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ABSTRACT. For K a field, consider a finite subgroup G of GLn(K) with its natural action
on the polynomial ring R := K[x1, . . . ,xn]. Let n denote the homogeneous maximal ideal of
the ring of invariants RG. We study how the local cohomology module Hn

n(R
G) compares

with Hn
n(R)

G. Various results on the a-invariant and on the Hilbert series of Hn
n(R

G) are
obtained as a consequence.

1. INTRODUCTION

Let K be a field. Consider a finite group G acting on a polynomial ring R :=K[x1, . . . ,xn]
via degree-preserving K-algebra automorphisms; the action of G on R is completely de-
termined by its action on one-forms, so there is little loss of generality in taking G to be a
finite subgroup of GLn(K), with the action given by

M : X 7−→MX ,

where X is a column vector of the indeterminates; this is the action of G on R considered
throughout the present paper. In the nonmodular case—when the order of G is invertible
in K—there is a wealth of results relating properties of the invariant ring RG to properties
of the group action; several of these fail in the modular case, i.e., when the order of G is a
multiple of the characteristic of K. For instance, in the nonmodular case, the functor (−)G

is exact, yielding an RG-isomorphism of local cohomology modules

Hn
m(R)

G ∼= Hn
n(R

G),

where m and n denote the respective homogeneous maximal ideals of R and RG. This
isomorphism no longer holds in the modular case; indeed, one of our goals is to study
the failure of this isomorphism. Quite generally, the transfer map provides a surjec-
tion Hn

m(R) −→ Hn
n(R

G); when G contains no transvections, we explicitly describe the
kernel in Theorem 3.1. This result may be viewed as a dual formulation of a theorem of
Peskin, [Pe, Theorem 1.8], that relates the canonical modules of R and of RG.

We apply Theorem 3.1 to study the local cohomology a-invariant of RG in §4, proving
that the a-invariant of RG equals that of R if and only if G is a subgroup of the special
linear group with no pseudoreflections; see Theorem 4.4. In §5, we record a surprising
consequence of our main theorem towards comparing the ranks of the graded components
of the local cohomology modules Hn

n(R
G) and Hn

m(R)
G, proving that they coincide when G

is cyclic with no transvections. The study of local cohomology modules of invariant rings
of finite groups goes back at least to work of Ellingsrud and Skjelbred [ES], where they use
spectral sequences relating local cohomology and group cohomology to give upper bounds
on the depth of modular invariant rings.
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The article [St] by Stanley provides an excellent account of the theory in the non-
modular case; for sources that include the modular case as well, we refer the reader to
Benson [Be] and Campbell and Wehlau [CW]. We have attempted to keep this paper
largely self-contained, and accessible to the reader familiar with the basics of local coho-
mology; some preliminary results are reviewed or proved in §2, towards simplifying later
arguments. Our study is closely related to earlier work on the canonical module and the
Gorenstein property of invariant rings, e.g., [Wa1, Wa2, Pe, Bro, Br1, FW, Ha]; these are
discussed briefly in §2.

2. PRELIMINARY REMARKS

We begin with some standard facts about finite group actions:

Pseudoreflections. An element g ∈ GLn(K) of finite order is a pseudoreflection if it fixes
a hyperplane; by convention, the group identity is not a pseudoreflection. It follows that g
is a pseudoreflection precisely if the matrix g− I, with I the identity matrix, has rank one.
An equivalent formulation is that the Jordan form of g, after extending scalars, is

ζ 0 0 · · · 0
0 1 0 · · · 0
0 0 1 0
...

...
. . .

0 0 0 1

 or


1 1 0 · · · 0
0 1 0 · · · 0
0 0 1 0
...

...
. . .

0 0 0 1

 .
Since g has finite order, the element ζ in the first case is a root of unity. The second case
only occurs when K has characteristic p > 0; such an element is a transvection.

Remark 2.1. Fix g∈G. We use (1−g)R to denote the ideal of R :=K[x1, . . . ,xn] generated
by all elements of the form r−g(r) for r ∈ R. Since

(1−g)(r1r2) = r2(1−g)(r1)+g(r1)(1−g)(r2),

the ideal (1− g)R is generated by the elements (1− g)(xi) for 1 6 i 6 n. Note that g is a
pseudoreflection if and only if the ideal (1−g)R has height one.

