
PARAMETRIZING REAL EVEN NILPOTENT COADJOINT ORBITS

USING ATLAS

PETER E. TRAPA

Suppose GR is the real points of a complex connected reductive algebraic group G defined over R.
(The class of such groups is exactly the class treated by the software package atlas.) Write g∗R for the
dual of the Lie algebra of GR and NR for the nilpotent elements in gR. Then GR acts with finitely
many orbits on NR via the coadjoint action, and it is clearly very desirable to parametrize these
orbits in a way that atlas can manipulate. For instance, it is definitely not sufficient to produce a
list of tables of such orbits for, say, G simple.

The purpose of these notes is to describe such a parametrization of even nilpotent orbits. This
can be extracted from [?, Chapter 20], but we offer a more easily accessible treatment here and make
the atlas-based algorithms explicit and effective. The parametrization is in terms of certain closed
orbits of a symmetric group K on partial flag varieties P for G. Since the geometry of K orbits on
partial flag varieties is “dual” to the study of translation families of Harish-Chandra modules with
singular infinitesimal character, the description of K\P is of independent interest. We give complete
details in Section ?? before turning to the parametrization of nilpotent orbits in Section ??.

1. the sekiguchi correspondence

Instead of dealing with real nilpotent coadjoint orbits, we will instead work on the other side of
the Sekiguchi correspondence (e.g. [?, Chapter 9]). We begin with some notation.

Fix GR as above. Let KR denote a maximal compact subgroup of GR, let θ denote the correspond-
ing Cartan involution, and write g = k⊕ s for the complexified Cartan decomposition. Let P denote
the variety of parabolic subalgebras in g and of a fixed type. Let N θ denote the cone of nilpotent
elements in (g/k)∗. (Using an invariant form on g, we may identify N θ with the nilpotent elements
of s, but we will generally avoid doing so.) Finally let N θ

P denote the cone of nilpotent elements in

(G · (g/p◦)∗) ∩ (g/k)∗

where p◦ denotes a fixed base-point in P; and, similarly, let NR
P denote the cone of nilpotent elements

in

(G · (g/p◦)∗) ∩ (gR)∗

(Here and elsewhere we implicitly invoke the inclusion of (g/p◦)
∗, g∗R, and (g/k)∗ into g∗ and take

the intersection there.) The complexification K of KR of course acts with finitely many orbits on P
and N θ

P . Note that N θ = N θ
P and NR = NR

P if P = B is the full flag variety.

The following well-known result shows that we may consider nilpotent K orbits on (g/k)∗ instead
of real nilpotent orbits.

Proposition 1.1 (Sekiguchi). There is a bijection from the set of K orbits on N θ
P and the set of

GR orbits on NR
P .

Remark 1.2. The bijection preserves the closures on each set by a result of Barbasch and Sepanski.

These notes are based on a a lecture I gave at an Atlas workshop at the University of Maryland in March, 2008.

I was supported by NSF grant DMS-0554118. I returned to them for a series of talks at an Atlas working at the
University of Utah in July, 2017, and made some minor updates then.
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We conclude by introducing the relationship between K\P and nilpotent K orbits on (g/k)∗. Let
µP denote the moment map from T ∗P to g∗. Concretely µP maps a point (p, ξ) in T ∗P, with

(1.3) ξ ∈ T ∗pP ' (g/p)∗

simply to ξ. Consider now the conormal variety for K orbits on P,

T ∗KP =
⋃

Q∈K\P

T ∗QP,

where T ∗QP denotes the conormal bundle to the K orbit Q. In general we may identify

(1.4) T ∗QP = {(p, ξ) | p ∈ Q, ξ ∈ (g/k + p)∗},

and hence we see that the image of T ∗KP under µP is simply N θ
P .

Since µP is G-equivariant, a short argument shows that the image of a particular conormal bundle
T ∗QP contains a unique dense orbit of K on N θ

P . Hence we obtain a map

(1.5) Φ = ΦP : K\P −→ K\N θ
P .

Concretely, Φ maps Q ∈ K\P to the dense K orbit in K · (g/p)∗ where p is an element of Q.

2. parametrizing K\P

In this section, we give a parametrization of K\P. We begin with a discussion of the set K\B of
K orbits on the full flag variety B. Basic references for this material are [?] or [?]. The point of this
whole discussion is that everything we say below has already been (or can easily be) implemented in
atlas. We make this explicit below.

