June 8, 2006

Spherical unitary representations for split groups

Dan Ciubotaru

1. Basic examples.

1.1 Graded Hecke algebra of type A_1 1.2 $SL(2,\mathbb{R})$

2. Generalization.

2.1 Graded Hecke algebra2.2 Split real groups

3. Spherical unitary dual.

3.1 Relevant W-types3.2 Explicit description

1 Basic examples

1.1 Graded Hecke algebra of type A_1

Let $\mathbb{H} = \mathbb{H}(A_1)$ be the algebra generated over \mathbb{C} by s and α subject to the relations

$$s^2 = 1$$

$$s \cdot \alpha + \alpha \cdot s = 2.$$

Denote $\mathbb{A} = Sym(\mathbb{C}\alpha)$. As a \mathbb{C} -vector space $\mathbb{H}(A_1) = \mathbb{C}\mathbb{Z}/2\mathbb{Z} \otimes \mathbb{A}$, where $\mathbb{Z}/2\mathbb{Z} = \{1, s\}$.

The algebra \mathbb{H} has a *-operation defined on generators by

$$s^* = s$$

$$\alpha^* = -\alpha + 2s.$$

We say that an \mathbb{H} -module U is *hermitian* (*unitary*) if it admits a hermitian form (positive definite) $\langle \ , \ \rangle$ such that

$$\langle x \cdot u_1, u_2 \rangle + \langle u_1, x^* \cdot u_2 \rangle = 0, \quad x \in \mathbb{H}, \ u_1, u_2 \in U.$$

(The characters of \mathbb{A} are determined by the action of α .) Let \mathbb{C}_{ν} denote the character of \mathbb{A} on which α acts by ν .

Define the principal series

$$X(\nu) = \mathbb{H} \otimes_{\mathbb{A}} \mathbb{C}_{\nu}, \quad \nu \ge 0.$$

Consider the element

$$r_{\alpha} = s \cdot \alpha - 1.$$

Lemma 1.1.1. The element r_{α} satisfies the following relations

$$\alpha \cdot r_{\alpha} = r_{\alpha} \cdot (-\alpha) \text{ and } s \cdot r_{\alpha} = r_{\alpha} \cdot (-s).$$

Then we immediately have the following result.

Proposition 1.1.2. The map $A(\nu) : X(\nu) \to X(-\nu)$, given by

$$A(\nu)(x \otimes 1_{\nu}) = x \cdot r_{\alpha} \otimes 1_{-\nu},$$

is an intertwining operator.

It is a general fact that an invariant hermitian form on a module is equivalent with an intertwining operator between the module and its hermitian dual.

As a $\mathbb{Z}/2\mathbb{Z}$ -representation,

$$X(\nu) = triv \oplus sgn = span\{(1+s) \otimes 1_{\nu}, (1-s) \otimes 1_{\nu}\}.$$

Note that $(1+s) \cdot r_{\alpha} = (1+s)(\alpha-1)$ and $(1-s) \cdot r_{\alpha} = (1-s)(-\alpha-1)$. So the hermitian form corresponding to $A(\nu)$ has matrix

$$\begin{pmatrix} a_{triv}(\nu) & 0\\ 0 & a_{sgn}(\nu) \end{pmatrix} = \begin{pmatrix} 1 & 0\\ 0 & \frac{1-\nu}{1+\nu} \end{pmatrix},$$

where $a_{\tau}(\nu)$ denote the normalized operators on $\mathbb{Z}/2\mathbb{Z}$ -types. (The normalization is such that on the trivial $\mathbb{Z}/2\mathbb{Z}$ -type, the operator is identically 1.)

In conclusion, $X(\nu)$, $\nu \ge 0$, has a unique quotient $L(\nu)$, which is unitary for $0 \le \nu \le 1$. (At $\nu = 1$, L(1) = triv.)

1.2 $SL(2,\mathbb{R})$

Let G be the group $SL(2, \mathbb{R})$, B = AN the Borel subgroup (A is the maximal split torus) and K = SO(2) the maximal compact subgroup. Then $\widehat{K} \cong \mathbb{Z}$.

Consider the spherical principal series

$$X_B(\nu) = Ind_B^G(e^{\nu} \otimes 1), \ \nu \ge 0.$$

(In Prof. Trapa's table, this is denoted by $P_+(\nu)$.)

