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Abstract We compute the F-pure threshold of the affine cone over a Calabi–Yau
hypersurface, and relate it to the order of vanishing of the Hasse invariant on the
versal deformation space of the hypersurface.
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1 Introduction

The F-pure thresholdwas introduced byMustaţă, Takagi, andWatanabe [19,23]; it is a
positive characteristic invariant, analogous to log canonical thresholds in characteristic
zero. We calculate the possible values of the F-pure threshold of the affine cone over
a Calabi–Yau hypersurface, and relate the threshold to the order of vanishing of the
Hasse invariant, and to a numerical invariant introduced by van der Geer and Katsura
in [7].

Theorem 1.1 Suppose R = K [x0, . . . , xn] is a polynomial ring over a field K of
characteristic p > n + 1, and f is a homogeneous polynomial defining a smooth
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Calabi–Yau hypersurface X = Proj R/ f R. Then the F-pure threshold of f has
the form

fpt( f ) = 1 − h/p,

where h is an integer with 0 � h � dim X. If p � n2 − n− 1, then h equals the order
of vanishing of the Hasse invariant on the versal deformation space of X ⊂ Pn.

Hernández has computed F-pure thresholds for binomial hypersurfaces [10] and
for diagonal hypersurfaces [11]. The F-pure threshold is computed for a number of
examples in [19, Section 4]. Example 4.6 of that paper computes the F-pure threshold
in the case of an ordinary elliptic curve, and raises the question for supersingular
elliptic curves; this is answered by the above theorem.

The theory of F-pure thresholds is motivated by connections to log canonical
thresholds; for simplicity, let f be a homogeneous polynomial with rational coeffi-
cients. Using f p for the corresponding prime characteristic model, one has

fpt( f p) � lct( f ) for all p � 0,

where lct( f ) denotes the log canonical threshold of f , and

lim
p−→∞ fpt( f p) = lct( f ),

see [19, Theorems 3.3, 3.4]; this builds on the work of a number of authors, primarily
Hara and Yoshida [9]. It is conjectured that fpt( f p) and lct( f ) are equal for infinitely
many primes; see [18] for more in this direction.

The F-pure threshold is known to be rational in a number of cases, including for
principal ideals in an excellent regular local ring of prime characteristic [15]. Other
results on rationality include [2–4,8,22]. For more on F-pure thresholds, we mention
[1,12,16,17,20].

2 The F-pure threshold

In [23] the F-pure threshold is defined for a pair (R, a), where a is an ideal in an
F-pure ring of prime characteristic. The following special case is adequate for us:

Definition 2.1 Let (R,m) be a regular local ring of characteristic p > 0. For an
element f in m, and integer q = pe, we define

μ f (q) := min
{
k ∈ N | f k ∈ m[q]},

wherem[q] denotes the ideal generated by elements rq for r ∈ m. Note thatμ f (1) = 1,
and that 1 � μ f (q) � q. Moreover, f μ f (q) ∈ m[q] implies that f pμ f (q) ∈ m[pq], and
it follows that μ f (pq) � pμ f (q). Thus,

{μ f (pe)

pe

}

e�0
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The F-pure threshold of a Calabi–Yau hypersurface 553

is a non-increasing sequence of positive rational numbers; its limit is the F-pure
threshold of f , denoted fpt( f ).

By definition, f μ f (q)−1 /∈ m[q]. Taking p-th powers, and using that R is F-pure,

f pμ f (q)−p /∈ m[pq].

Combining with the observation above, one has

pμ f (q) − p + 1 � μ f (pq) � pμ f (q). (2.1)

Note that this implies

μ f (q) =
⌈

μ f (pq)

p

⌉
for each q = pe.

The definition is readily adapted to the graded case where R is a polynomial ring
with homogeneous maximal ideal m, and f is a homogeneous polynomial.

Remark 2.2 The numbers μ f (pe) may be interpreted in terms of thickenings of the
hypersurface f as follows. Let K be a field of characteristic p > 0, and f a homoge-
neous polynomial of degree d in R = K [x0, . . . , xn]. Fix integers q = pe and t � q.
The Frobenius iterate Fe : R/ f R −→ R/ f R lifts to a map R/ f R −→ R/ f q R;
composing this with the canonical surjection R/ f q R −→ R/ f t R, we obtain a map

F̃e
t : R/ f R −→ R/ f t R.