Transfer. Let G be a finite subgroup acting on a ring R. For a subgroup H, the transfer
map TrG

H : RH −→ RG is defined as

TrG
H(r) := ∑

gH∈G/H
g(r),

where the sum is over a set of left coset representatives. It is straightforward to see that TrG
H

is an RG-linear map, independent of the coset representatives. Precomposing with the
inclusion RG ⊆ RH , the composition

RG −−→ RH TrG
H−−→ RG

is multiplication by the integer [G : H], i.e., by the index of H in G. It follows that TrG
H is

surjective if [G : H] is invertible in R.
When H is the subgroup consisting only of the identity element, we use TrG or Tr to

denote the transfer map R−→ RG.
The following lemma appears in various forms in the literature, e.g., [Fe, Theorem 2.4],

[Br1, Proposition 3.7], and [NS, Theorem 2.4.5]; we include a self-contained proof:
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Lemma 2.2. Let G be a finite subgroup of GLn(K), without transvections, acting on the
polynomial ring R := K[x1, . . . ,xn]. Then the image of the transfer map Tr: R−→ RG is an
ideal of RG of height at least two.

Proof. The transfer map is surjective in the nonmodular case, so assume that K has positive
characteristic p. The claim reduces to the case where K is algebraically closed, as we now
assume. Let p be a prime ideal of RG height one, and q a height one prime of R containing p.
It suffices to show that there is a maximal ideal m of R, containing q, such that Tr(R) 6⊆m.

By Remark 2.1, the prime q does not contain an ideal of the form (1−g)R for any group
element g of order p, since such an element would then be a transvection. Let a denote
the product of the ideals (1− g)R, taken over group elements g of order p. Then a 6⊆ q,
so there exists a point (a1, . . . ,an) ∈ An

K that lies in the algebraic set V (q) but not in V (a).
Set m := (x1−a1, . . . ,xn−an)R. We claim that g(m) 6=m for each g ∈ G of order p.

If the claim is false, there exists an element g of order p such that

g(xi−ai) = g(xi)−ai ∈ m for each 16 i6 n.

But xi− ai ∈ m as well, so xi− g(xi) ∈ m for each i. These generate (1− g)R, yielding a
contradiction. This proves the claim.

Consider the action of G on the set of maximal ideals of R. Since the stabilizer H of m
has no elements of order p, the order of H is invertible in K. The transfer map R −→ RG

factors as

R TrH
−−→ RH TrG

H−−→ RG,

where the first map is surjective, so it suffices to show that the image of TrG
H is not contained

in m. Let {g1, . . . ,g`} be coset representatives for G/H, where g1H = H. Then

m= g−1
1 (m), g−1

2 (m), . . . , g−1
` (m)

are distinct maximal ideals of R, so there exists an element r ∈ R with r ∈ g−1
i (m) for

each i 6 2 6 `, and r /∈ m. These conditions are preserved when r is replaced by its orbit
product under H, so we may assume r ∈ RH . But then

TrG
H(r) = g1(r)+g2(r) · · ·+g`(r)

≡ r mod m.

It follows that TrG
H(R

H) is not contained in m. �

Local cohomology and the canonical module. Let S be an N-graded ring that is finitely
generated over a field S0 = K. Let n denote the homogeneous maximal ideal of S, and
set n := dimS. Let y1, . . . ,yn be a homogeneous system of parameters for S, i.e., a sequence
of n homogeneous elements that generate an ideal with radical n. For an S-module M and
an integer k > 0, the local cohomology module Hk

n(M) is defined as

Hk
n(M) = lim−→

i
ExtkS(S/n

i,M),

and may be identified with the Čech cohomology module Ȟk(y1, . . . ,yn; S), i.e., the k-th
cohomology of the Čech complex

0 −−→ M −−→
⊕

i
Myi −−→

⊕
i< j

Myiy j −−→ ·· · −−→ My1···yn −−→ 0.

In particular, this identifies Hn
n(M) with

My1···yn

∑i My1···ŷi···yn

.
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Under this identification, a local cohomology class[
m

yd
1 · · ·yd

n

]
∈ Hn

n(M),

for m ∈M, is zero if and only if there exists an integer `> 0 such that

m(y1 · · ·yn)
` ∈

(
yd+`

1 , . . . , yd+`
n
)
M.