The Langlands quotient $L(\nu)$ is unitary for $0 \le \nu \le 1$. (L(1) is the trivial representation.) Recall that as a K-representation,

$$X_B(\nu)|_K = \sum_{m \in \mathbb{Z}} (2m).$$

There is an (integral) intertwining operator

$$A(\nu): X_B(\nu) \to X_B(-\nu),$$

which is normalized so that it is identically 1 on the trivial K-type. One can compute the restriction of $A(\nu)$ on each K-type. Since the K-types are onedimensional, these restrictions are scalars. A classical computation shows that these scalars are

$$A_{(2m)}(\nu) = \frac{1-\nu}{1+\nu} \cdot \frac{3-\nu}{3+\nu} \cdot \dots \cdot \frac{2|m|-1-\nu}{2|m|-1+\nu}.$$

Remark. Note that

$$A_{(2)}(\nu) = a_{sgn}(\nu) = \frac{1-\nu}{1+\nu},$$

and the (unitary) complementary series is the same in the two cases.

2 Generalization

2.1 Graded Hecke algebra

Let $(\mathcal{X}, \Pi, \dot{\mathcal{X}}, \dot{\Pi})$ be a based root datum, with Δ the roots and $\dot{\Delta}$ the coroots, W the Weyl group. Set $\mathfrak{a} = \dot{\mathcal{X}} \otimes_{\mathbb{Z}} \mathbb{C}$ and $\check{\mathfrak{a}} = \mathcal{X} \otimes_{\mathbb{Z}} \mathbb{C}$. Similarly, define $\mathfrak{a}_{\mathbb{R}}, \check{\mathfrak{a}}_{\mathbb{R}}$.

Definition 2.1.1. (Lusztig) The graded Hecke algebra is the vector space $\mathbb{H} = \mathbb{C}W \otimes \mathbb{A}$, where $\mathbb{A} = Sym(\check{\mathfrak{a}})$, subject to the commutation relation

 $s_{\alpha} \cdot \omega = s_{\alpha}(\omega) \cdot s_{\alpha} + \omega(\check{\alpha}), \text{ for all } \alpha \in \Pi, \omega \in \check{\mathfrak{a}}.$

As in the A_1 case, \mathbb{H} has a *-operation, so it makes sense to define hermitian and unitary modules.

Remark. The problem of classifying the unitary representations with Iwahori fixed vectors of split p-adic groups can be reduced to the problem of identifying the unitary dual of graded Hecke algebras \mathbb{H} .

Some facts about \mathbb{H} :

- 1. (Bernstein,Lusztig) The center of \mathbb{H} is \mathbb{A}^W .
- 2. All simple \mathbb{H} -modules are finite dimensional, and the *central characters* are parametrized by W-orbits in \mathfrak{a} .
- 3. The H-modules have a Kazhdan-Lusztig classification.
- 4. (Barbasch-Moy) For every $w \in W$, with reduced expression $w = s_{\alpha_1} \dots s_{\alpha_m}$, one can define the element $r_w = r_{\alpha_1} \dots r_{\alpha_m}$, which does not depend on the reduced decomposition.

Let $X(\nu) = \mathbb{H} \otimes_{\mathbb{A}} \mathbb{C}_{\nu}$ be the principal series. Assume $\nu \in \mathfrak{a}_{\mathbb{R}}$ is dominant, i.e., $\langle \alpha, \nu \rangle \geq 0$, for all $\alpha \in \Pi$.

Definition 2.1.2. The \mathbb{H} -module U is called spherical if $Hom_W[triv, U] \neq 0$.

The spherical modules (with real central character) are precisely the (unique) Langlands quotients $L(\nu)$ of $X(\nu)$ with ν dominant.

Let w_0 be the longest Weyl group element. Define the (Barbasch-Moy) intertwining operator

$$A(\nu): X(\nu) \to X(w_0\nu), \quad x \otimes 1_{\nu} \mapsto x \cdot r_{w_0} \otimes 1_{w_0\nu}.$$

Then $L(\nu)$ is hermitian if and only if $w_0\nu = -\nu$. Assume this is the case.

If (τ, V_{τ}) is a W-type, $A(\nu)$ defines hermitian operators

$$a_{\tau}(\nu) : Hom_{W}[V_{\tau}, X(\nu)] \to Hom_{W}[V_{\tau}, X(-\nu)]$$

$$a_{\tau}(\nu) : (V_{\tau})^{*} \to (V_{\tau})^{*},$$

by the Frobenius reciprocity. Normalize them so that $a_{triv}(\nu) = Id$. The normalization factor is $(-1)^{|\Delta^+|} \prod_{\alpha \in \Delta^+} (1 + \langle \alpha, \nu \rangle)$.

Proposition 2.1.3. A spherical parameter ν is unitary if and only if $w_0\nu = -\nu$ and $a_{\tau}(\nu)$ is positive semidefinite for all $\tau \in \widehat{W}$.