Consider the commutative diagram with exact rows

0 −−−−→ R(−d)
f−−−−→ R −−−−→ R/ f R −−−−→ 0

⏐
⏐

 f q−t Fe

⏐
⏐

Fe

⏐
⏐

F̃e

t

0 −−−−→ R(−dt)
f t−−−−→ R −−−−→ R/ f t R −−−−→ 0,

and the induced diagram of local cohomology modules

0 −−−−→ Hn
m(R/ f R) −−−−→ Hn+1

m (R)(−d)
f−−−−→ Hn+1

m (R) −−−−→ 0
⏐
⏐

F̃e

t

⏐
⏐

 f q−t Fe

⏐
⏐

Fe

0 −−−−→ Hn
m(R/ f t R) −−−−→ Hn+1

m (R)(−dt)
f t−−−−→ Hn+1

m (R) −−−−→ 0.
(2.2)

Since the vertical map on the right is injective, it follows that F̃e
t is injective if and

only if the middle map is injective, i.e., if and only if the element
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f q−t Fe
([

1

x0 · · · xn
])

=
[

f q−t

xq0 · · · xqn

]

is nonzero, equivalently, f q−t /∈ m[q]. Hence F̃e
t : Hn

m(R/ f R) −→ Hn
m(R/ f t R) is

injective if and only if μ f (q) > q − t .

The generating function of the sequence {μ f (pe)}e�1 is a rational function:

Theorem 2.3 Let (R,m) be a regular local ring of characteristic p > 0, and let f
be an element of m. Then the generating function

G f (z) :=
∑

e�0

μ f (p
e)ze

is a rational function of z with a simple pole at z = 1/p; the F-pure threshold of f is
fpt( f ) = lim

z−→1/p
(1 − pz)G f (z).

Proof Since the numbers μ f (pe) are unchanged when R is replaced by its m-adic
completion, there is no loss of generality in assuming that R is a complete regular
local ring; the rationality of fpt( f ) now follows from [15, Theorems 3.1, 4.1]. Let
fpt( f ) = a/b for integers a and b. By [19, Proposition 1.9], one has

μ f (p
e) = �pe fpt( f )� =

⌈
ape

b

⌉
for each q = pe.

Suppose ape0 ≡ ape0+e1 mod b for integers e0 and e1. Then ape0 ≡ ape0+ke1 mod b
for each integer k � 0. Hence there exists an integer c such that

H(z) :=
∑

k�0

μ f (p
e0+ke1)ze0+ke1 =

∑

k�0

⌈
ape0+ke1

b

⌉
ze0+ke1

=
∑

k�0

ape0+ke1 + c

b
ze0+ke1,

is a rational function of z with a simple pole at z = 1/p. Moreover,

lim
z−→1/p

(1 − pz)H(z) = a

be1
.

Partitioning the integers e � e0 into the congruence classes module e1, it follows that
G f (z) is the sum of a polynomial in z and e1 rational functions of the form

∑

k�0

μ f (p
�+ke)z�+ke.

The assertions regarding the pole and the limit now follow. 
�
The theorem holds as well in the graded setting.
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3 Preliminary results

We record some elementary calculations that will be used later. Here, and in the fol-
lowing sections, R will denote a polynomial ring K [x0, . . . , xn] over a field K of
characteristic p > 0, andmwill denote its homogeneous maximal ideal. By the Jaco-
bian ideal of a polynomial f , we mean the ideal generated by the partial derivatives

fxi := ∂ f/∂xi for 0 � i � n.

If f is homogeneous of degree coprime to p, then the Euler identity ensures that f is
an element of the Jacobian ideal; this is then the defining ideal of the singular locus
of the ring R/ f R.

Lemma 3.1 Let f be a homogeneous polynomial of degree d in K [x0, . . . , xn] such
that the Jacobian ideal J of f is m-primary. Then

m(n+1)(d−2)+1 ⊆ J.

Proof Since J is m-primary, it is a complete intersection ideal. As it is generated by
forms of degree d − 1, the Hilbert–Poincaré series of R/J is

P(R/J, t) = (1 − td−1)n+1

(1 − t)n+1 = (1 + t + t2 + · · · + td−2)n+1.

