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1 Introduction

These are notes to accompany lectures at the conference in honor of Bill
Casselman and Dragan Milicic, held at Snowbird, June 4-8, 2006.

Suppose G is a real reductive group, such as SL(2, R), GL(n, R) or SO(p, q).
The irreducible admissible representations have been classified, by work of
Langlands, Knapp, Zuckerman and Vogan. This classification is somewhat
involved, and requires a substantial number of prerequisites. See [6] for a
reasonably accessible treatment. It is fair to say that it is difficult for a
non-expert to understand any non-trivial case, not to mention a group like
E8.

The purpose of these notes is to describe an algorithm to compute the
irreducible admissible representations of a real reductive group. This algo-
rithm has been implemented on a computer by Fokko du Cloux. An early
version of the software, and some other documentation and information, may
be found on the web page of the Atlas of Lie Groups and Representations,
at www.liegroups.org.

The subject is incomprehensible without looking at numerous examples.
Some examples are included at the end of these notes, others are found on
the Atlas web site, and I will do a number of examples in my lectures.

Here is a little more detail on what what the algorithm does.

(1) Allow the user to define

1



(a) A reductive algebraic group G,

(b) An inner class of real forms of G

(c) A particular real form G(R) of G

Fix G(R) and let K be the corresponding (complexified) maximal com-
pact subgroup

(2) Compute the component group of G(R)

(3) Enumerate the Cartan subgroups of G(R), and describe them as real
tori,

(4) For any Cartan subgroup H compute the “real” Weyl group W (G(R), H(R))

(5) Describe the flag variety K\G/B

(6) Compute a set Z parametrizing the irreducible representations of G(R)
with regular integral infinitesimal character

(7) Compute the cross action and Cayley transforms

(8) Compute Kazhdan-Lusztig polynomials

In fact the proper setting for all of the preceding computations is not a
single real group G(R), but an entire “inner class” of real forms, as described
in Sections 2–4.

The approach used in these notes most closely follows [1]. This reference
has the advantage over [2], which later supplanted it, in that it focusses on
the case of regular integral infinitesimal character, and avoids some technical
complications arising from the general case. There are a few changes in
terminology between these references which are discussed in the Remarks.
We also use many results from [5].

2 Reductive Groups and Root Data

We first describe the parameters for a connected algebraic group G. These
are provided by root data and based root data. A good reference is Springer’s
book [13], or Humphreys [4].
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We begin with a pair X,X∨ of free abelian groups of finite rank, together
with a perfect pairing 〈 , 〉 : X × X∨ → Z. Suppose ∆ ⊂ X, ∆∨ ⊂ X∨ are
finite sets, equipped with a bijection α → α∨. For α ∈ ∆ define the reflection
sα ∈ Hom(X,X):

sα(x) = x − 〈x, α∨〉α (x ∈ X)

and sα∨ ∈ Hom(X∨, X∨) similarly.
A root datum is a quadruple

(2.1) D = (X, ∆, X∨, ∆∨)

where X,X∨ are free abelian groups of finite rank, in duality via a perfect
pairing 〈 , 〉, and ∆, ∆∨ are finite subsets of X,X∨, respectively.

We assume there is a bijection ∆ 3 α → α∨ ∈ ∆∨ such that for all α ∈ ∆,

〈α, α∨〉 = 2, sα(∆) = ∆, sα∨(∆∨) = ∆∨.

By [3, Lemma VI.1.1] (applied to Z〈∆〉 and Z〈∆∨〉) the conditions determine
the bijection uniquely once ∆ and ∆∨ are given. In particular (X, ∆, X∨, ∆∨)
is determined by (X, ∆) if R〈∆〉 = X. This condition holds if and only if
the corresponding group is semisimple.

Suppose Di = (Xi, ∆i, X
∨
i , ∆∨

i ) (i = 1, 2) are root systems. They are
isomorphic if there exists φ ∈ Hom(X1, X2) satisfying φ(∆1) = ∆2 and
φt(∆∨

2 ) = ∆∨
1 . Here φt ∈ Hom(X∨

2 , X∨
1 ) is defined by

(2.2) 〈φ(x1), x
∨
2 〉2 = 〈x1, φ

t(x∨
2 )〉1 (x1 ∈ X1, x

∨
2 ∈ X∨

2 ).

Let G be a connected reductive algebraic group and choose a Cartan
subgroup H of G. Let X∗(H), X∗(H) be the character and co-character
groups of H respectively. Let ∆ = ∆(G,H) be the set of roots of H in G,
and ∆∨ = ∆∨(G,H) the corrresponding co-roots. Associated to (G,H) is
the root datum

(X∗(H), ∆, X∗(H), ∆∨).

If H ′ is another Cartan subgroup then the corresponding root datum is
isomorphic to the given group, and this isomorphism is canonical up to the
Weyl group W (G,H).

