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Hankel determinantal rings, i.e., determinantal rings defined 
by minors of Hankel matrices of indeterminates, arise as 
homogeneous coordinate rings of higher order secant varieties 
of rational normal curves; they may also be viewed as linear 
specializations of generic determinantal rings. We prove that, 
over fields of characteristic zero, Hankel determinantal rings 
have rational singularities; in the case of positive prime 
characteristic, we prove that they are F -pure. Independent 
of the characteristic, we give a complete description of the 
divisor class groups of these rings, and show that each divisor 
class group element is the class of a maximal Cohen–Macaulay 
module.
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0. Introduction

Throughout this paper, by a Hankel matrix, we mean a matrix of the form

H :=

⎛⎜⎜⎜⎜⎝
x1 x2 x3 · · · xs

x2 x3 · · · · · · xs+1
x3 · · · · · · · · · xs+2
...

...
...

...
...

xr · · · · · · · · · xs+r−1

⎞⎟⎟⎟⎟⎠ ,

where x1, . . . , xs+r−1 are indeterminates over a field F. By a Hankel determinantal ring
we mean a ring of the form

F[x1, . . . , xs+r−1]/It(H),

where 1 � t � min{r, s}, and It(H) is the ideal generated by the size t minors of H. 
These rings arise as homogeneous coordinate rings of higher order secant varieties of 
rational normal curves, see for example Room’s 1938 study [18, Chapter 11.7].

We prove that Hankel determinantal rings over fields of characteristic zero have ra-
tional singularities, Theorem 2.1. In particular, higher order secant varieties of rational 
normal curves have rational singularities. Theorem 2.1 may be compared with corre-
sponding statements for generic determinantal rings, and those defined by minors of 
symmetric matrices of indeterminates or by pfaffians of skew-symmetric matrices of in-
determinates: in characteristic zero, these are all invariant rings of linearly reductive 
classical groups acting on polynomial rings, and hence are pure subrings of polynomial 
rings. By Boutot’s theorem [1], it then follows that they have rational singularities. We 
do not know if Hankel determinantal rings, in general, arise as invariant rings for group 
actions on polynomial rings, or if they are pure subrings of polynomial rings. However, 
for t � 3, we show that they are not pure subrings of the polynomial rings in which they 
are naturally embedded, see Proposition 2.2. Our proof of rational singularities is via 
reduction modulo p methods, using Smith’s theorem [21] that rings of F -rational type 
have rational singularities.

We compute the divisor class groups of Hankel determinantal rings: the group is 
finite cyclic, in particular, the rings are Q-Gorenstein, and we show that each divisor 
class group element corresponds to a rank one maximal Cohen–Macaulay module, see 
Theorem 3.1.

We also prove that Hankel determinantal rings over fields of positive characteristic 
are F -pure, Theorem 4.1. Finally, for R a Hankel determinantal ring with homogeneous 
maximal ideal mR, we compute the F -pure threshold of mR in R, and of its defining 
ideal It(H) in the ambient polynomial ring, see Theorems 4.5 and 4.6.
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1. Generalities

By a result of Gruson and Peskine, [9, Lemme 2.3], every Hankel determinantal ring 
is isomorphic to one where the defining ideal It(H) is generated by the maximal sized 
minors of a Hankel matrix; alternatively see [25, Proposition 7] or [4, Corollary 2.2(b)]. 
In view of this, we will henceforth work with Hankel determinantal rings of the form

R := F[x1, . . . , xn+t−1]/It(H),

where H is a t × n Hankel matrix and t � n; except where stated otherwise, H will 
denote such a matrix.

Consider the generic determinantal ring

B := F[Y ]/It(Y ),

where Y is a t × n matrix of indeterminates, and It(Y ) the ideal generated by its size t
minors. The (t −1)(n −1) elements Yi,j+1−Yi+1,j are readily seen to be part of a system 
of parameters for B, and specializing these to 0 gives a ring isomorphic to R. Since B is 
Cohen–Macaulay by [6,12], so is the ring R, and the Eagon–Northcott complex provides 
a minimal free resolution of R. It follows as well that

dimR = 2t− 2,

and hence that

height It(H) = n− t + 1.

The elements x1, . . . , xt−1, xn+1, . . . , xn+t−1 are a homogeneous system of parameters 
for R, and the socle modulo this system of parameters is spanned by the degree t − 1
monomials in xt, . . . , xn. In particular, the ring R has a-invariant

a(R) = 1 − t.

The multiplicity of the ring R is

e(R) =
(

n

t− 1

)
,

as may be seen directly from the above discussion, or obtained using the multiplicity of 
generic determinantal rings, e.g., [3, Proposition 2.15].