It follows that R/J has no nonzero elements of degree greater than (n + 1)(d − 2).

�

Lemma 3.2 Let R = K [x0, . . . , xn] and m[q] = (xq0 , . . . , xqn ). Then

m[q] :R m(n+1)(d−2)+1 ⊆ m[q] + m(n+1)(q−d+1),

where mi = R for i � 0.

Proof We prove, more generally, that

m[q] :R mk =
{
m[q] + mnq+q−n−k if 0 � k � nq + q − n,

R if k � nq + q − n.

Suppose r is a homogeneous element ofm[q] :R mk . Computing the local cohomology
module Hn+1

m (R) via a Čech complex on x0, . . . , xn , the element

[
r

xq0 · · · xqn

]

∈ Hn+1
m (R)

is annihilated by mk , and hence lies in
[
Hn+1
m (R)

]
�−n−k . If r /∈ m[q], then

deg r − (n + 1)q � −n − k,
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i.e., r ∈ mnq+q−n−k . The pigeonhole principle implies that mnq+q−n is contained in
m[q], which gives the rest. 
�
Lemma 3.3 Let f be a homogeneous polynomial of degree d in K [x0, . . . , xn], such
that the Jacobian ideal of f is m-primary. If μ f (q) is not a multiple of p, then

μ f (q) � (n + 1)(q + 1) − nd

d
.

Proof Set k := μ f (q), i.e., k is the least integer such that

f k ∈ m[q].

Applying the differential operators ∂/∂xi to the above, we see that

k f k−1 fxi ∈ m[q] for each i,

since ∂/∂xi maps elements ofm[q] to elements ofm[q]. As k is nonzero in K , one has

f k−1 J ⊆ m[q],

where J is the Jacobian ideal of f . Lemma 3.1 now implies that

f k−1m(n+1)(d−2)+1 ⊆ m[q].

By Lemma 3.2, we then have

f k−1 ∈ m[q] + m(n+1)(q−d+1).

But f k−1 /∈ m[q] by the minimality of k, so deg f k−1 is at least (n + 1)(q − d + 1),
i.e.,

d(k − 1) � (n + 1)(q − d + 1);

rearranging the terms, one obtains the desired inequality

k � (n + 1)(q + 1) − nd

d
.


�
Lemma 3.4 Let f be a homogeneous polynomial of degree d in K [x0, . . . , xn], such
that the Jacobian ideal of f is m-primary.

(1) If
μ f (q)−1

q−1 = n+1
d for some q = pe, then

μ f (pq)−1
pq−1 = n+1

d .

(2) Suppose p � nd − d − n. If
μ f (q)

q < n+1
d for some q, then μ f (pq) = pμ f (q).

123



The F-pure threshold of a Calabi–Yau hypersurface 557

Proof (1) Since f μ f (q)−1 has degree (q − 1)(n + 1) and is not an element of m[q], it
must generate the socle in R/m[q]. But then

(
f μ f (q)−1

) pq−1
q−1

generates the socle in R/m[pq], so

μ f (pq) − 1 = (
μ f (q) − 1

)
(
pq − 1

q − 1

)
.

For (2), suppose that μ f (pq) < pμ f (q). Then μ f (pq) is not a multiple of p by
(2.1). Lemma 3.3 thus implies that

(n + 1)(pq + 1) − nd � dμ f (pq).

Combining with μ f (pq) � pμ f (q) − 1 and dμ f (q) � q(n + 1) − 1, we obtain

p � nd − d − n − 1,

which contradicts the assumption on p. 
�
We next prove a result on the injectivity of the Frobenius action on negatively

graded components of local cohomology modules:

Theorem 3.5 Let K be a field of characteristic p > 0. Let f be a homogeneous
polynomial of degree d in R = K [x0, . . . , xn], such that the Jacobian ideal of f is
primary to the homogeneous maximal ideal m of R.

If p � nd − d − n, then the Frobenius action below is injective:

F : [
Hn
m(R/ f R)

]
<0 −→ [

Hn
m(R/ f R)

]
<0.

