\tau\left(R, \mathfrak{a}^{t}\right)$ are a subset of the real numbers with no limit points; in particular, they form a discrete set. This is [B12, theorem 4.18].

We now prove the main result of the section:
THEOREM 6.4. Let R be a normal \mathbb{N}-graded that is finitely generated over an F-finite field R_{0}. (The ring R need not be standard graded.)

Suppose that the anticanonical cover of R is finitely generated as an R-algebra. Then \mathcal{C}^{R} is gauge bounded. Hence, for each ideal \mathfrak{a} of R, the set of F-jumping numbers of $\tau\left(R, \mathfrak{a}^{t}\right)$ is a subset of the real numbers with no limit points.

Proof. Let A be a polynomial ring, with a possibly non-standard \mathbb{N}-grading, such that $R=A / I$. It suffices to obtain a constant C such that the ideals $I^{\left[p^{e}\right]}:_{A} I$ are generated by elements of degree at most $C p^{e}$ for each $e \geqslant 1$.

There exists a ring isomorphism $\bigoplus_{e \geqslant 0} \omega^{\left(1-p^{e}\right)} \cong \bigoplus_{e \geqslant 0}\left(I^{\left[p^{e}\right]}:_{A} I\right) / I^{\left[p^{e}\right]}$ by Remark 3•4 that respects the e th graded components. After replacing ω by an isomorphic R-module with a possible graded shift, we may assume that the isomorphism above induces degree preserving R-module isomorphisms $\omega^{\left(1-p^{e}\right)} \cong\left(I^{\left[p^{e}\right]}:_{A} I\right) / I^{\left[p^{e}\right]}$ for each $e \geqslant 0$. While ω is no longer canonically graded, we still have the finite generation of the anticanonical cover $\bigoplus_{n \geqslant 0} \omega^{(-n)}$. It suffices to check that there exists a constant C such that $\omega^{\left(1-p^{e}\right)}$ is generated, as an R-module, by elements of degree at most $C p^{e}$.

Choose finitely many homogeneous R-algebra generators z_{1}, \ldots, z_{k} for $\bigoplus_{n \geqslant 0} \omega^{(-n)}$, say with $z_{i} \in \omega^{\left(-j_{i}\right)}$. Set C to be the maximum of $\operatorname{deg} z_{1}, \ldots, \operatorname{deg} z_{k}$. Then the monomials

$$
z^{\lambda}=z_{1}^{\lambda_{1}} z_{2}^{\lambda_{2}} \cdots z_{k}^{\lambda_{k}}, \quad \text { with } \sum \lambda_{i} j_{i}=p^{e}-1
$$

generate the R-module $\omega^{\left(1-p^{e}\right)}$, and it is readily seen that

$$
\operatorname{deg} z^{\lambda}=\sum \lambda_{i} \operatorname{deg} z_{i} \leqslant C \sum \lambda_{i} \leqslant C\left(p^{e}-1\right)
$$

By [KZ, lemma 2.2], it follows that \mathcal{C}^{R} is gauge bounded; the assertion now follows from [B12, theorem 4•18].

Corollary 6.5. Let R be the determinantal ring $\mathbb{F}[X] / I$, where X is a matrix of indeterminates over an F-finite field \mathbb{F} of prime characteristic, and I is the ideal generated by the minors of X of an arbitrary but fixed size. Then, for each ideal \mathfrak{a} of R, the set of F-jumping numbers of $\tau\left(R, \mathfrak{a}^{t}\right)$ is a subset of the real numbers with no limit points.

Proof. Since R is a determinantal ring, the symbolic powers of the ideal $\omega^{(-1)}$ agree with the ordinary powers by [BV, corollary 7•10]. Hence the anticanonical cover of R is finitely generated, and the result follows from Theorem 6.4.

Remark 6.6. It would be natural to remove the hypothesis that R is graded in Theorem 6.4. However, we do not know how to do this: when R is not graded, it is unclear if one can choose gauges that are compatible with the ring isomorphism

$$
\bigoplus_{e \geqslant 0} \omega^{\left(1-p^{e}\right)} \cong \bigoplus_{e \geqslant 0}\left(I^{\left[p^{e}\right]}:_{A} I\right) / I^{\left[p^{e}\right]} .
$$

7. Linear growth of Castelnuovo-Mumford regularity for rings of finite Frobenius representation type

Let A be a standard graded polynomial ring over a field \mathbb{F}, with homogeneous maximal ideal \mathfrak{m}. We recall the definition of the Castelnuovo-Mumford regularity of a graded module following [Ei, chapter 4]:

Definition 7.1. Let $M=\bigoplus_{d \in \mathbb{Q}} M_{d}$ be a graded A-module. If M is Artinian, we set

$$
\operatorname{reg} M=\max \left\{d \mid M_{d} \neq 0\right\} ;
$$

for an arbitrary graded module we define

$$
\operatorname{reg} M=\max _{k \geqslant 0}\left\{\operatorname{reg} H_{\mathfrak{m}}^{k}(M)+k\right\}
$$