The set K\B is partially ordered by the inclusion of orbit closures. It is generated by closure
relations in codimension one. We will need to distinguish two kinds of such relations. To do so, we
fix a base-point b◦ ∈ B, a decomposition b◦ = h◦ ⊕ n◦, and let ∆+ denote the corresponding set of
positive roots. For a simple root α, let Pα denote the set of parabolic subalgebras of type α, and
write πα for the projection B → Pα.

Fix K orbits Q and Q′ on B. If K is connected, then Q is irreducible, and hence so is π−1α (πα(Q)).
Thus π−1α (πα(Q)) contains a unique dense K orbit. In general, K need not be connected and Q need
not be irreducible. But it is easy to see that the similar reasoning applies to conclude π−1α (πα(Q))

always contains a dense K orbit. We write Q
α→ Q′ if

dim(Q′) = dim(Q) + 1

and

Q′ is dense in π−1α (πα(Q)).

This implies that π−1α (πα(Q′)) fibers as a P1 bundle over πα(Q), and hence that Q is codimension

one in the closure of Q′. The relations Q
α→ Q′ do not generate the closure order however. Instead

we must also consider a kind of saturation condition. More precisely, whenever a codimension one
subdiagram of the form

(2.1) Q1

Q2

α ==

Q3

Q4

aa
α

==
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is encountered, we complete it to

(2.2) Q1

Q2

α ==

Q3

aa

Q4

aa
α

==

New edges added in this way are dashed in the diagrams below. Note that this operation must be
applied recursively, and thus some of the edges in the original diagram (??) may be dashed as the
recursion unfolds. Following the terminology of [?, 5.1], we call the partially ordered set determined
by the solid edges the weak closure order.

Now fix a variety of parabolic subalgebras P of an arbitrary fixed type and write πP for the
projection from B to P. For definiteness fix p◦ = l◦ ⊕ u◦ ∈ P containing b◦. Then K\P may
be parametrized from a knowledge of the weak closure on K\B as follows. Consider the relation

Q ∼P Q′ if πP(Q) = πP(Q′); this is generated by the relations Q ∼ Q′ if Q
α→ Q′ for α simple in

∆(h◦, l◦). Equivalence classes in K\B clearly are in bijection with K\P. Fix an equivalence class C
and fix a representative Q ∈ C. The same reasoning that shows that π−1α (πα(Q)) contains a unique
dense K orbit also shows that

π−1P (πP(Q))

contains a unique dense K orbit QC ∈ K\B. In other words, QC is the unique largest dimensional
orbit among the elements in C. In fact QC is characterized among the elements of C by the condition

(2.3) dimπ−1α (πα(QC)) = dim(QC)

for all α simple in ∆(h◦, l◦). Moreover, the full closure order on K\P is simply the restriction of the
full closure on K\B to the subset of all maximal-dimensional representatives of the form QC . By
restricting only the weak closure order, we may speak of the weak closure order on K\P.

We now give and explicit description of how to read off the partially ordered set of K orbits on
P from the output of atlas. (This algorithm could easily be implemented in future versions.) First
recall that the atlas command kgb. It outputs a table, and each row corresponds to a K orbit on
B. The command kgborder then provides a list of the covering relations in the closure partial order.
An example of version 0.3 output for Sp(4,R) is given in Figure 2.1.

In general, the first column of the kgb output is a label representing an orbit of K on B. For
the row labeled i, write Qi for the corresponding orbit. (The labeling is more or less random but is
consonant with the entry in the second column which denotes the dimension of the orbit minus the
dimension of any closed orbit.) The remaining columns are broken into three chunks, the first two
of which consist of n = rank(G) columns, and a third (which shall not concern us) consisting of a
possibly empty list of numbers separated by commas. Fix an index i corresponding to a simple root
αi with Bourbaki label i. The weak order is generated by the following rules:

(1) In row k, if the character C appears in the ith entry between [ ], let l denote the entry in the
ith position in the first chunk of columns in row k. Then

Qk
αi→ Ql

if the relative dimension of Ql is greater than that of Qk (which happens if and only if k < l)

and Ql
αi→ Qk otherwise.