Proof Using (2.2) in the case t = 1 and e = 1, and restricting to the relevant graded
components, we have the diagram with exact rows

0 −−−−→ [
Hn
m(R/ f R)

]
�−1 −−−−→ [

Hn+1
m (R)

]
�−d−1 −−−−→ · · ·

⏐
⏐

F

⏐
⏐

 f p−1F

0 −−−−→ [
Hn
m(R/ f R)

]
�−p −−−−→ [

Hn+1
m (R)

]
�−d−p −−−−→ · · · .

Thus, it suffices to prove the injectivity of the map

f p−1F :
[
Hn+1
m (R)

]

�−d−1
−→

[
Hn+1
m (R)

]

�−d−p
.
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A homogeneous element of [Hn+1
m (R)]�−d−1 may be written as

[
g

(x0 · · · xn)q/p

]

for some q, where g ∈ R is homogeneous of degree at most (n + 1)q/p − d − 1. If

f p−1F

([
g

(x0 · · · xn)q/p

])
= 0,

then it follows that f p−1gp ∈ m[q]. Let k be the least integer with

f kg p ∈ m[q],

and note that 0 � k � p − 1. If k is nonzero, then applying ∂/∂xi we see that

f k−1gp J ⊆ m[q].

Lemmas 3.1 and 3.2 show that

f k−1gp ∈ m[q] + m(n+1)(q−d+1).

Since f k−1gp /∈ m[q], we must have

deg f k−1gp � (n + 1)(q − d + 1).

Using k � p − 1 and deg gp � q(n + 1) − pd − p, this gives

nd − d − n − 1 � p,

contradicting the assumption on p. It follows that k = 0, i.e., that gp ∈ m[q]. But then
[

g

(x0 · · · xn)q/p

]
= 0

in Hn+1
m (R), which proves the desired injectivity. 
�

Remark 3.6 Theorem 3.5 is equivalent to the following geometric statement: if X is
a smooth hypersurface of degree d in Pn , then the map

Hn−1(X,OX ( j)) −→ Hn−1(X,OX ( j p)),

induced by Frobenius map on X , is injective for j < 0 and p � nd − d − n.
This statement indeed admits a geometric proof based on the Deligne–Illusie method
[6]. One views the de Rham complex �∗

X/K as an OX (1) -complex, where X (1) is the
Frobenius twist of X over K , and twists it over the latter withOX (1) ( j). For p > n−1,
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the Deligne–Illusie decomposition �∗
X/K � ⊕i�

i
X (1)/K

[−i], which is available as X
clearly lifts to W2(K ), reduces the above injectivity statement to proving that

Hn−1−i (X,�i
X/K ( j p)) = 0

for i > 0 and j < 0. If p � nd − d − n, this vanishing can be proven using standard
sequences (details omitted).

4 Calabi–Yau hypersurfaces

We get to the main theorem; see below for the definition of the Hasse invariant.

Theorem 4.1 Let K be a field of characteristic p > 0, and n a positive integer. Let
f be a homogeneous polynomial of degree n + 1 in R = K [x0, . . . , xn], such that
the Jacobian ideal of f, i.e., the ideal ( fx0 , . . . , fxn ), is primary to the homogeneous
maximal ideal of R. Then:
(1) μ f (p) = p − h, where h is an integer with 0 � h � n − 1,
(2) μ f (pq) = pμ f (q) for all q = pe with q � n − 1.
(3) If p � n − 1, then G f (z) = 1−hz

1−pz and fpt( f ) = 1 − h
p , where 0 � h � n − 1.

(4) Set X = Proj R/ f R. If p � n2 − n − 1, then the integer h in (1) is the order of
vanishing of the Hasse invariant on the versal deformation space of X ⊂ Pn.

The deformation space in (4) refers to embedded deformations of X ⊂ Pn ; if
n � 5, this coincides with the versal deformation space of X as an abstract variety
(see Remark 4.7). The following example from [11] shows that all possible values of
h from (1) above are indeed attained:

Example 4.2 Consider f = xn+1
0 + · · · + xn+1

n+1 over a field of prime characteristic p
not dividing n+1. Let h be an integer with p ≡ h+1 mod n+1 and 0 � h � n−1.
Then

fpt( f ) = 1 − h/p,

for a proof, see [11, Theorem 3.1].

Proof of Theorem 4.1 If μ f (p) = p, then Lemma 3.4(1) shows that μ f (q) = q for
all q, and assertions (1–3) follow.