Definition $7 \cdot 2$. Let I and J be homogeneous ideals of A. We say that the regularity of $A /\left(I+J^{\left[p^{e}\right]}\right)$ has linear growth with respect to p^{e}, if there is a constant C, such that

$$
\operatorname{reg} A /\left(I+J^{\left[p^{e}\right]}\right) \leqslant C p^{e}, \quad \text { for each } e \geqslant 0
$$

It follows from [KZ, corollary 2.4] that if reg $A /\left(I+J^{\left[p^{c}\right]}\right)$ has linear growth for each homogeneous ideal J, then $\mathcal{C}^{A / I}$ is gauge-bounded.

Remark 7.3. Let $R=A / I$ for a homogeneous ideal I. We define a grading on the bimodule $R^{(e)}$ introduced in Remark 1•3: when an element r of R is viewed as an element of $R^{(e)}$, we denote it by $r^{(e)}$. For a homogeneous element $r \in R$, we set

$$
\operatorname{deg}^{\prime} r^{(e)}=\frac{1}{p^{e}} \operatorname{deg} r
$$

For each ideal J of R, one has an isomorphism

$$
R^{(e)} \otimes_{R} R / J \xrightarrow{\cong} R / J^{\left[p^{e}\right]}
$$

under which $r^{(e)} \otimes \bar{s} \mapsto \overline{r s^{p^{e}}}$. To make this isomorphism degree-preserving for a homogeneous ideal J, we define a grading on $R / J^{\left[p^{e}\right]}$ as follows:

$$
\operatorname{deg}^{\prime} \bar{r}=\frac{1}{p^{e}} \operatorname{deg} \bar{r}, \quad \text { for a homogeneous element } r \text { of } R
$$

The notion of finite Frobenius representation type was introduced by Smith and Van den Bergh [SV]; we recall the definition in the graded context:

Definition 7.4. Let R be an \mathbb{N}-graded Noetherian ring of prime characteristic p. Then R has finite graded Frobenius-representation type by finitely generated \mathbb{Q}-graded R-modules M_{1}, \ldots, M_{s}, if for every $e \in \mathbb{N}$, the \mathbb{Q}-graded R-module $R^{(e)}$ is isomorphic to a finite direct sum of the modules M_{i} with possible graded shifts, i.e., if there exist rational numbers $\alpha_{i j}^{(e)}$, such that there exists a \mathbb{Q}-graded isomorphism

$$
R^{(e)} \cong \bigoplus_{i, j} M_{i}\left(\alpha_{i j}^{(e)}\right)
$$

Remark 7.5. Suppose R has finite graded Frobenius-representation type. With the notation as above, there exists a constant C such that

$$
\alpha_{i j}^{(e)} \leqslant C, \quad \text { for all } e, i, j ;
$$

see the proof of [TT, theorem 2.9].
We now prove the main result of this section; compare with [TT, theorem 4.8].
Theorem 7.6. Let A be a standard graded polynomial ring over an F-finite field of characteristic $p>0$. Let I be a homogeneous ideal of A.

Suppose $R=A / I$ has finite graded F-representation type. Then reg $A /\left(I+J^{\left[p^{e}\right]}\right)$ has linear growth for each homogeneous ideal J. In particular, \mathcal{C}^{R} is gauge bounded, and for each ideal \mathfrak{a} of R, the set of F-jumping numbers of $\tau\left(R, \mathfrak{a}^{t}\right)$ is a subset of the real numbers with no limit points.

Proof. We use J for the ideal of A, and also for its image in R. Let $a^{\prime}\left(H_{\mathfrak{m}}^{k}\left(R / J^{\left[p^{c}\right]}\right)\right)$ denote the largest degree of a nonzero element of $H_{\mathfrak{m}}^{k}\left(R / J^{\left[p^{c}\right]}\right)$ under the deg'-grading, i.e.,

$$
a^{\prime}\left(H_{\mathfrak{m}}^{k}\left(R / J^{\left[p^{e}\right]}\right)\right)=\frac{1}{p^{e}} \operatorname{reg} H_{\mathfrak{m}}^{k}\left(R / J^{\left[p^{e}\right]}\right)
$$

Since we have degree-preserving isomorphisms $R^{(e)} \otimes_{R} R / J \cong R / J^{\left[p^{e}\right]}$, and

$$
R^{(e)} \cong \bigoplus_{i, j} M_{i}\left(\alpha_{i j}^{(e)}\right),
$$

it follows that

$$
\begin{aligned}
H_{\mathfrak{m}}^{k}\left(R / J^{\left[p^{e}\right]}\right) & \cong H_{\mathfrak{m}}^{k}\left(R^{(e)} \otimes_{R} R / J\right) \\
& \cong \bigoplus_{i, j} H_{\mathfrak{m}}^{k}\left(M_{i}\left(\alpha_{i j}^{(e)}\right) \otimes_{R} R / J\right) \\
& \cong \bigoplus_{i, j} H_{\mathfrak{m}}^{k}\left(M_{i} / J M_{i}\right)\left(\alpha_{i j}^{(e)}\right)
\end{aligned}
$$