The ring R is a normal domain, see for example, [25, Proposition 8]; it is Gorenstein 
precisely when t = n. The ideal It(H) is a set-theoretic complete intersection by [23]. 
The singular locus of R is defined by the image of It−1(H), see [15, Theorem 1.56]. For 
secant varieties of smooth curves in general, we mention [24] and the references therein.
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Notation. Given a matrix X, we use [a1 . . . ar | b1 . . . br]X to denote the determinant 
of the submatrix of X with rows a1, . . . , ar and columns b1, . . . , br. We omit the subscript 
whenever the matrix is clear from the context.

2. Rational singularities

In proving that Hankel determinantal rings of characteristic zero have rational singu-
larities, we will use the following description: A 2 × n Hankel determinantal ring over 
a field F is readily seen to be isomorphic to the n-th Veronese subring of a polynomial 
ring F[u, v], where the Hankel matrix maps entrywise to(

un un−1v un−2v2 · · · uvn−1

un−1v un−2v2 · · · · · · vn

)
.

This is the homogeneous coordinate ring of the rational normal curve Cn in Pn; as it is 
a Veronese subring, it is a pure subring of F[u, v], independent of the characteristic of F.

A 3 × n Hankel determinantal ring is the homogeneous coordinate ring of the secant 
variety of the rational normal curve Cn+1 in Pn+1; it is isomorphic to the subring of the 
polynomial ring F[u1, u2, v1, v2], where the Hankel matrix maps entrywise to the matrix⎛⎜⎝ un+1

1 + un+1
2 un

1v1 + un
2 v2 un−1

1 v2
1 + un−1

2 v2
2 · · · u2

1v
n−1
1 + u2

2v
n−1
2

un
1 v1 + un

2 v2 un−1
1 v2

1 + un−1
2 v2

2 · · · · · · u1v
n
1 + u2v

n
2

un−1
1 v2

1 + un−1
2 v2

2 · · · · · · · · · vn+1
1 + vn+1

2

⎞⎟⎠ .

More generally, the Hankel determinantal ring R := F[x1, . . . , xn+t−1]/It(H) is the 
homogeneous coordinate ring of the order t − 2 secant variety of the rational normal 
curve Cn+t−2 in Pn+t−2, see for example [7, Section 4]. Specifically, we claim that R is 
isomorphic to the F-subalgebra of the polynomial ring

S := F[u1, . . . , ut−1, v1, . . . , vt−1]

generated by the elements

hi := un+t−2−i
1 vi1 + un+t−2−i

2 vi2 + · · · + un+t−2−i
t−1 vit−1, for 0 � i � n+t−2. (2.0.1)

To see this, consider the F-algebra homomorphism ϕ : F[x1, . . . , xn+t−1] −→ S defined 
by ϕ(xi) = hi−1 for each i. Note that ϕ maps the Hankel matrix of indeterminates H to 
a matrix M that is Hankel in the elements hi. As M is the sum of t − 1 matrices of the 
form ⎛⎜⎜⎜⎜⎝

un+t−2 un+t−3v un+t−4v2 · · · ut−1vn−1

un+t−3v un+t−4v2 · · · · · · ut−2vn

un+t−4v2 · · · · · · · · · ut−3vn+1

...
...

...
...

...
n−1 t−1 n−t+2

⎞⎟⎟⎟⎟⎠ ,
u v · · · · · · · · · v
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each having rank 1, it follows that the rank of M is at most t − 1, i.e., that It(M) = 0. 
Hence ϕ induces a homomorphism ϕ̃ : R −→ S. Since R is a domain of dimension 2t − 2, 
which is also the dimension of S, it follows that ϕ̃ is injective.

Theorem 2.1. Let R = F[x1, . . . , xn+t−1]/It(H), where F is a field, and H is a t × n

Hankel matrix. If F has characteristic zero, then R has rational singularities. If F is a 
field of positive characteristic p, with p � t, then R is F -rational.

It follows that if F has characteristic p � t, then the ring R has rational singularities 
in the sense of [17, Definition 1.3]; see [17, Corollary 1.12].

Proof. It suffices to prove the positive characteristic assertion in the theorem: it then 
follows that R is of F -rational type for F of characteristic zero, and then by [21, Theo-
rem 4.3] that R has rational singularities.

Let F be a field of characteristic p � t, and assume t � 2. Using [13, Theorem 4.7]
and the preceding remark in that paper, it suffices to prove that the ideal generated by 
one choice of a homogeneous system of parameters for R is tightly closed. Set

S := F[u1, . . . , ut−1, v1, . . . , vt−1],

i.e., S is a polynomial ring in 2t − 2 indeterminates, and identify R with the subring 
generated by the elements h0, . . . , hn+t−2 as in (2.0.1). The elements

h0, . . . , ht−2, hn, . . . , hn+t−2

form a homogeneous system of parameters for R. Let a be the ideal of R generated by 
these elements; it suffices to show that a is tightly closed. Note that hi belongs to the 
ideal (un

1 , u
n
2 , . . . , u

n
t−1)S for 0 � i � t −2, and to (vn1 , vn2 , . . . , vnt−1)S for n � i � n +t −2, 

so

aS ⊆ (un
1 , u

n
2 , . . . , u

n
t−1, v

n
1 , v

n
2 , . . . , v

n
t−1)S.