Assume that μ f (p) < p. Lemma 3.3 gives μ f (p) � p− n + 1, which proves (1).
As μ f (p) � p − 1, it follows that

μ f (q) � q − q/p for each q = pe.

Ifμ f (pq) < pμ f (q), thenμ f (pq) is not amultiple of p by (2.1). Lemma 3.3 implies

μ f (pq) � pq − n + 1,
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and combining with μ f (pq) � pμ f (q) − 1 � pq − q − 1, we see that

pq − n + 1 � pq − q − 1,

i.e., that q � n−2. This completes the proof of (2), and then (3) follows immediately.
The proof of (4) and the surrounding material occupy the rest of this section. 
�

The Hasse invariant. We briefly review the construction of the Hasse invariant for
suitable families of varieties in positive characteristic p.

Fix a proper flat morphism π : X −→ S of relative dimension N between
noetherian Fp-schemes. Assume that the formation of Riπ∗OX is compatible with
base change, and that ω := ωX /S := RNπ∗OX is a line bundle; the key example is
a family of degree (n + 1) hypersurfaces in Pn . The standard diagram of Frobenius
twists of π takes the shape

X

π

��

FrobX

��

Frobπ

����
��

��
��

X (1)

π(1)

��

FrobS �� X

π

��
S

FrobS �� S,

where the square is Cartesian. Our assumption on π shows that

ωX (1)/S := RNπ∗OX (1) � Frob∗
Sω � ωp.

Using this isomorphism, we define:

Definition 4.3 The Hasse invariant H of the family π is the element in

Hom(ωX (1)/S, ω) � Hom(Frob∗
Sω,ω) � Hom(ωp, ω) � H0(S, ω1−p),

defined by pullback along the relative Frobenius map Frobπ : X −→ X (1).

Remark 4.4 The formation of the relative Frobenius map Frobπ : X −→ X (1) is
compatible with base change on S. It follows by our assumption on π that the forma-
tion of H is also compatible with base change. In particular, given a flat morphism
g : S′ −→ S and a point s′ ∈ S′, the order of vanishing of H at s′ coincides with that
at g(s′). Thus, in proving Theorem 4.1(4), we may assume that K is perfect.

To analyze H , fix a point s in S and an integer t � 0. Write t[s] ⊂ S for the order
t neighbourhood of s, and let tXs ⊂ X and tX (1)

s ⊂ X (1) be the corresponding
neighbourhoods of the fibres of π and π(1). The map Frobπ induces maps tXs −→
tX (1)

s , and hence maps

φt : HN (
tX (1)

s , O
tX (1)

s

) −→ HN (
tXs, OtXs

)
.
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The order of vanishing of H at s is, by definition, the maximal t such that this map is
zero. In favourable situations, one can give a slightly better description of this integer:

Lemma 4.5 If the map

ψt : HN (
Xs, OXs

) −→ HN (
tXs, OtXs

)

induced by FrobX is nonzero for some t � p, then the minimal such t is ords H + 1.

Proof For t � p, by the base change assumption on RNπ∗OX , one has

HN (
Xs, OXs

) ⊗κ(s) Ot[s] � HN (
tX (1)

s , O
tX (1)

s

)
,

where Ot[s] is viewed as κ(s)-algebra via the composite

κ(s)
FrobS−−−−→ OFrob−1

S [s]
can−−−−→ Ot[s],

and the isomorphism is induced by the base changeX (1) −→ X of FrobS : S −→ S.
Hence, for such t , by adjunction, the map φt induced by Frobπ is nonzero if and only
the map ψt induced by FrobX is nonzero. But ords H is the maximal integer t with
φt = 0. 
�

It is typically hard to calculate H , or even bound its order of vanishing. However,
for families of Calabi–Yau hypersurfaces, we have the following remarkable theorem
due to Deuring and Igusa; see [13] for n = 2, and Ogus [21, Corollary 3] in general:

Theorem 4.6 Let π : X −→ Hypn+1 be the universal family of Calabi–Yau hyper-
surfaces in Pn. For any point [Y ] ∈ Hypn+1(K ) corresponding to a smooth hypersur-
face Y ⊂ Pn, we have ord[Y ](H) � n − 1 if n � p.