When M is a Z-graded S-module, each Hk
n(M) acquires a natural Z-grading. Follow-

ing Goto and Watanabe [GW], the a-invariant of the ring S, denoted a(S), is the largest
integer a such that the graded component [Hn

n(S)]a is nonzero.
Let M be a Z-graded S-module. We use M(i) to denote the module with the shifted

grading [M(i)] j = [M]i+ j for each j ∈ Z. The graded K-dual of M, denoted M∗, is the S-
module with graded components

[M∗]i = HomK(M,K(i)),

where HomK(M,K(i)) is the vector space of degree preserving K-linear maps M −→ K(i).
Assume now that S is normal; the canonical module of S is

ωS := Hn
n(S)

∗.

When the ring S is Gorenstein, one has a degree-preserving isomorphism

ωS ∼= S(a),

where a = a(S). A normal N-graded ring S is Gorenstein precisely if it is Cohen-Macaulay
and ωS is a cyclic S-module; dropping the Cohen-Macaulay condition, a normal N-graded
ring S is quasi-Gorenstein if ωS is a cyclic S-module.

Let G be a finite subgroup of GLn(K), acting on a polynomial ring R. In the nonmodular
case, the invariant ring RG is Cohen-Macaulay by [HE], though it need not be Cohen-
Macaulay in the modular case; this leads to interest in the quasi-Gorenstein property. We
summarize some of the work in this direction:

Suppose first that the order of G is invertible in the field K; this is the nonmodular
case. Watanabe proved that if G ⊆ SLn(K), then RG is Gorenstein [Wa1], and that if G
contains no pseudoreflections, then the converse holds as well, i.e., if RG is Gorenstein,
then G ⊆ SLn(K), see [Wa2]. Braun [Br1] proved analogues of these in the modular case
when G contains no pseudoreflections: the ring RG is quasi-Gorenstein if and only if G is
contained in SLn(K). Some of these results are extended in [FW] and [Ha].

It was conjectured that if RG is Cohen-Macaulay and G ⊆ SLn(K), then RG is Goren-
stein, [KKM+, Conjecture 5]; while this is true in the nonmodular case by [Wa1], the
conjecture was shown to be false by Braun [Br2], with the simplest example being the
subgroup G of SL2(F9) generated by[

ζ 0
0 ζ−1

]
and

[
1 1
0 1

]
,

where ζ is a primitive 4-th root of unity. Note that G contains a transvection—as it must!

The group action on local cohomology. Let G be a finite subgroup of GLn(K), acting
on a polynomial ring R := K[x1, . . . ,xn]. The action of G on Hn

m(R) may be interpreted in
several equivalent ways: for g ∈ G, the automorphism g : R−→ R induces a map

Hn
m(R)

g−−→ Hn
g(m)(R) = Hn

m(R),

where the equality is simply because g(m) =m.
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Alternatively, let y1, . . . ,yn be a homogeneous system of parameters for RG, and use the
identification of Hn

m(R) with Čech cohomology Ȟn(y1, . . . ,yn; R). Under this identifica-
tion, for g ∈ G and r ∈ R one has

η :=
[

r
yd

1 · · ·yd
n

]
7−→

[
g(r)

yd
1 · · ·yd

n

]
= g(η).

Note that η is fixed by g precisely if there exists an integer `> 0 such that(
g(r)− r

)
(y1 · · ·yn)

` ∈
(
yd+`

1 , . . . , yd+`
n
)
R.

Since y1, . . . ,yn is a regular sequence on R, this is equivalent to

g(r)− r ∈
(
yd

1 , . . . , yd
n
)
R.

It follows that η as above if fixed by g precisely if the image of r in the Artinian ring

A := R/(yd
1 , . . . ,y

d
n)R

is fixed by g under the induced action. More generally, A is isomorphic as a G-module to
the submodule of Hn

m(R) consisting of elements of the form[
r

yd
1 · · ·yd

n

]
, for r ∈ R.

Yet another point of view may be obtained from the ideas surrounding Remark 4.3; we
leave this to the interested reader.

Recall that the transfer map Tr : R −→ RG is a homomorphism of RG-modules, and
hence induces a map

(2.2.1) Hn
n(R)

Tr−−→ Hn
n(R

G),

where n is the homogeneous maximal ideal of RG. Since nR has radical m, one may
identify the modules Hn

n(R) and Hn
m(R). The transfer map (2.2.1) is then precisely the

map Hn
m(R)−→ Hn

n(R
G) with [

r
yd

1 · · ·yd
n

]
7−→

[
Tr(r)

yd
1 · · ·yd

n

]
,

where r ∈ R, and y1, . . . ,yn is a homogeneous system of parameters for RG, as above.