The socle of R/a is the vector space spanned by the images of the elements

hi1hi2 · · ·hit−1 where t− 1 � i1 � i2 � · · · � it−1 � n− 1.

Suppose that a linear combination of the above elements, say

r :=
∑

λi1i2···it−1hi1hi2 · · ·hit−1 where λi1i2···it−1 ∈ F,

belongs to a∗, i.e., to the tight closure of a in R. Since R ⊂ S is an inclusion of domains, 
it then follows from the definition of tight closure that r ∈ (aS)∗. But (aS)∗ = aS since 
S is regular, implying that r ∈ aS, and hence that

r ∈ (un
1 , u

n
2 , . . . , u

n
t−1, v

n
1 , v

n
2 , . . . , v

n
t−1)S.
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We claim that this occurs only when each coefficient λi1i2···it−1 equals 0; it then follows 
that r = 0, i.e., that a is tightly closed, as desired.

We first illustrate the proof of the claim when t = 3. In this case, the ring R may be 
identified with the F-subalgebra of S = F[u1, u2, v1, v2] generated by the elements

hi = un+1−i
1 vi1 + un+1−i

2 vi2 where 0 � i � n + 1.

Suppose

r =
∑

2�i1�i2�n−1
λi1i2hi1hi2 ∈ (un

1 , u
n
2 , v

n
1 , v

n
2 )S.

Fix k1, k2 with 2 � k1 � k2 � n −1, and consider the coefficient of un+1−k1
1 vk1

1 un+1−k2
2 vk2

2
in the expression above, i.e., in∑

λi1i2hi1hi2 =
∑

λi1i2(u
n+1−i1
1 vi11 + un+1−i1

2 vi12 )(un+1−i2
1 vi21 + un+1−i2

2 vi22 ).

This coefficient is λk1k2 if k1 < k2, and it equals 2λk1k1 if k1 = k2. Since the characteristic 
of F is p � 3, and r ∈ (un

1 , u
n
2 , v

n
1 , v

n
2 )S, it follows that each coefficient must be 0 as 

claimed.
We now turn to the general case: suppose

r =
∑

λi1i2···it−1hi1hi2 · · ·hit−1 ∈ (un
1 , u

n
2 , . . . , u

n
t−1, v

n
1 , v

n
2 , . . . , v

n
t−1)S,

where the sum is over indices with t − 1 � i1 � i2 � · · · � it−1 � n − 1. Let k1, . . . , kt−1
be integers with

t− 1 � k1 � k2 � · · · � kt−1 � n− 1.

The coefficient of

un+t−2−k1
1 vk1

1 un+t−2−k2
2 vk2

2 · · ·un+t−2−kt−1
t−1 v

kt−1
t−1

in r is cλk1k2···kt−1 where c is a product of positive integers, each less than t. Hence c �= 0
in F, and so it follows that each coefficient is 0. �

While the description in terms of higher secant varieties shows that every Hankel 
determinantal ring is a subring of a polynomial ring, it is not in general a pure subring 
of that polynomial ring, as we show next; recall that a ring homomorphism R −→ S is 
pure if

R⊗R M −→ S ⊗R M

is injective for each R-module M .
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Proposition 2.2. Let R be a t ×n Hankel determinantal ring, regarded as the F-subalgebra 
of the polynomial ring S = F[u1, . . . , ut−1, v1, . . . , vt−1], generated by the elements hi as 
in (2.0.1). If t � 3, then R is not a pure subring of S.

Proof. Let mR denote the homogeneous maximal ideal of R. The expansion of this ideal 
to S is contained in the height t ideal

(u1 − v1, . . . , ut−1 − vt−1, vn+t−2
1 + · · · + vn+t−2

t−1 )S.

Since height mRS � t < 2t − 2 = dimS, the Hartshorne–Lichtenbaum Vanishing Theo-
rem, for example [16, Theorem 14.1], implies that

H2t−2
mR

(S) = H2t−2
mRS (S) = 0.

If R −→ S is pure, the injectivity of H2t−2
mR

(R) −→ H2t−2
mR

(S) implies that H2t−2
mR

(R) = 0, 
which is a contradiction since dimR = 2t − 2. �
Remark 2.3. Being a pure subring of a polynomial ring is a stronger property than 
having rational singularities, or even having F -regular type; the hypersurface in [19, 
Theorem 5.1] has F -regular type, but is not a pure subring of a polynomial ring.