Ogus’s proof relies on crystalline techniques: he relates ord[Y ](H) to the relative
position of the conjugate and Hodge filtrations on a crystalline cohomology group
of Y (following an idea of Katz), and then exploits the natural relation between the
Hodge filtration and deformation theory of Y . His result will not be used in proving
Theorem 4.1; in fact, our methods yield an alternative proof of Theorem 4.6 avoiding
crystalline methods under a mild additional constraint on the prime characteristic p,
see Remark 4.9.

Remark 4.7 The universal familyπ : X −→ Hypn+1 is, in fact, versal at [X ] if n � 5
so ord[X ](H), i.e., the order of vanishing of H at [X ] ∈ Hypn+1(K ), is completely
intrinsic to X . To see versatility, it suffices to show that the map

Hom(IX/I 2X ,OX ) −→ H1(X, TX )

obtained from the adjunction sequence

0 −−−−→ IX/I 2X −−−−→ �1
Pn |X −−−−→ �1

X −−−−→ 0
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is surjective, and that H2(X, TX ) = 0. By the long exact sequence, it suffices to show
the vanishing of H1(X, TPn |X ) and H2(X, TX ). The Euler sequence

0 −−−−→ OPn −−−−→ OPn (1)⊕n+1 −−−−→ TPn −−−−→ 0

restricted to X immediately shows that Hi (X, TPn |X ) = 0 for i = 1, 2 if n � 5;
here we use that Hi (X,OX ( j)) = 0 for 0 < i < n − 1 and all j . The cohomology
sequence for the dual of the adjunction sequence then shows that H2(X, TX ) = 0.

The universal family. Fix notation as in Theorem 4.1, with K a perfect field. Let

Hypn+1 := P
(
H0(Pn,OPn (n + 1))∨

)

be the space of hypersurfaces of degree (n + 1) in Pn ; we follow Grothendieck’s
conventions regarding projective bundles. Let π : X −→ Hypn+1 be the universal
family, and let ev : X −→ Pn be the evaluation map. Informally, X parametrizes
pairs (x,Y )where x ∈ Pn and Y ∈ Hypn+1 is a degree (n+1) hypersurface containing
x . This description shows that ev : X −→ Pn is a projective bundle, and we can
formally write it as P(K ∨) −→ Pn , where K ∈ Vect(Pn) is defined as

K := ker
(
H0(Pn,OPn (n + 1)) ⊗ OPn −→ OPn (n + 1)

)
,

and the map is the evident one. The resulting map

X −→ P
(
H0(Pn,OPn (n + 1))∨

)

is identified with π . Our chosen hypersurface X ∈ Pn gives a point [X ] ∈ Hypn+1(K )

with X ′ := π−1([X ]) mapping isomorphically to X via ev. For an integer t � 1, let
t X ⊂ Pn and t X ′ ⊂ X be the order t neighbourhoods of X ⊂ Pn and X ′ ⊂ X
respectively.

Lemma 4.8 The map Hn−1(t X,Ot X ) −→ Hn−1(t X ′,Ot X ′) is injective for all t .

Proof Let V = H0(Pn,OPn (1)), so Pn = P(V ) and Hypn+1 = P(Symn+1(V )∨).
For each t , the sheafOt X admits a filtration defined by powers of the ideal defining

X ⊂ t X , and similarly for t X ′. The map t X ′ −→ t X is compatible with this filtration
as it sends X ′ ⊂ t X ′ to X ⊂ t X . Hence, it suffices to check that the induced map

φ j : Hn−1(X, I jX/I j+1
X ) −→ Hn−1(X ′, I jX ′/I

j+1
X ′ )

is injective for each j � 0. Fix an isomorphism det(V ) � K and f ∈ Rn+1 defining
X . These choices determine isomorphisms IX � OPn (−n − 1) � KPn , and hence an
isomorphism

Hn−1(X, OX ) � Hn(Pn, IX ) � Hn(Pn, KPn ) � K .
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Tensoring the exact sequence 0 −→ IX −→ OPn −→ OX −→ 0 with I jX and using
Serre duality shows that

Hn−1(X, I jX/I j+1
X

) = ker
(
Hn(Pn, I j+1

X

) −→ Hn(Pn, I jX
))

= coker
(
H0(Pn,OPn (( j − 1)(n + 1))

) −→ H0(Pn,OPn ( j (n + 1))
))∨

= coker
(
Sym( j−1)(n+1)(V )

f−→ Sym j (n+1)(V )
)∨

.