Now suppose ∆+ is a set of positive roots of ∆, with corresponding set of
simple roots Π. Then Π∨ = {α∨ |α ∈ Π} is a set of simple roots of ∆∨, and

Db = (X, Π, X∨, Π∨)
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is a based root datum. Given G and H choose a Borel subgroup of G con-
taining H. This defines a set of simple roots Π of ∆, and also a set of simple
coroots Π∨. We obtain a based root datum Db = (X, Π, X∨, Π∨). Given
another choice of H ′ ⊂ B′ there is a canonical isomorphism of based root
data.

The root datum or based root datum of G determine G up to isomorphism
[13].

If D = (X, ∆, X∨, ∆∨) is a root datum then the dual root datum is
D∨ = (X∨, ∆∨, X, ∆). Given G with root data D = (X, ∆, X∨, ∆∨) the dual
group is the group G∨ defined by D∨. We define duality of based root data
similarly.

2.1 Automorphisms

There is an exact sequence

(2.3)(a) 1 → Int(G) → Aut(G) → Out(G) → 1

where Int(G) is the group of inner automorphisms of G, Aut(G) is the auto-
morphism group of G, and Out(G) ' Aut(G)/Int(G) is the group of outer
automorphisms. All automorphisms here are algebraic, or equivalently auto-
morphisms of G(C) as a complex Lie group.

A splitting datum or pinning for G is a set S = (B,H, {Xα}) where B is
a Borel subgroup, H is a Cartan subgroup contained in B and {Xα} is a set
of root vectors for the simple roots defined by B.

An automorphism of G is said to be distinguished if it preserves a splitting
datum. The only inner automorphism which is distinguished is the identity,
and the group Int(G) acts simply transitively on the set of splitting data.
Given a splitting datum S = (B,H{Xα}) this gives an isomorphism

(2.3)(b) φS : Out(G) ' StabAut(G)(S) ⊂ Aut(G)

and this is a splitting of the exact sequence (2.3)(a). We obtain isomorphisms

(2.3)(c) Out(G) ' Aut(Db) ' Aut(D)/W.

If G is semisimple and simply connected or adjoint then Out(G) is isomorphic
to the automorphism group of the Dynkin diagram of G.

If τ ∈ Aut(D) then −τ t ∈ Aut(D∨) (cf. 2.2). Now suppose τ ∈ Aut(Db).
While −τ t is probably not in Aut(D∨

b ), if we let w0 be the long element of
the Weyl group we have −w0τ

t ∈ Aut(D∨
b ).
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Definition 2.4 Suppose τ ∈ Aut(Db). Let τ∨ = −w0τ
t ∈ Aut(D∨

b ). This
defines a bijection Aut(Db) ↔ Aut(D∨

b ). By (2.3)(c) we obtain a bijection
Out(G) ↔ Out(G∨) by composition:

(2.5) Out(G) ↔ Aut(Db) ↔ Aut(D∨
b ) ↔ Out(G∨).

For γ ∈ Out(G) we write γ∨ for the corresponding element of Out(G∨). The
map γ → γ∨ is a bijection of sets.

Remark 2.6 This is not necessarily an isomorphism of groups. For example
the identity goes to the image of −w0 in Out(G), which is the identity if and
only if −1 ∈ W (G,H).

Example 2.7 Let G = PGL(n) (n ≥ 3). Then G∨ = SL(n) and Out(G) '
Out(G∨) ' Z/2Z. If γ = 1 ∈ Out(G) then γ∨ is the non-trivial element of
Out(G∨). It is represented by the automorphism τ∨ : g → tg−1 of G∨. Note
that τ∨(g) = g−1 for g in the diagonal Cartan subgroup of G∨.

3 Involutions of Reductive Groups

Suppose σ is an anti-holomorphic involution of G(C). We say σ or G(R) =
G(C)σ is a real form of G(C).

We prefer to work with holomorphic involutions of G(C), or equivalently
involutions in Aut(G). This is the Cartan involution.

Definition 3.1 An involution of G is an element θ ∈ Aut(G) satisfying
θ2 = 1. Two involutions are equivalent if they are conjugate by an element
of Int(G).

Thus two involutions θ, θ′ are equivalent if θ′ = int(h) ◦ θ ◦ int(h−1) for
some h ∈ G, i.e.

(3.2) θ′(g) = hθ(h−1gh)h−1 for all g ∈ G.

This differs from the usual terminology in one subtle but important way:
the usual definition allows conjugacy by all of Aut(G) rather than Int(G).

Suppose σ is a real form of G(C) with G(R) = G(C)σ. Then there is an
involution θ ∈ Aut(G) such that θσ = σθ and G(R)θ is a maximal compact
subgroup of G(R). Conversely given an involution θ ∈ Aut(G) choose σ0 so
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that θσ0 = σ0θ and G(C)σ0 is compact. Then σ = θσ0 is a real form of G(C),
and if G(R) = G(C)σ then G(R)θ is a maximal compact subgroup of G(R).

This defines a bijection between G(C)-conjugacy classes of anti-holomorphic
involutions σ and G(C)-conjugacy classes of holomorphic involutions θ. See
[7, Section VI.2].

Definition 3.3 An involution θ ∈ Aut(G) (Definition 3.1) is in the inner
class of γ ∈ Out(G) if θ maps to γ in the exact sequence (2.3)(a). If θ, θ′ are
involutions of G we say θ is inner to θ′ if θ and θ′ have the same image in
Out(G).