Question 2.4. Is every Hankel determinantal ring a pure subring of a polynomial ring?

3. The divisor class group

Consider the Hankel determinantal ring R = F[x1, . . . , xn+t−1]/It(H), where F is a 
field. To avoid some trivialities, we assume throughout this section that n � t � 2. Set 
p to be the ideal of R generated by the maximal minors of the first t − 1 rows of H, i.e.,

p := It−1

⎛⎜⎜⎜⎜⎝
x1 x2 x3 · · · xn

x2 x3 · · · · · · xn+1
x3 · · · · · · · · · xn+2
...

...
...

...
...

xt−1 · · · · · · · · · xn+t−2

⎞⎟⎟⎟⎟⎠ . (3.0.1)

The ring R/p may be identified with the polynomial ring in the indeterminate xn+t−1
over a size (t −1) ×n Hankel determinantal ring; it follows that R/p is an integral domain 
of dimension 2t − 3, and hence that p is a prime ideal of height 1.

For each integer k with 1 � k � n − t + 2, set p〈k〉 to be the ideal of R as below,

p〈k〉 := It−1

⎛⎜⎜⎜⎜⎝
x1 x2 x3 · · · xn−k+1
x2 x3 · · · · · · xn−k+2
x3 · · · · · · · · · xn−k+3
...

...
...

...
...

⎞⎟⎟⎟⎟⎠ .
xt−1 · · · · · · · · · xn−k+t−1



118 A. Conca et al. / Advances in Mathematics 335 (2018) 111–129
Note that p〈1〉 = p, and that the ideal p〈n−t+2〉 is principal. With this notation, we 
prove:

Theorem 3.1. Consider the Hankel determinantal ring R := F[x1, . . . , xn+t−1]/It(H), 
for F a field, and t � 2. Then the divisor class group of R is cyclic of order n − t + 2, 
generated by the ideal p as in (3.0.1). The symbolic powers of p are

p(k) = p〈k〉 for 1 � k � n− t + 2.

Moreover, each of these is a maximal Cohen–Macaulay R-module.

We need a number of preliminary results.

Lemma 3.2. Let Y be an m × n matrix with entries in a commutative ring. Assume that 
Y has rank less than t.

(1) For every choice of row and column indices, one has

[a1 . . . at−1 | b1 . . . bt−1] × [c1 . . . ct−1 | d1 . . . dt−1]

= [a1 . . . at−1 | d1 . . . dt−1] × [c1 . . . ct−1 | b1 . . . bt−1].

(2) Let Y (a, b) denote the submatrix of Y with row indices � a, and column indices � b. 
Then, for all a < m and b < n, one has

It−1(Y (a, b + 1)) It−1(Y (a + 1, b)) = It−1(Y (a, b)) It−1(Y (a + 1, b + 1)).

Proof. First note that (2) follows immediately from (1). To prove (1), we may assume 
right away that the underlying ring is B := Z[X]/It(X), with X an m × n matrix of 
indeterminates, and that Y is the image of X in B. Since B is a domain, it suffices to 
verify the displayed identity in the fraction field K of B. Consider the linear map

ϕ : Km −→ Kn

given by the image of Y . The map ϕ has rank less than t, so the exterior power

Λt−1ϕ : Λt−1Km −→ Λt−1Kn

is a linear map of rank at most 1. For rows i1, . . . , it−1 and columns j1, . . . , jt−1 of ϕ, 
the corresponding matrix entry of Λt−1ϕ is the determinant

[i1 . . . it−1 | j1 . . . jt−1]Y .

The required identity is now immediate from the fact that the size 2 minors of the matrix 
for Λt−1ϕ are zero. �
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Lemma 3.3. Let p be as in (3.0.1), and let v denote the valuation of the discrete valuation 
ring Rp. Then, for integers 1 � i1 < i2 < · · · < it−1 � n, the minors of H satisfy

v([1 . . . t− 1 | i1 . . . it−1]) = n + 1 − it−1.

Consequently for p〈k〉 as defined earlier, and k with 1 � k � n − t + 2, one has

p〈k〉 ⊆ p(k) and p〈k〉Rp = p(k)Rp.

Proof. Set π := [1 . . . t − 1 | n − t + 2 . . . n]. We will prove inductively that

v([1 . . . t− 1 | i1 . . . it−1]) = (n + 1 − it−1)v(π), (3.3.1)

with the base case for the induction being it−1 = n. By Lemma 3.2 (1) one has

[1 . . . t−1 | i1 . . . it−1]× [2 . . . t | n− t+2 . . . n] = π× [2 . . . t | i1 . . . it−1]. (3.3.2)

We work in the ring Rp, where the minor

[2 . . . t | n− t + 2 . . . n]

is a unit. If it−1 = n, then [2 . . . t | i1 . . . it−1] is a unit in Rp as well, and it follows 
that

v([1 . . . t− 1 | i1 . . . it−1]) = v(π),

which proves the base case. For the inductive step, assume that it−1 < n and that (3.3.1)
holds for larger values of it−1. Since

[2 . . . t | i1 . . . it−1] = [1 . . . t− 1 | i1 + 1 . . . it−1 + 1],

the inductive hypothesis gives

v([2 . . . t | i1 . . . it−1]) = (n− it−1)v(π).