As X ′ ⊂ X is a fibre of π , one has t X ′ = π−1(t[X ]), where t[X ] ⊂ Hypn+1
is the order t neighbourhood of [X ] ∈ Hypn+1(K ). Using flatness of π and the
aforementioned isomorphism Hn−1(X, OX ) � K , we get

Hn−1(X ′, I jX ′/I
j+1
X ′ ) = (

Sym j (Symn+1(V )/( f ))
)∨

.

One can check that the pullbackφ j above is dual to themap induced by the composition
map Sym j (Symn+1(V )) −→ Sym j (n+1)(V ) by passage to the appropriate quotients.
In particular, the dual map is surjective, so φ j is injective. 
�
Proof of Theorem 4.1(4) By Remark 4.4, we may assume that the field K is perfect.
Fix some 1 � t � p. We get a commutative diagram

X ′ i−−−−→ t X ′ j−−−−→ pX ′ a−−−−→ Frob∗
X X ′ c−−−−→ X ′

⏐
⏐



⏐
⏐



⏐
⏐



⏐
⏐



⏐
⏐



X
k−−−−→ t X

�−−−−→ pX
b−−−−→ Frob∗

Pn X
d−−−−→ X

Here all vertical maps are induced by ev : X −→ Pn , the maps c and d are induced by
the Frobenius maps on X and Pn respectively, and i, j, k, �, a and b are the evident
closed immersions; the map b is an isomorphism as X ⊂ Pn is a Cartier divisor. In
particular, the composite map X ′ −→ X ′ and X −→ X obtained from each row
are the Frobenius maps on X ′ and X respectively. Passing to cohomology gives a
commutative diagram

Hn−1(X,OX ) Hn−1(X ′,OX ′)
⏐
⏐

at

⏐
⏐

bt

Hn−1(t X,Ot X )
ct−−−−→ Hn−1(t X ′,Ot X ′)

where at and bt are induced by the Frobenius maps on Pn andX respectively, while
ct is injective by Lemma 4.8. To finish the proof, observe that Lemma 4.5 shows that
h + 1 is the minimal value of t for which bt is injective. Since ct is injective as well,
this is also the minimal value of t for which at is injective. It follows by Remark 2.2
and Theorem 3.5 that μ f (p) = p − (h + 1) + 1 = p − h. 
�
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Remark 4.9 We recover Ogus’s result, Theorem 4.6, for primes p � n2 − n − 1; this
is immediate from Theorem 4.1(1) and (4).

Weconcludebygiving an interpretation for fpt( f ) in termsof deRhamcohomology.
Write Filconj• and Fil•H for the increasing conjugate and decreasing Hodge filtrations
on Hn−1

dR (X) respectively. Then:

Corollary 4.10 One has fpt( f ) = 1 − a/p, where a is the largest i such that

Frob∗
X H

n−1
dR (X) � Filconj0 (Hn−1

dR (X)) ⊂ FiliH (Hn−1
dR (X)).

Proof This follows from Theorem 4.1 and Ogus’s result [21, Theorem 1]. 
�
Note that the integer a appearing above is the a number defined by van der Geer

and Katsura [7] for the special case of a Calabi–Yau family.

5 Quartic hypersurfaces in P2

Our techniques also yield substantive information for hypersurfaces other thanCalabi–
Yau hypersurfaces; as an example, we include the case of quartic hypersurfaces in P2.

When f defines a Calabi–Yau hypersurface X , it is readily seen that the Frobenius
action on the Hdim X (X,OX ) is injective if and only if fpt( f ) = 1, i.e., if and only

fpt( f ) = lct( f ).

For hypersurfaces X of general type, the injectivity of theFrobenius onHdim X (X,OX ),
or even the ordinarity of X in the sense of Bloch and Kato [5, Definition 7.2]—a
stronger condition—does not imply the equality of the F-pure threshold and the log
canonical threshold: for example, for each f defining a quartic hypersurface inP2 over
a field of characteristic p ≡ 3 mod 4, we shall see that fpt( f ) < lct( f ); we emphasize
that this includes the case of generic hypersurfaces, and that these are ordinary in the
sense of Bloch and Kato by a result of Deligne; see [14]. More generally:

Lemma 5.1 Let f be a homogeneous polynomial of degree d in K [x0, . . . , xn]. Then:
(1) For each q = pe, one has μ f (q) �

⌈ nq+q−n
d

⌉
,

(2) If nq+q is congruent to any of 1, 2, . . . , n mod d for some q, then fpt( f ) < n+1
d .