Maps on local cohomology. For a local ring (S,n), and M a finitely generated S-module,
the local cohomology modules Hk

n(M) vanish for k > dimM. It follows that the func-
tor HdimS

n (−) is right-exact. More generally:

Lemma 2.3. Let (S,n) be a local ring and set n := dimS. Let

A α−−→ B
β−−→ C −−→ 0

be a complex of finitely generated S-modules.
(1) If Bp −→Cp is surjective for each prime ideal p with dimS/p= n, then the induced

map Hn
n(B)−→ Hn

n(C) is surjective.
(2) If Bp −→Cp is injective for each prime ideal p with dimS/p= n, and surjective for

each p with dimS/p= n−1, then Hn
n(B)−→ Hn

n(C) is an isomorphism.
(3) If Bp −→Cp is surjective for each p with dimS/p = n− 1, and Ap −→ Bp −→Cp

is exact for each p with dimS/p= n, then the induced sequence

Hn
n(A) −−→ Hn

n(B) −−→ Hn
n(C) −−→ 0

is exact.
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Proof. The exact sequence B−→C −→ cokerβ −→ 0 induces

Hn
n(B) −−→ Hn

n(C) −−→ Hn
n(cokerβ ) −−→ 0.

Since (cokerβ )p vanishes for each prime p with dimS/p = n, one has dim(cokerβ ) < n.
But then Hn

n(cokerβ ) = 0, proving (1).
For (2), consider the exact sequences

0 −−→ kerβ −−→ B −−→ imβ −−→ 0

and
0 −−→ imβ −−→ C −−→ cokerβ −−→ 0.

The hypothesis (kerβ )p = 0 for each p with dimS/p = n implies that dim(kerβ ) < n,
so Hn

n(kerβ ) = 0. Using the first sequence, Hn
n(B)−→ Hn

n(imβ ) is an isomorphism.
Similarly, since (cokerβ )p = 0 for each prime p with dimS/p = n− 1, it follows

that dim(cokerβ ) < n− 1, so Hn−1
n (cokerβ ) = 0 = Hn

n(cokerβ ). Passing to local co-
homology, the second displayed sequence yields the isomorphism Hn

n(imβ )−→ Hn
n(C).

For (3), we may replace A by its image in B, and then apply (2) to B/A−→C to obtain
the isomorphism Hn

n(B/A)−→ Hn
n(C). Combine this with the exact sequence

Hn
n(A) −−→ Hn

n(B) −−→ Hn
n(B/A) −−→ 0. �

3. COMPARING LOCAL COHOMOLOGY

Theorem 3.1. For K a field, let G be a finite subgroup of GLn(K), without transvections,
acting on the polynomial ring R := K[x1, . . . ,xn]. Then there is an exact sequence⊕

g∈G
Hn
m(R)

α−−→ Hn
m(R)

Tr−−→ Hn
n(R

G) −−→ 0,

where m and n denote the respective homogeneous maximal ideals of R and RG, and

α : (ηg)g∈G 7−→ ∑
g∈G

(
ηg−g(ηg)

)
.

Proof. Note that the ideal nR is m-primary, so Hn
m(R) = Hn

n(R). In view of Lemma 2.3 (3),
it suffices to consider the complex of RG-modules

(3.1.1)
⊕

g∈G
R α−−→ R Tr−−→ RG −−→ 0,

where
α : (rg)g∈G 7−→ ∑

g∈G

(
rg−g(rg)

)
,

and verify that Tr : R−→ RG is surjective after localizing at each height one prime p of RG,
and that the sequence (3.1.1) is exact upon tensoring with the fraction field of RG. The
surjectivity of Tr : R−→ RG at height one primes comes from Lemma 2.2. For the second
verification, let L denote the fraction field of R, in which case LG = frac(RG) as G is finite.
We then need to verify the exactness of the sequence

(3.1.2)
⊕

g∈G
L α−−→ L Tr−−→ LG −−→ 0.

But Tr : L −→ LG is a surjective map of LG-vector spaces, so its kernel is an LG-vector
space of rank |G|−1. By the normal basis theorem, there exists λ ∈ L such that

{g(λ ) | g ∈ G}
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is an LG-basis for L. But then the image of α in (3.1.2) contains the |G| − 1 linearly
independent elements λ −g(λ ), as g varies over the nonidentity elements of G. �

Remark 3.2. In the statement of Theorem 3.1, one may replace
⊕

g∈G
Hn
m(R) by the direct

sum over a generating set for G, and α by its restriction: if g,h ∈ G, then

(1−hg)(η) = (1−g)(η)+(1−h)(g(η)).