Combining this with (3.3.2), it follows that

v([1 . . . t− 1 | i1 . . . it−1]) = v(π) + (n− it−1)v(π) = (n + 1 − it−1)v(π),

which completes the proof of (3.3.1).
Since the valuation of each minor generating the ideal p is a positive integer multiple 

of v(π), it follows that π generates the maximal ideal of Rp, and that v(π) = 1. Lastly, 
note that the minors that generate the ideal p〈k〉 are precisely those with valuation at 
least k. �
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The following is a slight modification of [25, Lemma 4], adapted to our notation, and 
with a shorter proof.

Lemma 3.4. Let R be a t × n Hankel determinantal ring over a field F. Set

Δ := [1 . . . t− 1 | 1 . . . t− 1],

viewed as an element of R. Then:

(1) the ideal ΔR has radical p, for p as in (3.0.1),
(2) RΔ = F[x1, . . . , x2t−2]Δ, and
(3) the elements x1, . . . , x2t−2 of R are algebraically independent over F.

Proof. (1) In the notation of Lemma 3.2, the ideal p〈k〉 is It−1(Y (t − 1, n − k + 1)), 
where Y is the image of the Hankel matrix H in R. Since

It−1(Y (t− 1, n− k + 1)) = It−1(Y (t, n− k)),

Lemma 3.2 (2) gives

It−1(Y (t− 1, n− k + 1))2 = It−1(Y (t− 1, n− k)) It−1(Y (t, n− k + 1))

⊂ It−1(Y (t− 1, n− k))

i.e.,

(p〈k〉)2 ⊂ p〈k+1〉.

Since p〈1〉 = p and p〈n−t+2〉 = ΔR, we are done.
(2) For each a � t, we have [1 . . . t | 1 . . . t − 1 a] = 0 in R, so

xt+a−1Δ ∈ F[x1, . . . , xt+a−2].

Since Δ ∈ F[x1, . . . , xt+a−2], it follows that

F[x1, . . . , xt+a−1]Δ = F[x1, . . . , xt+a−2]Δ.

Iterating the above display, one gets the desired result.
(3) The dimension of R is 2t − 2, hence dimF[x1, . . . , x2t−2] = 2t − 2. �

Lemma 3.5. For each k with 1 � k � n −t +2, the ring R/p〈k〉 is Cohen–Macaulay. Hence 
the ideal p〈k〉 is a maximal Cohen–Macaulay R-module; in particular, it is reflexive.
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Proof. Since R/p is a polynomial extension of a (t − 1) × n Hankel determinantal ring, 
its multiplicity is

e(R/p) =
(

n

t− 2

)
.

Fix k with 1 � k � n − t + 2. Since Δ ∈ p〈k〉, it follows from Lemma 3.4 that p〈k〉 has 
radical p. The associativity formula for multiplicities, [2, Corollary 4.7.8], then gives the 
first equality in

e(R/p〈k〉) = �

(
Rp

p〈k〉Rp

)
e(R/p) = k

(
n

t− 2

)
,

while the second equality follows from Lemma 3.3.
Let A be the polynomial ring F[x1, . . . , xn+t−1], and let Pk be the inverse image of 

p〈k〉 under the canonical surjection A −→ R. The images of the indeterminates

x := x1, . . . , xt−2, xn+1, . . . , xn+t−1

are a homogeneous system of parameters for A/Pk = R/p〈k〉. Set

J := Pk + (x)A.

Using, for example, [2, Corollary 4.7.11], one has

�(A/J) � e
(
x, R/p〈k〉

)
� e

(
R/p〈k〉

)
= k

(
n

t− 2

)
. (3.5.1)

We claim that

�(A/J) � k

(
n

t− 2

)
.

Assuming the claim, all the terms in (3.5.1) are equal, but then R/p〈k〉 is Cohen–
Macaulay using, again, [2, Corollary 4.7.11].

To prove the claim, consider the degrevlex order on A induced by

x1 > x2 > · · · > xn+t−1.

Then the initial ideal of J contains the ideal

(x) + (xt−1, . . . , xn−k+1)t−1 + (xt, . . . , xn)t,

so it suffices to verify that the length of
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F[xt−1, . . . , xn]
(xt−1, . . . , xn−k+1)t−1 + (xt, . . . , xn)t

is at most

k

(
n

t− 2

)
.