The numbers $\alpha_{i j}^{(e)}$ are bounded by Remark 7.5; thus,

$$
a^{\prime}\left(H_{\mathfrak{m}}^{k}\left(R / J^{\left[p^{e}\right]}\right)\right) \leqslant \max _{i}\left\{a^{\prime}\left(H_{\mathfrak{m}}^{k}\left(M_{i} / J M_{i}\right)\right)+C\right\} .
$$

Since there are only finitely many modules M_{i} and finitely many homological indices k, it follows that $a^{\prime}\left(H_{\mathfrak{m}}^{k}\left(R / J^{\left[p^{e}\right]}\right)\right) \leqslant C^{\prime}$, where C^{\prime} is a constant independent of e and k. Hence

$$
\operatorname{reg} H_{\mathfrak{m}}^{k}\left(R / J^{\left[p^{e}\right]}\right) \leqslant C^{\prime} p^{e}, \quad \text { for all } e, k,
$$

and so

$$
\operatorname{reg} A /\left(I+J^{\left[p^{e}\right]}\right)=\max _{k}\left\{\operatorname{reg} H_{\mathfrak{m}}^{k}\left(R / J^{\left[p^{e}\right]}\right)+k\right\} \leqslant C^{\prime} p^{e}+\operatorname{dim} A .
$$

This proves that reg $A / J^{\left[p^{e}\right]}$ has linear growth; [KZ, corollary 2.4] implies that \mathcal{C}^{R} is gauge bounded, and the discreetness assertion follows from [B12, theorem 4.18].

REFERENCES

[ABZ] J. Àlvarez Montaner, A. F. Boix and S. Zarzuela. Frobenius and Cartier algebras of Stanley-Reisner rings. J. Algebra. 358 (2012), 162-177.
[An] G. W. Anderson. An elementary approach to L-functions mod p. J. Number Theory. 80 (2000), 291-303.
[BI1] M. BLICKLE. The intersection homology D-module in finite characteristic. Ph.D. thesis. University of Michigan (2001), arXiv:math/0110244 [math.AG].
[B12] M. Blickle. Test ideals via algebras of p^{-e}-linear maps. J. Algebraic Geom. 22 (2013), 49-83.
[BV] W. Bruns and U. Vetter. Determinantal rings. Lecture Notes in Math. 1327 (Springer-Verlag, Berlin, 1988).
[Ei] D. Eisenbud. The geometry of syzygies. Graduate Texts in Math. 229 (Springer-Verlag, New York, 2005).
[Fe] R. Fedder. F-purity and rational singularity. Trans. Amer. Math. Soc. 278 (1983), 461480.
[GW] S. Goto and K.-I. Watanabe. On graded rings I. J. Math. Soc. Japan. 30 (1978), 179213.
[ILL ${ }^{+}$] S. B. Iyengar, G. J. Leuschke, A. Leykin, C. Miller, E. Miller, A. K. Singh and U. Walther. Twenty-four hours of local cohomology. Grad. Stud. Math. 87 (American Mathematical Society, Providence, RI, 2007).
[Ka] M. Katzman. A non-finitely generated algebra of Frobenius maps. Proc. Amer. Math. Soc. 138 (2010), 2381-2383.
[KZ] M. Katzman and W. Zhang. Castelnuovo-Mumford regularity and the discreteness of F jumping coefficients in graded rings. Trans. Amer. Math. Soc., to appear, arXiv:1110. 2093 [math.AC].
[LS] G. Lyubeznik and K. E. Smith. On the commutation of the test ideal with localization and completion. Trans. Amer. Math. Soc. 353 (2001), 3149-3180.
[Sc] K. Schwede. Test ideals in non- \mathbb{Q}-Gorenstein rings. Trans. Amer. Math. Soc. 363 (2011), 59255941.
[SV] K. E. Smith and M. Van den Bergh. Simplicity of rings of differential operators in prime characteristic. Proc. London Math. Soc. (3). 75 (1997), 32-62.
[TT] S. TAKAGI and R. TAKAHASHI. D-modules over rings with finite F-representation type. Math. Res. Lett. 15 (2008), 563-581.

[^0]: \dagger Supported by EPSRC grant EP/I031405/1.
 \ddagger Supported by NSF grant DMS 1064485 and a Sloan Fellowship.
 \S Supported by NSF grant DMS 1162585.
 || Supported by NSF grant DMS 1247354.