The hypothesis that G does not contain transvections is indeed required in Theorem 3.1:

Example 3.3. Consider the symmetric group S2 = 〈g〉 acting on R := K[x,y] by permuting
the variables. Then RS2 = K[e1,e2], where e1 := x+ y and e2 := xy. While g is a pseudo-
reflection independent of the characteristic of K, it is a transvection if and only if K has
characteristic two. We examine the complex

(3.3.1) H2
m(R)

1−g−−→ H2
m(R)

Tr−−→ H2
n(R

S2) −−→ 0

in degree −2. Note that [H2
n(R

S2)]−2 = 0, while [H2
m(R)]−2, computed via the Čech com-

plex on e1,e2, is the rank one K-vector space spanned by

η :=
[

x
e1e2

]
.

Since

(1−g)(η) =

[
x− y
e1e2

]
=

[
2x

e1e2

]
= 2η ,

the degree −2 strand of (3.3.1) takes the form

K 2−−→ K −−→ 0 −−→ 0,
which is exact precisely when the characteristic of K is other than two, i.e., precisely when
the group contains no transvections.

4. WHEN IS THE a-INVARIANT INVARIANT?

We record in this section when the a-invariant of a ring of invariants coincides with that
of the ambient polynomial ring. The following proposition is likely well-known to experts,
for example, it is an extension of [Je, Lemma 2.17]; see also [KPU, Theorem 1.1].

Proposition 4.1. Let G be a finite subgroup of GLn(K), acting on a polynomial ring R.
Then, for each subgroup H of G, one has a(RG)6 a(RH).

Proof. Consider the transfer map TrG
H : RH −→ RG given by

(4.1.1) TrG
H(r) := ∑

gH∈G/H
g(r).

Let L denote the fraction field of R. Since G and H are finite, one has LG = frac(RG)
and LH = frac(RH). Distinct cosets gH induce distinct automorphisms g : LH −→ LH ,
so Dedekind’s theorem implies that the corresponding characters (LH)

× −→ (LH)
× are

linearly independent over LH , and hence over LG. It follows that their sum

∑g : (LH)
× −→ LH ,

taken over coset representatives, is a nonzero map, and hence that the transfer map (4.1.1)
is nonzero. As the transfer is RG-linear, one has an exact sequence of RG-modules

RH TrG
H−−→ RG −−→ RG/ im(TrG

H) −−→ 0.
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Applying the functor Hn
n(−), one obtains the surjection

Hn
n(R

H)
TrG

H−−→ Hn
n(R

G),

since RG/ im(TrG
H) has smaller dimension. The homogeneous maximal ideals of RH and RG

agree up to radical, so the assertion follows. �

The following is [Je, Theorem 2.18], and also related to work of Broer [Bro]:

Corollary 4.2. Let K be a field of characteristic p > 0, and G a finite subgroup of GLn(K)
acting on a polynomial ring R := K[x1, . . . ,xn]. If a(RG) = a(R), and p divides the order
of G, then the inclusion RG ⊆ R is not RG-split.

Proof. Consider the maps of rank one K-vector spaces

[Hn
n(R

G)]−n
i−−→ [Hn

m(R)]−n
Tr−−→ [Hn

n(R
G)]−n,

where i is induced by the inclusion RG ⊆ R. The composition is then multiplication by |G|,
which equals zero in K. As Tr above is surjective, the map i must be zero. But then the
inclusion RG ⊆ R is not RG-split. �

Remark 4.3. Let G be a finite subgroup of GLn(K), acting on R :=K[x1, . . . ,xn]. We claim
that for each g ∈ G and η ∈ [Hn

m(R)]−n, one has

g ·η = (detg)−1
η .

Since [Hn
m(R)]−n has rank one, without loss of generality, take η to be[

1
x1 · · · xn

]
.