This is immediate from the following lemma. �
Lemma 3.6. Let F be a field, and consider integers t � 2 and 1 � r � s. Then

�

(
F[y1, . . . , ys]

(y1, . . . , yr)t−1 + (y2, . . . , ys)t

)
= (s− r + 1)

(
s + t− 2
t− 2

)
.

Proof. When r = 1, the length in question is that of

F[y1]
(yt−1

1 )
⊗F

F[y2, . . . , ys]
(y2, . . . , ys)t

,

which equals

(t− 1)
(
s− 1 + t− 1

t− 1

)
= s

(
s + t− 2
t− 2

)
,

so the asserted formula holds. Assume for the rest that r � 2.
The case when t = 2 is readily checked as well; we proceed by induction on t and s. 

Set

V := F[y1, . . . , ys] and I := (y1, . . . , yr)t−1 + (y2, . . . , ys)t,

and consider the exact sequence

0 −→ V/(I : y2) −→ V/I −→ V/(I + y2V ) −→ 0.

Since (I : y2) = (y1, . . . , yr)t−2 + (y2, . . . , ys)t−1, the inductive hypothesis gives

�(V/I) = �(V/(I : y2)) + �(V/(I + y2V ))

= (s− r + 1)
(
s + (t− 1) − 2

(t− 1) − 2

)
+ ((s− 1) − (r − 1) + 1)

(
(s− 1) + t− 2

t− 2

)
= (s− r + 1)

(
s + t− 2
t− 2

)
. �

Proof of Theorem 3.1. By Lemma 3.4, the ring RΔ is a localization of a polynomial 
ring, and hence a UFD. Nagata’s theorem, e.g., [2, page 315], then implies that Cl(R) is 
generated by the height 1 prime ideals of R that contain Δ, namely by the ideal p.
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Fix k with 1 � k � n − t + 2. Then p〈k〉 has radical p, and is unmixed by Lemma 3.5. 
Thus, the primary decomposition of p〈k〉 has the form p(i) for some i. The integer i can 
be computed after localization at p, but then Lemma 3.3 implies that p〈k〉 = p(k) as 
claimed. Note that the ideal p〈k〉 is principal precisely when k = n − t + 2. Lastly, each 
p〈k〉 is a maximal Cohen–Macaulay module by Lemma 3.5. �
Remark 3.7. Let Y be a t × n matrix of indeterminates over a field F, and consider the 
generic determinantal ring

B := F[Y ]/It(Y ).

Set P to be the prime ideal of B generated by the size t −1 minors of the first t −1 rows 
of Y , and Q to be the prime generated by the size t −1 minors of the first t −1 columns. 
By [3, Example 9.27(d)], the following are maximal Cohen–Macaulay B-modules:

B, P, Q, Q2, . . . , Qn−t+1,

and, in fact, the only rank one maximal Cohen–Macaulay B-modules up to isomorphism. 
The canonical module of B is isomorphic to Qn−t, see [3, Theorem 8.8].

Since the Hankel determinantal ring R may be obtained as the specialization of B
modulo a regular sequence, it follows that the images in R of the modules displayed 
above are Cohen–Macaulay R-modules. Note that p = PR, and set q := QR, in which 
case

R, p, q, q2, . . . , qn−t+1

are Cohen–Macaulay R-modules. Due to the symmetry in a Hankel matrix, one has

q = p〈n−t+1〉 = p(n−t+1).

Fix i with 1 � i � n − t + 1. Since qi is a maximal Cohen–Macaulay R-module, and 
hence a divisorial ideal, it follows that

qi = (p(n−t+1))i = p(i(n−t+1)) ∼= p(n−t+2−i).

In particular, qn−t+1 ∼= p, and the n −t +3 rank one maximal Cohen–Macaulay B-modules 
specialize to the n − t + 2 elements of the divisor class group of R.

The canonical module Qn−t of B specializes to the canonical module

qn−t ∼= p(2)

of R. Since the a-invariant of the ring R is 1 − t, and p(2) is generated in degree t − 1, it 
follows that the graded canonical module of R is

ωR := p(2).
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Note that the number of generators of ωR as an R-module is(
n− 1
t− 1

)
.

Since ωR is a reflexive R-module of rank one, it corresponds to an element [ωR] of Cl(R). 
The order of this element is

ord [ωR] =
{
n− t + 2 if n− t + 2 is odd,
(n− t + 2)/2 if n− t + 2 is even.

4. F -purity and the F -pure threshold

Following [14, page 121], a ring R of positive prime characteristic is F -pure if the 
Frobenius endomorphism F : R −→ R is pure. We prove:

Theorem 4.1. Let R be a Hankel determinantal ring over a field F. If F has positive 
characteristic, then the ring R is F -pure. If F has characteristic zero, then R has log 
canonical singularities.