If w_0 has a reduced decomposition $w_0 = s_1 s_2 \cdots s_n$, then the operators $a_{\tau}(\nu)$ have a decomposition

$$a_{\tau}(\nu) = a_{\tau,1}(w_1\nu) \cdot a_{\tau,2}(w_2\nu) \cdots a_{\tau,n}(w_n\nu),$$

where $w_i = s_{n-i+1} \dots s_n$. Each simple operator $a_{\tau,i}(\nu)$ is induced from an $\mathbb{H}(A_1)$ -operator and corresponds to a simple root α_i . Explicitly,

$$a_{\tau,i}(\nu) = \begin{cases} 1 & \text{on the } (+1)\text{-eigenspace of } s_{\alpha_i} \text{ of } V_{\tau}^* \\ \frac{1-\langle \alpha_i, \nu \rangle}{1+\langle \alpha_i, \nu \rangle} & \text{on the } (+1)\text{-eigenspace of } s_{\alpha_i} \text{ of } V_{\tau}^* \end{cases}$$

2.2 Split real groups

Let B = AN be a Borel subgroup, A maximal split torus, K maximal compact. Set $M = A \cap K$. As before, let $X_B(\nu)$ denote the spherical principal series $X_B(\nu) = Ind_B^G(e^{\nu} \otimes 1)$, where $\nu \in \mathfrak{a}_{\mathbb{R}}^*$, and ν is dominant.

There is a (Knapp-Zuckerman) normalized intertwining operator

$$A(\nu): X_B(\nu) \to X_B(-\nu).$$

The Langlands quotient $L(\nu)$, which is spherical, is hermitian if and only if $w_0\nu = -\nu$. If this is the case, for every K-type (μ, V_{μ}) , $A(\nu)$ induces operators:

$$A_{\mu}(\nu) : Hom_{K}[V_{\mu}, X_{B}(\nu)] \to Hom_{K}(V_{\mu}, X_{B}(-\nu))$$

$$A_{\mu}(\nu) : (V_{\mu}^{*})^{M} \to (V_{\mu}^{*})^{M},$$

by Frobenius reciprocity. The normalization is such that $A_{triv}(\nu) = Id$.

The Weyl group $W = N_G(A)/A \cong N_K(A)/M$, so for every K-type (μ, V_{μ}) , the space $(V_{\mu}^*)^M$ is naturally a W-type. Denote it by $\tau(\mu)$.

The Barbasch-Vogan idea of *petite* K-types is to identify a class of K-types μ such that the operators

$$A_{\mu}(\nu) = a_{\tau(\mu)}(\nu).$$

(As it will follow from the calculation, the Weyl group operators are for the Hecke algebra of the *dual* root datum.)

The operator $A(\nu)$, and consequently $A_{\mu}(\nu)$, have a (Gindikin-Karpelević) decomposition into operators $A(s_{\alpha}, \nu)$ relative to a reduced decomposition of w_0 .

For each simple root of A in G, consider the root homomorphism Ψ_{α} : $SL(2,\mathbb{R}) \to G$. Via Ψ_{α} , the compact group SO(2) embeds into K. Therefore, the K-type (μ, V_{μ}) has a decomposition into $\Psi_{\alpha}(SO(2))$ isotypic components:

$$V_{\mu} = \bigotimes_{j \in \mathbb{Z}} V_{\mu}(j).$$

The action of M preserves $V_{\mu}(j) + V_{\mu}(-j)$ and it has fixed vectors if and only if j is even. On the spaced of M-fixed vectors of $V_{\mu}(2m) + V_{\mu}(-2m)$, as in the $SL(2,\mathbb{R})$ case, the operator $A_{\mu}(s_{\alpha},\nu)$ is

$$A_{\mu}(s_{\alpha},\nu) = \prod_{1 \le j \le |m|} \frac{2j - 1 - \langle \check{\alpha},\nu \rangle}{2j - 1 + \langle \check{\alpha},\nu \rangle}.$$

Definition 2.2.1. A K-type (μ, V_{μ}) is called petite if for every simple root α , the decomposition of V_{μ} into $\Psi_{\alpha}(SO(2))$ -types contains only the representations $(j), |j| \leq 3$.

The following result is an immediate consequence.

Proposition 2.2.2 (Barbasch, Vogan). If (μ, V_{μ}) is a petite K-type, then $A_{\mu}(\nu) = a_{\tau(\mu)}(\nu)$, where the second operator is the Hecke algebra of \check{G} .

The condition of being petite is very restrictive. For example, for a group G, few W-types occur in $\tau(\mu)$ for μ petite K-types.

Barbasch identified all the petite K-types (and their corresponding Wtypes) for split real groups. There are also extensions of this idea: nonspherical principal series (Barbasch-Pantano), nonlinear covers of split real groups (Adams-Barbasch-Paul-Trapa-Vogan), U(p,q) (Barbasch).