If f1, . . . , fn is a homogeneous system of parameters for R, the natural isomorphism be-
tween Čech and local cohomology induces a natural isomorphism between the Čech co-
homology modules Ȟn(x1, . . . ,xn; R) and Ȟn( f1, . . . , fn; R). To make this explicit, follow-
ing [Ku, Theorem 4.18], let A be a matrix over R, such that f1

...
fn

 = A

x1
...

xn

 .
Then, under the isomorphism Ȟn(x1, . . . ,xn; R)−→ Ȟn( f1, . . . , fn; R), one has[

1
x1 · · · xn

]
7−→

[
detA

f1 · · · fn

]
.

It follows that

g ·
[

1
x1 · · · xn

]
=

[
1

g(x1) · · ·g(xn)

]
,

viewed as an element of Ȟn(g(x1), . . . ,g(xn); R), corresponds to[
(detg)−1

x1 · · · xn

]
= (detg)−1

η

in Ȟn(x1, . . . ,xn; R).

The following theorem has been obtained independently by Hashimoto [Ha]:
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Theorem 4.4. For K a field, let G be a finite subgroup of GLn(K) acting on the polynomial
ring R := K[x1, . . . ,xn]. Then a(RG) = a(R) if and only if G is a subgroup of SLn(K) that
contains no pseudoreflections.

Proof. We first show that if G contains a pseudoreflection, then a(RG)< a(R). In view of
Proposition 4.1, it suffices to consider the case where G is a cyclic group, generated by a
pseudoreflection g. After extending scalars, we may assume that g takes the form

ζ 0 0 · · · 0
0 1 0 · · · 0
0 0 1 0
...

...
. . .

0 0 0 1

 or


1 1 0 · · · 0
0 1 0 · · · 0
0 0 1 0
...

...
. . .

0 0 0 1

 ,
where ζ is a primitive k-th root of unity. In the first case, RG = K[xk

1, x2, . . . ,xn], and in
the second RG = K[xp

1 − x1xp−1
2 , x2, . . . ,xn], where p > 0 is the characteristic of K. In each

case RG is a polynomial ring, with a(RG) strictly less than a(R).
It remains to verify that if G has no pseudoreflections, then a(RG) = a(R) if and only

if G is a subgroup of SLn(K). The exact sequence from Theorem 3.1, when restricted to
the degree −n strand, gives an exact sequence of K-vector spaces⊕

g∈G
[Hn

m(R)]−n
α−−→ [Hn

m(R)]−n
Tr−−→ [Hn

n(R
G)]−n −−→ 0.

Since [Hn
m(R)]−n is a rank one vector space, it follows that a(RG) = −n if and only if the

map α above is identically zero, i.e., if and only if the map

[Hn
m(R)]−n

1−g−−→ [Hn
m(R)]−n

is zero for each g ∈ G. Taking

η :=
[

1
x1 · · · xn

]
as in Remark 4.3, this is equivalent to the condition that

η−g(η) = η− (detg)−1
η

is zero for each g, i.e., that detg = 1 for each g ∈ G. �

5. HILBERT SERIES OF LOCAL COHOMOLOGY

Theorem 3.1 has an amusing consequence for the Hilbert series of local cohomology:

Corollary 5.1. For K a field, let G be a finite cyclic subgroup of GLn(K), without transvec-
tions, acting on the polynomial ring R := K[x1, . . . ,xn]. Then the Hilbert series of Hn

n(R
G)

and Hn
m(R)

G coincide, i.e., for each integer k, one has

rankK [Hn
n(R

G)]k = rankK [Hn
m(R)

G]k.

Proof. Let G = 〈g〉. Then, by Theorem 3.1 and Remark 3.2, one has an exact sequence

Hn
m(R)

1−g−−→ Hn
m(R)

Tr−−→ Hn
n(R

G) −−→ 0.

But the kernel of the first map is precisely Hn
m(R)

G, so

0 −−→ Hn
m(R)

G −−→ Hn
m(R)

1−g−−→ Hn
m(R)

Tr−−→ Hn
n(R

G) −−→ 0

is exact. Taking the degree k strand, the alternating sum of the ranks is zero. �
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We will see in Example 5.3 that the equality of Hilbert series need not hold when G is
not cyclic; however, before that, it is worth emphasizing that both Hn

n(R
G) and Hn

m(R)
G are

graded RG-modules, and Corollary 5.1 says precisely that they are isomorphic as graded K-
vector spaces. They need not be isomorphic as RG-modules:

Example 5.2. Consider the alternating group A3 acting on R := F3[x,y,z] by permuting the
variables. The ring of invariants RA3 is then generated by the elements

e1 := x+ y+ z, e2 := xy+ yz+ zx, e3 := xyz, ∆ := x2y+ y2z+ z2x.