The proof uses the graded version of Fedder’s criterion, [8, Theorem 1.12], and a result 
from [4]; we record these below:

Theorem 4.2 (Fedder’s criterion). Let A be an N-graded polynomial ring, where A0 is a 
field of characteristic p > 0. Let I be a homogeneous ideal of A, and set R := A/I. Let 
m be the homogeneous maximal ideal of A. Then R is F -pure if and only if

(I [p] :A I) � m[p].

The following lemma can be seen as a special case of [4, Theorem 3.12] that express the 
primary decomposition of a product of Hankel determinantal ideals in terms of symbolic 
powers and the so-called gamma functions. We present here a direct argument that is 
based only on [4, Lemma 3.7].

Lemma 4.3. Let A := F[x1, . . . , xs+r−1] be a polynomial ring over a field F, and let H
be the r × s Hankel matrix in the indeterminates x1, . . . , xs+r−1. Set I := It(H), where 
t is an integer with 1 � t � min{r, s}. Let d be a positive integer, and let δ1, . . . , δm be 
minors of H such that m � d and 

∑
i deg δi � td. Then

δ1 · · · δm ∈ Id.

Proof. By adding factors of degree 0 if needed, we may assume that m = d. For u an 
integer, set Iu := Iu(H). If deg δi � t for all i = 1, . . . , d, then the assertion is obvious. 
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If deg δi < t for some i, say u = deg δ1 < t, then, since 
∑

i deg δi � td, there must be an 
index j such that deg δj > t, say v = deg δ2 > t. By [4, Lemma 3.7] one has

IuIv ⊆ Iu+1Iv−1

since u + 1 < v. Hence we may replace δ1δ2 in the product with δ′1δ
′
2, where deg δ′1 =

u + 1 and deg δ′2 = v − 1. Repeating the argument as needed, we obtain the desired 
assertion. �
Proof of Theorem 4.1. The characteristic zero case follows from the positive characteris-
tic assertion by [10, Theorem 3.9]; in view of this, let F be a field of characteristic p > 0. 
Set A := F[x1, . . . , xn+t−1] and I := It(H). By Fedder’s criterion, it suffices to verify 
that

(I [p] :A I) � m[p],

where m is the homogeneous maximal ideal of A. We construct a polynomial f with

f ∈ I(n−t+1) (4.3.1)

such that, with respect to the lexicographic order x1 > x2 > · · · > xn+t−1, one has

inlex(f) = x1x2 · · ·xn+t−1.

Since the initial term of f is squarefree, it follows that fp−1 /∈ m[p]. We claim that (4.3.1)
implies fp−1 ∈ (I [p] :A I), i.e.,

fp−1I ⊆ I [p].

By the flatness of the Frobenius endomorphism of A, the set of associated primes of 
A/I [p] equals that of A/I, so it suffices to verify that the containment displayed above 
holds after localization at the prime ideal I. The ideal I has height n −t +1, so (AI , IAI)
is a regular local ring of dimension n − t + 1, and the pigeonhole principle gives

I(n−t+1)(p−1)+1AI ⊆ I [p]AI .

Using (4.3.1), it follows that

fp−1IAI ⊆ I(n−t+1)(p−1)+1AI ,

which proves the claim. It remains to construct f with the properties asserted above; 
the construction depends on whether n + t − 1 is odd or even:

Suppose n + t − 1 is odd, set k := (n + t)/2. Then I also equals the ideal generated 
by the size t minors of the k × k Hankel matrix
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H ′ :=

⎛⎜⎜⎝
x1 x2 x3 · · · xk

x2 x3 x4 · · · xk+1
...

...
...

...
...

xk xk+1 · · · · · · xn+t−1

⎞⎟⎟⎠ .

Let f be the product of δ1 := [1 . . . k | 1 . . . k]H′ and δ2 := [1 . . . k − 1 | 2 . . . k]H′ . 
Then

inlex(f) = (x1x3 · · ·xn+t−1)(x2x4 · · ·xn+t−2) = x1x2 · · ·xn+t−1

as claimed. Let δ3, . . . , δn−t+1 be size t − 1 minors of H ′. Then Lemma 4.3 implies that

δ1 · · · δn−t+1 ∈ In−t+1.

Since I is a prime ideal generated in degree t, and each of δ3, . . . , δn−t+1 has degree t −1, 
it follows that f = δ1δ2 belongs to the symbolic power I(n−t+1), as claimed in (4.3.1).

When n + t − 1 is even, set k := (n + t − 1)/2, and consider the k × (k + 1) Hankel 
matrix

H ′′ :=

⎛⎜⎜⎝
x1 x2 · · · xk xk+1
x2 x3 · · · xk+1 xk+2
...

...
...

...
...

xk · · · · · · xn+t−2 xn+t−1

⎞⎟⎟⎠ .