Example. If $G = SL(n, \mathbb{R})$, K = SO(n), $W = S_n$, examples of petite *K*-types are $\mu = (\underbrace{2, 2, \ldots, 2}_{k}, 0, \ldots, 0), k \leq \lfloor \frac{n}{2} \rfloor$, which has $\tau(\mu) = (n - k, k)$.

3 The spherical unitary dual

3.1 Relevant W-types

Let us return to the setting of the Hecke algebra \mathbb{H} . We need to determine the spherical unitary dual of \mathbb{H} . In addition, in order to be able to use the calculations for real split groups, one must find a set of *relevant* W-types which detect unitarity *and* come from petite K-types.

Let \mathfrak{g} denote the complex Lie algebra attached to \mathbb{H} . Recall that by the Springer correspondence, to every nilpotent orbit \mathcal{O} in \mathfrak{g} , one attaches a subset of \widehat{W} . If $e \in \mathcal{O}$, define the *height* of \mathcal{O} to be

 $ht(\mathcal{O}) = \max\{\ell \ge 0 : ad(e)^{\ell} \neq 0\}.$

Definition 3.1.1. A W-type τ is called relevant if the nilpotent orbit \mathcal{O} corresponding to τ in the Springer's correspondence has height $ht(\mathcal{O}) \leq 4$.

Then we have the first form of the answer for the spherical unitary dual problem.

Theorem 3.1.2. A spherical parameter ν for the Hecke algebra \mathbb{H} is unitary if and only if $a_{\tau}(\nu)$ is positive semidefinite for all relevant W-types τ .

This result was proved in the classical cases by Barbasch, in the exceptional cases by Barbasch-C.

Theorem 3.1.3 (Barbasch). Every relevant W-type comes from a petite K-type of the split real group.

Corollary 3.1.4. A spherical parameter ν for the real split group G is unitary **only if** it is unitary for the Hecke algebra associated to \check{G} .

For classical real split groups this condition is also sufficient, as proved by Barbasch.

3.2 Explicit description

We are still in the setting of the graded Hecke algebra \mathbb{H} .

Definition 3.2.1. A spherical parameter ν is called generic if the principal series $X(\nu)$ is irreducible.

The module $X(\nu)$ is reducible if and only if $\langle \alpha, \nu \rangle = 1$, for some positive root α .

Let us denote by SU_0 the set of unitary spherical generic parameters. This set can be described explicitly (combinatorially).

Theorem 3.2.2. The set of unitary spherical generic parameters SU_0 is a union of k simplices (alcoves) in the dominant Weyl chamber, where:

 $\begin{array}{rl} A_n: & k=1 \\ B_n: & k=2^{[(n-1)/2]} \\ C_n: & k=1 \\ D_n: & k=2^{[(n-2)/2]} \\ G_2: & k=2 \\ F_4: & k=2 \\ F_4: & k=2 \\ E_6: & k=2 \\ E_7: & k=8 \\ E_8: & k=16. \end{array}$

Note that the root systems above refer to the Hecke algebra, so they are the dual root systems of the split real group. Let \mathcal{O} be a nilpotent orbit in \mathfrak{g} . Any $e \in \mathcal{O}$ can be embedded into a Lie triple $\{e, h, f\}$. The centralizer of the Lie triple in \mathfrak{g} is a reductive Lie subalgebra. Denote it by $\mathfrak{z}(\mathcal{O})$.

To every dominant spherical parameter $\nu \in \mathfrak{a}_{\mathbb{R}}$, one can attach uniquely a nilpotent orbit \mathcal{O} in \mathfrak{g} . The orbit \mathcal{O} is the unique *G*-orbit meeting the 1eigenspace of $ad(\nu)$ in a dense orbit. (It is the orbit attached in the Kazhdan-Lusztig classification to the Iwahori-Matsumoto dual of the spherical module parametrized by ν .)

One partitions the spherical unitary dual into pieces $CS(\mathcal{O})$ parametrized by nilpotent orbits. Note that by definition $CS(0) = SU_0$.

Let Exc denote the following set of nilpotent orbits:

$$Exc = \{\underbrace{A_1 \widetilde{A_1}}_{F_4}, \underbrace{A_2 3 A_1}_{E_7}, \underbrace{A_4 A_2 A_1, A_4 A_2, D_4(a_1) A_2, A_3 2 A_1, A_2 3 A_1, 4 A_1}_{E_8}\}.$$

(The notation is as in the Bala-Carter classification.)

Then the spherical unitary dual of \mathbb{H} can be described as follows.

Theorem 3.2.3 (Barbasch, Barbasch-C.).