(2) In row k, if the character n appears in the ith entry between [ ], let l denote the entry in
the ith position in the second chunk of columns in row k. In the notation introduced above

Qk
αi→ Ql, and it turns out that the relative dimension of Ql is always greater than that of

Qk.
3



empty: type

Lie type: C2

elements of finite order in the center of the simply connected group:

Z/2

enter kernel generators, one per line

(ad for adjoint, ? to abort):

sc

enter inner class(es): s

main: realform

(weak) real forms are:

0: sp(2)

1: sp(1,1)

2: sp(4,R)

enter your choice: 2

real: kgb

kgbsize: 11

Name an output file (return for stdout, ? to abandon):

0: 0 0 [n,n] 1 2 6 4

1: 0 0 [n,n] 0 3 6 5

2: 0 0 [c,n] 2 0 * 4

3: 0 0 [c,n] 3 1 * 5

4: 1 2 [C,r] 8 4 * * 2

5: 1 2 [C,r] 9 5 * * 2

6: 1 1 [r,C] 6 7 * * 1

7: 2 1 [n,C] 7 6 10 * 2,1,2

8: 2 2 [C,n] 4 9 * 10 1,2,1

9: 2 2 [C,n] 5 8 * 10 1,2,1

10: 3 3 [r,r] 10 10 * * 1,2,1,2

real: kgborder

kgbsize: 11

Name an output file (return for stdout, ? to abandon):

0:

1:

2:

3:

4: 0,2

5: 1,3

6: 0,1

7: 4,5,6

8: 4,6

9: 5,6

10: 7,8,9

Number of comparable pairs = 44

Figure 2.1. atlas output for Sp(4,R).

This explains how to read off the weak order on K\B from the output of kgb.

Now fix a subset of simple roots defining the type of P. This corresponds to a list of indices
i1, i2, . . . in the Bourbaki labeling. (Instead of writing something like αij , we will instead identify
the indices with the corresponding simple roots.) The equivalence relation ∼P is generated by all
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arrows
ij→ in the weak order on K\B which we just specified. As explained above, each equivalence

class contains an element of maximal dimension, which (once the equivalence classes are tabulated)
is easy to read off: it is the element of the class corresponding to the largest label.

We have thus explained how to read off a list of rows of the kgb command which parametrize the
orbits of K on P. The closure order on K\P is then simply the restriction of closure order on K\B
which is outputted, as mentioned above, using the command kgborder.

Example 2.4. Consider the case of GR = Sp(4,R) and P = B. Then 1 is the Bourbaki label for the
short simple root and 2 is the label for the long root. We may read off the closure order from Figure
2.1 as follows. Orbits on the same row of the diagram below all have the same dimension. Dashed
lines represent relations in the full closure order which are not in the weak order.

(2.5) Q10

Q8

2

::

Q7

1

OO

Q9

2

dd

Q4

1

OO ::

Q6

2

OOdd ::

Q5

1

OOdd

Q2

2

DD

Q0

2

ZZ

1

CC

Q1

1

[[
2

DD

Q3

2

ZZ

Adopt the parametrization of K\N θ given in [?, Theorem 9.3.5] in terms of signed tableau. Let
(i1)j1ε1(i2)j2ε2 · · · denote the tableau with jk rows of length ik beginning with sign εk for each k. Then

the closure order on K\N θ is given by

(2.6) 41+@@ ``
41−>> ^^

22+ ^^
21+21−>> ``

22−@@

21+11+11−``
21−11+11−>>

12+12−

Then ΦB maps Q10 to 12+12−; Q8 to 21+11+11−; Q9 to 21−11+11−; Q6 and Q7 to 21+21−; Q2 and Q4 to 22+;
Q3 and Q5 to 22−; Q0 to 41+. and Q1 to 41−. Note that ΦB reverses all closure relations except the

two dashed edges indicating Q4 and Q5 are contained in Q7.

Now let P1 (resp. P2) consist of parabolic subalgebras of type 1 (resp. 2) and write π1 and π2 in
place of πP1

and πP2
. Then the closure order on K\P1 is obtained by the procedure described above.

(Dashed edges are those covering relations present in the full order but not the weak one, and the
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terminal subscripts indicate actual dimensions.)

(2.7) π1(Q10)3

π1(Q8)2

;;

π1(Q9)2

cc

π1(Q2)0

<<

π1(Q6)1

cc ;;

π1(Q3)0

bb

The closure order on K\P2 is again obtained by the algorithm described above. Terminal subscripts
indicate actual dimensions.

(2.8) π2(Q10)3

π2(Q7)2

OO

π2(Q4)1

;;

π2(Q5)1

cc

In this case N θ
1 = N θ

2 , and the closure order on K\N θ
P is just the bottom three rows of (??),

(2.9) 22+ ^^
21+21−>> ``

22−@@

21+11+11−``
21−11+11−>>

12+12−

In fact, Φ1 is the obvious order reversing bijection of (??) onto (??).

By contrast, Φ2 does not invert the dashed edges in (??): Φ2 maps π2(Q10) to the zero orbit, and
the three remaining orbits to the three orbits of maximal dimension in N θ

P .