For quartics in P2 one has n = 2, d = 4. If p ≡ 3 mod 4, then np+ p ≡ 1 mod d,
so the F-pure threshold is strictly smaller than the log canonical threshold by (2).

Proof The pigeonhole principle implies that f k ∈ m[q] whenever

dk � (n + 1)(q − 1) + 1,

which proves (1). For (2), if nq + q is congruent to any of 1, 2, . . . , n mod d. Then

⌈
nq + q − n

d

⌉
� nq + q − n + (n − 1)

d
= nq + q − 1

d
,
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and it follows using (1) that μ f (q) < (nq + q)/d. Thus,

fpt( f ) � μ f (q)/q < (n + 1)/d.


�
Theorem 5.2 Let K be a field of characteristic p > 2. Let f be a homogeneous
polynomial of degree 4 in K [x0, x1, x2], such that the Jacobian ideal of f is m-
primary. Then the possible values for μ f (q) and the F-pure threshold are:

p ≡ 1 mod 4: μ f (q) =
{ q(3p−3)

4p for all q, fpt( f ) = 3p−3
4p ,

3q+1
4 for all q, fpt( f ) = 3

4 ,

p ≡ 3 mod 4: μ f (q) =
⎧
⎨

⎩

q(3p−5)
4p for all q, fpt( f ) = 3p−5

4p ,

q(3p−1)
4p for all q, fpt( f ) = 3p−1

4p .

Proof Lemma 3.3 and Lemma 5.1(1) provide the respective inequalities

⌈
3p − 5

4

⌉
� μ f (p) �

⌈
3p − 2

4

⌉
.

If p ≡ 3 mod 4, this reads

3p − 5

4
� μ f (p) � 3p − 1

4
,

so there are two possible values for the integer μ f (p). The sequence {μ f (q)/q}q is
constant by Lemma 3.4(2), which completes the proof in this case.

If p ≡ 1 mod 4, the inequalities read

3p − 3

4
� μ f (p) � 3p + 1

4
.

Again, there are two choices for μ f (p). If μ f (p) = (3p − 3)/4, then {μ f (q)/q}q is
a constant sequence by Lemma 3.4(2). If μ f (p) = (3p + 1)/4, then Lemma 3.4(1)
implies that μ f (q) = (3q + 1)/4. 
�
Remark 5.3 Similarly, for a quintic f in K [x0, x1, x2] with an m-primary Jacobian
ideal, the possibilities for fpt( f ) are easily determined;we do not list the corresponding
μ f (q) as these are dictated by fpt( f ). We assume below that p > 5.

p ≡ 1 mod 5: fpt( f ): (3p − 3)/5p, or 4/5,

p ≡ 2 mod 5: fpt( f ): (3p − 6)/5p, or (3p − 1)/5p,

p ≡ 3 mod 5: fpt( f ): (3p − 4)/5p, or (3p2 − 7)/5p2, or (3p2 − 2)/5p2,

p ≡ 4 mod 5: fpt( f ): (3p − 7)/5p, or (3p − 2)/5p.
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The log canonical threshold of a smooth quartic in P2 is 3/4; except for the case
where it equals 3/4, the denominator of fpt( f ) in Theorem 5.2 is p. For a quintic
as above, if fpt( f ) �= lct( f ), then the denominator of fpt( f ) is a power of p. More
generally, one has:

Proposition 5.4 Let K be a field of characteristic p > 0. Let f be a homogeneous
polynomial of degree d in K [x0, . . . , xn] with an m-primary Jacobian ideal.

If p � nd − d − n, then either fpt( f ) = (n + 1)/d, or else the denominator of
fpt( f ) is a power of p.

Proof If fpt( f ) < (n + 1)/d, then there exists an integer q such that

μ f (q)/q < (n + 1)/d.

But then fpt( f ) = μ f (q)/q by Lemma 3.4(2). 
�
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