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1 Basic examples

1.1 Graded Hecke algebra of type A1

Let H = H(A1) be the algebra generated over C by s and α subject to the
relations

s2 = 1

s · α + α · s = 2.

Denote A = Sym(Cα). As a C-vector space H(A1) = CZ/2Z⊗ A, where
Z/2Z = {1, s}.

The algebra H has a ∗-operation defined on generators by

s∗ = s

α∗ = −α + 2s.

We say that an H-module U is hermitian (unitary) if it admits a hermitian
form (positive definite) 〈 , 〉 such that

〈x · u1, u2〉 + 〈u1, x
∗ · u2〉 = 0, x ∈ H, u1, u2 ∈ U.

(The characters of A are determined by the action of α.) Let Cν denote
the character of A on which α acts by ν.

Define the principal series

X(ν) = H ⊗A Cν , ν ≥ 0.
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Consider the element
rα = s · α − 1.

Lemma 1.1.1. The element rα satisfies the following relations

α · rα = rα · (−α) and s · rα = rα · (−s).

Then we immediately have the following result.

Proposition 1.1.2. The map A(ν) : X(ν) → X(−ν), given by

A(ν)(x ⊗ 1ν) = x · rα ⊗ 1−ν ,

is an intertwining operator.

It is a general fact that an invariant hermitian form on a module is equiv-
alent with an intertwining operator between the module and its hermitian
dual.

As a Z/2Z-representation,

X(ν) = triv ⊕ sgn = span{(1 + s) ⊗ 1ν , (1 − s) ⊗ 1ν}.

Note that (1 + s) · rα = (1 + s)(α− 1) and (1− s) · rα = (1− s)(−α− 1).
So the hermitian form corresponding to A(ν) has matrix

(
atriv(ν) 0

0 asgn(ν)

)
=

(
1 0
0 1−ν

1+ν

)
,

where aτ (ν) denote the normalized operators on Z/2Z-types. (The normal-
ization is such that on the trivial Z/2Z-type, the operator is identically 1.)

In conclusion, X(ν), ν ≥ 0, has a unique quotient L(ν), which is unitary
for 0 ≤ ν ≤ 1. (At ν = 1, L(1) = triv.)
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1.2 SL(2, R)

Let G be the group SL(2, R), B = AN the Borel subgroup (A is the maximal

split torus) and K = SO(2) the maximal compact subgroup. Then K̂ ∼= Z.

Consider the spherical principal series

XB(ν) = IndG
B(eν ⊗ 1), ν ≥ 0.

(In Prof. Trapa’s table, this is denoted by P+(ν).)

The Langlands quotient L(ν) is unitary for 0 ≤ ν ≤ 1. (L(1) is the trivial
representation.) Recall that as a K-representation,

XB(ν)|K =
∑

m∈Z

(2m).

There is an (integral) intertwining operator

A(ν) : XB(ν) → XB(−ν),

which is normalized so that it is identically 1 on the trivial K-type. One can
compute the restriction of A(ν) on each K-type. Since the K-types are one-
dimensional, these restrictions are scalars. A classical computation shows
that these scalars are

A(2m)(ν) =
1 − ν

1 + ν
·
3 − ν

3 + ν
· · · · ·

2|m| − 1 − ν

2|m| − 1 + ν
.

Remark. Note that

A(2)(ν) = asgn(ν) =
1 − ν

1 + ν
,

and the (unitary) complementary series is the same in the two cases.
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2 Generalization

2.1 Graded Hecke algebra

Let (X , Π, X̌ , Π̌) be a based root datum, with ∆ the roots and ∆̌ the coroots,
W the Weyl group. Set a = X̌ ⊗Z C and ǎ = X ⊗Z C. Similarly, define aR, ǎR.

Definition 2.1.1. (Lusztig) The graded Hecke algebra is the vector space
H = CW ⊗ A, where A = Sym(ǎ), subject to the commutation relation

sα · ω = sα(ω) · sα + ω(α̌), for all α ∈ Π, ω ∈ ǎ.

As in the A1 case, H has a ∗-operation, so it makes sense to define her-
mitian and unitary modules.

Remark. The problem of classifying the unitary representations with Iwa-
hori fixed vectors of split p-adic groups can be reduced to the problem of
identifying the unitary dual of graded Hecke algebras H.

Some facts about H:

1. (Bernstein,Lusztig) The center of H is AW .

2. All simple H-modules are finite dimensional, and the central characters
are parametrized by W -orbits in a.

3. The H-modules have a Kazhdan-Lusztig classification.

4. (Barbasch-Moy) For every w ∈ W , with reduced expression w =
sα1

. . . sαm
, one can define the element rw = rα1

. . . rαm
, which does

not depend on the reduced decomposition.