Example 2.10. Suppose now GR = Sp(2n,R) and P consists of maximal parabolic of type corre-
sponding to the subset of simple roots obtained by deleting the long one. (So if n = 1, P = P1

in Example ?? above.) Then the analysis of the preceding example extends to show that ΦP is an
order-reversing bijection. The closure order on K\N θ

P (and hence K\P) is as follows.

(2.11) 2n+ aa
2n−1+ 21−;; dd

. . . 2n−1− 21+:: cc
2n−==

. . . . . . . . .

21+1n−1+ 1n−1−cc
21−1n−1+ 1n−1−;;

1n+1n−

Here, as before, we are using the parametrization of K\N θ
P given in [?, Theorem 9.3.5].
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3. parametrizing real even nilpotent coadjoint orbits

Let O be a nilpotent coadjoint orbit of G on g∗. Suppose that O is even. This means that all
of the nodes in the weighted Dynkin diagram are either labeled by 0 or 2. Consider the variety of
parabolic subalgebras P = P(O) corresponding to the nodes labeled 0. Then it is well-known that
O is dense in the image of T ∗P under µP ; see [?, Theorem 7.1.6]. Furthermore, according to a result
usually attributed to Hesselink, µP is birational onto its image. See [?, Lemma 27.8].

Here is the parametrization to which we have been alluding.

Proposition 3.1 (atlas-based parametrization of even real nilpotent orbits). Fix an even
complex nilpotent coadjoint orbit O and define P = P(O) as above. Then there is a subset S = S(O)
of closed K orbits on P such that the restriction of ΦP is a bijection from S to the set of K orbits on
O ∩ (g/k)∗ and hence (according to Proposition ??) the GR orbits on O ∩ g∗R. The set S is explicitly
computable from the output of atlas.

In a moment we will explain how to use atlas to find S, but first we give a more down-to-earth
formulation of the proposition. The equivalence of the two statements of Proposition ?? and ??
follows from unwinding the definitions and from the easy fact that any K orbit of θ-stable parabolic
subalgebra (of the type specified by P) is closed in P.

Proposition 3.2 (alternate formulation of Proposition ?? for nilpotent adjoint orbits).
Fix an even complex nilpotent adjoint orbit O and define P = P(O) as above. Recall the Cartan
involution θ and the complexified Cartan decomposition g = k⊕s. Let S denote the set of K-conjugacy
classes of θ-stable parabolic subalgebras p = l⊕ u ∈ P such that

(3.3) G · (u ∩ s) = G · u.
(This is precisely the set S which appears in Proposition ??.) Then the map which assigns to each
conjugacy class K · p in S the dense K orbit in K · (u∩ p) is a bijection from S to the set of K orbits
on O ∩ s and hence (according to Proposition ??) the GR orbits on O ∩ gR.

This formulation is essentially proved in [?, Theorem 27.10]. (The “essentially” means that some
nontrivial extraction is required on the part of the reader.) We omit any details here, but focus
instead of how to read off the set S of Propositions ?? and ??. The examples of Section ?? provide
excellent orientation.

According to the discussion in Section ??, we can read off the set of closed orbits of K on P from
the output of atlas. They are given as list of indices labeling rows in the kgb output representing
maximal elements in ∼P equivalence classes corresponding to closed orbits. Write S′ for this set of
indices. The question is to determine which closed K orbits comprise the set S of Propositions ?? and
??. For this we must use the full power of the computation of Kazhdan-Lusztig-Vogan polynomials
in general.

We describe how to pare down the set of indices S′ to the set S we want. Fix an index i ∈ S′.
The first requirement is that the orbit on P parametrized by i must consist of θ-stable parabolics.
For this we use the output of the command blocku. (When executing blocku, a choice of dual block
is required; it suffices to choose the most split real form at the prompt.) Then i corresponds to an
orbit of θ-stable parabolics only if there is an row in the output of blocku which has i appearing
immediately after the first open parenthesis. If not, we discard i from consideration. If there is such
a row, it has a potentially different label, say j, which now represents an element of the block of the
trivial representation of GR. We next turn to the cell C containing the representation πj parametrized
by j. The condition in (??) is equivalent to requiring that the (special constituent of the) Weyl group
representation of W afforded by C contain the sign representation of the parabolic subgroup W (P)
of type P. There are fast effective procedures to do that in terms of the “tau signature” of the cell.
In the exceptional groups, this has been worked out by Binegar. In the classical cases, Jackson and
Nöel have formulated an algorithm for doing so.
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This completes the atlas description of the set S appearing in Propositions ?? and ??, and hence
completes an atlas based parametrization of real even nilpotent coadjoint orbits.
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