Then I equals It(H ′′). Take f to be the product of the minors δ1 := [1 . . . k | 1 . . . k]H′′

and δ2 := [1 . . . k | 2 . . . k + 1]H′′ , in which case

inlex(f) = (x1x3 · · ·xn+t−2)(x2x4 · · ·xn+t−1) = x1x2 · · ·xn+t−1.

Choosing size t − 1 minors δ3, . . . , δn−t+1 of H ′′, Lemma 4.3 gives

δ1 · · · δn−t+1 ∈ In−t+1

and hence f ∈ I(n−t+1), as in the previous case. �
The definition of F -pure thresholds is due to Takagi and Watanabe [22], and provides 

a positive characteristic analogue of the log canonical threshold. We focus here on the 
F -pure threshold of a homogeneous ideal in standard graded F -pure ring:

Definition 4.4. Let A be a polynomial ring over an F -finite field of characteristic p > 0, 
and let I be a homogeneous ideal such that R := A/I is F -pure. Let a be a homogeneous 
ideal of R, and let J be its preimage in A. Given e ∈ N, set

νe(a) := max
{
r � 0 | (I [q] :A I)Jr � m

[q]
A

}
,
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where q = pe. Then the F -pure threshold of a ⊂ R is

fpt(a) := lim
e−→∞

νe(a)/pe.

Suppose, in addition, that R is normal; let ωR be the graded canonical module of R. 
Taking a to be mR in the above definition, [20, Theorem 4.1] implies that −νe(mR) equals 
the degree of a minimal generator of ω(1−q)

R . Using this, we obtain:

Theorem 4.5. Let R = F[x1, . . . , xn+t−1]/It(H), where F is a field of characteristic p > 0, 
and H is a t × n Hankel matrix. Then the F -pure threshold of mR ⊂ R is

fpt(mR) = 2(t− 1)
n− t + 2 .

Proof. Recall from Remark 3.7 that ωR = p(2). For an integer q = pe, one then has

ω
(1−q)
R = p(2(1−q)).

Write

2(q − 1) = i(n− t + 2) + j, where 0 � j � n− t + 1.

In view of the graded isomorphism

p(n−t+2) ∼= R(−(t− 1)),

one then has

ω
(1−q)
R = p(2(1−q)) = p(−i(n−t+2))p(−j) ∼= p(−j)(i(t− 1)).

Since 0 � j � n − t + 1, the module p(−j) has minimal generators in degree 0, which 
then implies that ω(1−q)

R has minimal generators in degree −i(t − 1), and hence that

νe(mR) = i(t− 1) = (t− 1)
⌊

2(q − 1)
n− t + 2

⌋
.

The calculation of fpt(mR) follows immediately from this. �
Using the general theory developed in [11], one can also compute the F -pure threshold 

of the ideal It(H) in the polynomial ring F[x1, . . . , xn+t−1]:

Theorem 4.6. Let H be a t ×n Hankel matrix of indeterminates over a field F of positive 
characteristic. Then the F -pure threshold of It(H) ⊂ F[x1, . . . , xn+t−1] is
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fpt(It(H)) = min
{
n + t− 2i + 1

t− i + 1
| i = 1, . . . , t

}
.

More precisely, if λ ∈ R>0, the generalized test ideal τ(λ • It(H)) is

τ(λ • It(H)) =
t⋂

i=1
Ii(H)(�λ(t−i+1)	−n−t+2i).

Proof. The powers of the ideal It(H) are integrally closed by [4, Theorem 4.5], and 
using [4, Theorem 3.12] one has⋃

s�1
Ass It(H)s ⊆ {I1(H), I2(H), . . . , It(H)}.

In the notation of [11, § 3], by [4, Theorem 3.12] we also infer that It(H) satisfies condition 
(	) and that

eIi(H)(It(H)) = t− i + 1 for i = 1, . . . , t.

Recall that the polynomial f constructed in the proof of Theorem 4.1 has a squarefree 
initial term. By an argument similar to the one used there for i = t, one sees that

f ∈ Ii(H)(n+t−2i+1) for i = 1, . . . , t.

Since Ii(H) is equal to the ideal generated by the size i minors of an i ×(t +n − i) Hankel 
matrix, it follows that height Ii(H) = n + t − 2i + 1, and that the ideal It(H) satisfies 
the condition (	+). The assertion now follows by [11, Theorem 3.14]. �
Remark 4.7. A similar argument allows one to compute the F -pure threshold and the 
generalized test ideals (in positive characteristic), as well as the log canonical threshold 
and the multiplier ideals (in characteristic zero), of any product of ideals of minors of a 
Hankel matrix in a polynomial ring.

We conclude with the following question; we prove in [5] that the answer is affirmative 
in a number of cases.

Question 4.8. Is every Hankel determinantal ring over a field of positive characteristic 
an F -regular ring?
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