5



Let X(ν) = H⊗A Cν be the principal series. Assume ν ∈ aR is dominant,
i.e., 〈α, ν〉 ≥ 0, for all α ∈ Π.

Definition 2.1.2. The H-module U is called spherical if HomW [triv, U ] 6= 0.

The spherical modules (with real central character) are precisely the
(unique) Langlands quotients L(ν) of X(ν) with ν dominant.

Let w0 be the longest Weyl group element. Define the (Barbasch-Moy)
intertwining operator

A(ν) : X(ν) → X(w0ν), x ⊗ 1ν 7→ x · rw0
⊗ 1w0ν .

Then L(ν) is hermitian if and only if w0ν = −ν. Assume this is the case.

If (τ, Vτ) is a W -type, A(ν) defines hermitian operators

aτ (ν) : HomW [Vτ , X(ν)] → HomW [Vτ , X(−ν)]

aτ (ν) : (Vτ )
∗ → (Vτ )

∗,

by the Frobenius reciprocity. Normalize them so that atriv(ν) = Id. The
normalization factor is (−1)|∆

+|
∏

α∈∆+(1 + 〈α, ν〉).

Proposition 2.1.3. A spherical parameter ν is unitary if and only if w0ν =
−ν and aτ (ν) is positive semidefinite for all τ ∈ Ŵ .

If w0 has a reduced decomposition w0 = s1s2 · · · sn, then the operators
aτ (ν) have a decomposition

aτ (ν) = aτ,1(w1ν) · aτ,2(w2ν) · · ·aτ,n(wnν),

where wi = sn−i+1 . . . sn. Each simple operator aτ,i(ν) is induced from an
H(A1)-operator and corresponds to a simple root αi. Explicitly,

aτ,i(ν) =

{
1 on the (+1)-eigenspace of sαi

of V ∗
τ

1−〈αi,ν〉
1+〈αi,ν〉

on the (+1)-eigenspace of sαi
of V ∗

τ
.
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2.2 Split real groups

Let B = AN be a Borel subgroup, A maximal split torus, K maximal com-
pact. Set M = A ∩ K. As before, let XB(ν) denote the spherical principal
series XB(ν) = IndG

B(eν ⊗ 1), where ν ∈ a
∗
R
, and ν is dominant.

There is a (Knapp-Zuckerman) normalized intertwining operator

A(ν) : XB(ν) → XB(−ν).

The Langlands quotient L(ν), which is spherical, is hermitian if and only
if w0ν = −ν. If this is the case, for every K-type (µ, Vµ), A(ν) induces
operators:

Aµ(ν) : HomK [Vµ, XB(ν)] → HomK(Vµ, XB(−ν))

Aµ(ν) : (V ∗
µ )M → (V ∗

µ )M ,

by Frobenius reciprocity. The normalization is such that Atriv(ν) = Id.

The Weyl group W = NG(A)/A ∼= NK(A)/M, so for every K-type (µ, Vµ),
the space (V ∗

µ )M is naturally a W -type. Denote it by τ(µ).

The Barbasch-Vogan idea of petite K-types is to identify a class of K-
types µ such that the operators

Aµ(ν) = aτ(µ)(ν).

(As it will follow from the calculation, the Weyl group operators are for the
Hecke algebra of the dual root datum.)
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The operator A(ν), and consequently Aµ(ν), have a (Gindikin-Karpelević)
decomposition into operators A(sα, ν) relative to a reduced decomposition of
w0.

For each simple root of A in G, consider the root homomorphism Ψα :
SL(2, R) → G. Via Ψα, the compact group SO(2) embeds into K. Therefore,
the K-type (µ, Vµ) has a decomposition into Ψα(SO(2)) isotypic components:

Vµ = ⊗j∈ZVµ(j).

The action of M preserves Vµ(j)+Vµ(−j) and it has fixed vectors if and only
if j is even. On the spaced of M-fixed vectors of Vµ(2m) + Vµ(−2m), as in
the SL(2, R) case, the operator Aµ(sα, ν) is

Aµ(sα, ν) =
∏

1≤j≤|m|

2j − 1 − 〈α̌, ν〉

2j − 1 + 〈α̌, ν〉
.

Definition 2.2.1. A K-type (µ, Vµ) is called petite if for every simple root
α, the decomposition of Vµ into Ψα(SO(2))-types contains only the represen-
tations (j), |j| ≤ 3.

The following result is an immediate consequence.