It follows that RA3 is a hypersurface; the defining equation is readily seen to be

∆
2− e1e2∆+ e3

2 + e3
1e3.

Taking a Čech complex on e1,e2,e3, the socle of the RA3 -module H3
n(R

A3) is the rank one
vector space spanned by the cohomology class

η :=
[

∆

e1e2e3

]
.

Note that η belongs to the kernel of the natural map H3
n(R

A3)−→ H3
n(R) since RA3 −→ R

is not RA3 -split; alternatively, it is a routine verification that

∆ ∈ (e1,e2,e3)R.

We claim that, in contrast with H3
n(R

A3), the socle of H3
n(R)

A3 , as an RA3 -module, has
larger rank: for this, one may verify that the elements[

x∆

e2
1e2e3

]
,

[
∆

e2
1e2e3

]
,

[
∆

e1e2
2e3

]
,

[
1

e1e2e3

]
,

are all nonzero in H3
n(R), that they are A3-invariant, and that they are annihilated by the

ideal (e1,e2,e3,∆)RA3 . Note that they have degrees −3, −4, −5, −6 respectively.

The equality of Hilbert series, Corollary 5.1, fails for an action of the Klein-4 group:

Example 5.3. The following matrices over F2 generate the Klein-4 group:1 0 0
0 1 1
0 0 1

 and

1 0 1
0 1 0
0 0 1

 .
Each of these is a transvection; the invariant ring for this action of the Klein-4 group
on F2[x,y,z] is the polynomial ring

F2[z, x2 + xz, y2 + yz].

The situation is more interesting if we take the 2-fold diagonal embedding, i.e., if we
consider the representation of the Klein-4 group, over F2, determined by the matrices:

g :=


1 0 0 0 0 0
0 1 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 1
0 0 0 0 0 1

 and h :=


1 0 1 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 0 1

 .
Under the action of this group G on the polynomial ring R :=F2[u,v,w,x,y,z], the following
elements are readily seen to be invariant:

w, z, u2 +uw, v2 + vw, x2 + xz, y2 + yz, uz+wx, vz+wy.
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Indeed, the invariant ring RG is generated by these elements, and is a complete intersection
ring with defining equations

(uz+wx)2 +(uz+wx)wz+(u2 +uw)z2 +(x2 + xz)w2

and
(vz+wy)2 +(vz+wy)wz+(v2 + vw)z2 +(y2 + yz)w2.

It follows that RG has Hilbert series

(1− t4)2

(1− t)2(1− t2)6 =
(1+ t2)2

(1− t)2(1− t2)4 = 1+2t +9t2 + · · · .

Set n to be the ideal of RG generated by the homogeneous system of parameters

w2, z2, u2 +uw, v2 + vw, x2 + xz, y2 + yz.

Since RG is Gorenstein with a(RG) =−6, the Hilbert series above yields

rank [H6
n(R

G)]−6 = 1 and rank [H6
n(R

G)]−7 = 2.

We claim that, on the other hand,

rank [H6
n(R)

G]−7 = 4.

Consider the Artinian ring A := R/nR; we identify [H6
n(R)]−6 with [A]6, and [H6

n(R)]−7
with [A]5 as G-modules.

The rank one space [A]6 has basis uvwxyz, which is fixed by g and h, (as it must!) since

g : uvwxyz 7−→ u(v+w)wx(y+ z)z ≡ uvwxyz

in A, and
h : uvwxyz 7−→ (u+w)vw(x+ z)yz ≡ uvwxyz.

For [A]5, we work with the basis vwxyz, uwxyz, uvxyz, uvwyz, uvwxz, uvwxy. The first
of these elements is fixed since

g : vwxyz 7−→ (v+w)wx(y+ z)z ≡ vwxyz

and
h : vwxyz 7−→ vw(x+ z)yz ≡ vwxyz.

Similar calculations show that uwxyz, uvwyz, uvwxz are fixed by g and h. On the other hand

g : uvxyz 7−→ u(v+w)x(y+ z)z ≡ (uv+uw)xyz

and
g : uvwxy 7−→ u(v+w)wx(y+ z) ≡ uvw(xy+ xz),

so g fixes no nonzero F2-linear combination of uvxyz and uvwxy. It follows that the sub-
space of [A]5 fixed by G has basis vwxyz, uwxyz, uvwyz, uvwxz.
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