Proposition 2.2.2 (Barbasch,Vogan). If (µ, Vµ) is a petite K-type, then
Aµ(ν) = aτ(µ)(ν), where the second operator is the Hecke algebra of Ǧ.

The condition of being petite is very restrictive. For example, for a group
G, few W -types occur in τ(µ) for µ petite K-types.

Barbasch identified all the petite K-types (and their corresponding W -
types) for split real groups. There are also extensions of this idea: nonspher-
ical principal series (Barbasch-Pantano), nonlinear covers of split real groups
(Adams-Barbasch-Paul-Trapa-Vogan), U(p, q) (Barbasch).

Example. If G = SL(n, R), K = SO(n), W = Sn, examples of petite
K-types are µ = (2, 2, . . . , 2︸ ︷︷ ︸

k

, 0, . . . , 0), k ≤
[

n
2

]
, which has τ(µ) = (n − k, k).
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3 The spherical unitary dual

3.1 Relevant W -types

Let us return to the setting of the Hecke algebra H. We need to determine
the spherical unitary dual of H. In addition, in order to be able to use the
calculations for real split groups, one must find a set of relevant W -types
which detect unitarity and come from petite K-types.

Let g denote the complex Lie algebra attached to H. Recall that by the
Springer correspondence, to every nilpotent orbit O in g, one attaches a
subset of Ŵ . If e ∈ O, define the height of O to be

ht(O) = max{ℓ ≥ 0 : ad(e)ℓ 6= 0}.

Definition 3.1.1. A W -type τ is called relevant if the nilpotent orbit O
corresponding to τ in the Springer’s correspondence has height ht(O) ≤ 4.

Then we have the first form of the answer for the spherical unitary dual
problem.

Theorem 3.1.2. A spherical parameter ν for the Hecke algebra H is unitary
if and only if aτ (ν) is positive semidefinite for all relevant W -types τ.

This result was proved in the classical cases by Barbasch, in the excep-
tional cases by Barbasch-C.

Theorem 3.1.3 (Barbasch). Every relevant W -type comes from a petite K-
type of the split real group.

Corollary 3.1.4. A spherical parameter ν for the real split group G is uni-
tary only if it is unitary for the Hecke algebra associated to Ǧ.

For classical real split groups this condition is also sufficient, as proved
by Barbasch.
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3.2 Explicit description

We are still in the setting of the graded Hecke algebra H.

Definition 3.2.1. A spherical parameter ν is called generic if the principal
series X(ν) is irreducible.

The module X(ν) is reducible if and only if 〈α, ν〉 = 1, for some positive
root α.

Let us denote by SU0 the set of unitary spherical generic parameters.
This set can be described explicitly (combinatorially).

Theorem 3.2.2. The set of unitary spherical generic parameters SU0 is a
union of k simplices (alcoves) in the dominant Weyl chamber, where:

An: k = 1
Bn: k = 2[(n−1)/2]

Cn: k = 1
Dn: k = 2[(n−2)/2]

G2: k = 2
F4: k = 2
E6: k = 2
E7: k = 8
E8: k = 16.

Note that the root systems above refer to the Hecke algebra, so they are
the dual root systems of the split real group.
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Let O be a nilpotent orbit in g. Any e ∈ O can be embedded into a
Lie triple {e, h, f}. The centralizer of the Lie triple in g is a reductive Lie
subalgebra. Denote it by z(O).

To every dominant spherical parameter ν ∈ aR, one can attach uniquely
a nilpotent orbit O in g. The orbit O is the unique G-orbit meeting the 1-
eigenspace of ad(ν) in a dense orbit. (It is the orbit attached in the Kazhdan-
Lusztig classification to the Iwahori-Matsumoto dual of the spherical module
parametrized by ν.)

One partitions the spherical unitary dual into pieces CS(O) parametrized
by nilpotent orbits. Note that by definition CS(0) = SU0.

Let Exc denote the following set of nilpotent orbits:

Exc = {A1Ã1︸ ︷︷ ︸
F4

, A23A1︸ ︷︷ ︸
E7

, A4A2A1, A4A2, D4(a1)A2, A32A1, A23A1, 4A1︸ ︷︷ ︸
E8

}.

(The notation is as in the Bala-Carter classification.)

Then the spherical unitary dual of H can be described as follows.

Theorem 3.2.3 (Barbasch,Barbasch-C.).

1. If O /∈ Exc, then
CS(O) = SU0(z(O)).

2. If O ∈ Exc, and O 6= (4A1 ⊂ E8), then CS(O) ( SU0(z(O)).

3. If O = (4A1 ⊂ E8), then CS(O) ) SU0(z(O)).
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