This corresponds to the usual notion of inner form [13, 12.3.7].

Remark 3.4 The results of [2] are stated in terms of real forms (i.e. anti-
holomorphic involutions. See Remark 5.11.

4 Basic Data

.
Based on the preceding considerations, our basic data will be:

(1) A connected reductive algebraic group G,

(2) Cartan and Borel subgroups H ⊂ B ⊂ G,

(3) An involution γ ∈ Out(G).

Alternatively we may choose

(a) A based root datum Db = (X, Π, X∨, Π∨),

(b) An involution γ of Db.

The relationship of (1-3) and (a-b) is given in Section 2.
A key to our algorithm is that H and B are fixed once and for all. This

enables us to do all of our constructions on a fixed Cartan subgroup. We let
W = W (G,H) be the Weyl group.

By duality we obtain the dual based root datum D∨
b , γ∨ (cf. Definition

2.4), and the dual group G∨. In particular G∨ comes equipped with fixed
Cartan and Borel subgroups H∨ ⊂ B∨. We have X∗(H) = X = X∗(H

∨)
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and X∗(H) = X∨ = X∗(H∨). These are canonical identifications. They
induce identifications h = h∨∗ and h∨ = h∗. We are also given the bijection
∆ = ∆(G,H) 3 α → α∨ ∈ ∆∨ = ∆(G∨, H∨). We identify W (G,H) with
W (G∨, H∨) by the map W (G,H) 3 w → wt ∈ W (G∨, H∨) (2.2).

The weight lattice is

(4.1) P = {λ ∈ X∗(H) ⊗ C | 〈λ, α∨〉 ∈ Z for all α ∈ ∆}

and dually the co-weight lattice is

(4.2)(a) P ∨ = {λ∨ ∈ X∗(H) ⊗ C | 〈α, λ∨〉 ∈ Z for all α ∈ ∆}.

These are actually lattices only if G is semisimple. We write P (G,H)
and P∨(G,H) to indicate the dependence on G and H. We may identify
2πiX∗(H) with the kernel of exp : h → H(C). Under this identification

(4.2)(b) P ∨ = {λ∨ ∈ h | exp(λ∨) ∈ Z(G)}

We also define

(4.2)(c) Preg = {λ ∈ P | 〈λ, α∨〉 6= 0 for all α ∈ ∆}

(4.2)(d) P ∨
reg = {λ∨ ∈ P∨ | 〈α, λ∨〉 6= 0 for all α ∈ ∆}

5 Extended Groups and Strong Involutions

Fix basic data (G, γ) as in Section 4. Let Γ = {1, σ} be the Galois group of
C/R.

Definition 5.1 A weak extended group for (G, γ) is a semi-direct product
GoΓ where the automorphism int(σ) of G is distinguished (cf. Section 2.1),
and the image of int(σ) in Out(G) is γ.

An extended group for (G, γ) is a weak extended group GΓ, together with
a G-conjugacy class of splittings of the exact sequence

(5.2) 1 → G → GΓ → Γ → 1.

The following Lemma follows immediately from the definitions.
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Lemma 5.3 A weak extended group GΓ for (G, γ) contains an element δ
satisfying

(1) GΓ = 〈G, δ〉,

(2) δ2 = 1,

(3) int(δ) stabilizes a splitting datum (B,H, {Xα}),

(4) the image of int(δ) in Out(G) is γ.

We say an element satisfying (1-4) is distinguished. An extended group is,
in addition, a choice of G-conjugacy class of distinguished elements δ.a

The weak extended group for (G, γ) is unique up to isomorphism. If
〈G, δ〉, 〈G, δ′〉 are extended groups there is such an isomorphism φ, uniquely
determined up to conjugation by G by the condition that φ(δ) is G-conjugate
to δ′. Thus we refer to the (weak) extended group GΓ for (G, γ).

Example 5.4 Suppose γ = 1. Then the weak extended group is GΓ = G×Γ.
The extended group is, in addition, a choice of element δ = (z, σ) ∈ G × Γ
where z ∈ Z(G) and z2 = 1.

The weak extended group GΓ encapsulates all of the real forms of G in
the inner class defined by γ. That is if x ∈ GΓ\G satisfies x2 ∈ Z(G) then
int(x) is in the inner class of γ. Conversely, if θ is in the inner class of γ, then
there is an x ∈ GΓ\G with x2 ∈ Z(G) and θ = int(x). For the algorithm it
is important to keep track of x, and not just θ = int(x).

Definition 5.5 A strong involution for (G, γ) is an element x ∈ GΓ\G such
that x2 ∈ Z(G). Two strong involutions are said to be equivalent if they are
conjugate by an element of G. If x is a strong involution let θx = int(x). We
say x is distinguished if θx is distinguished (cf. Section 2.1).

Let I(G, γ) be the strong involutions for (G, γ).

If γ is understood we will say that x is a strong involution of G, and let
I = I(G, γ). The next Lemma is immediate from the definitions.

Lemma 5.6 The map I(G, γ) 3 x → θx is a surjection from I(G, γ) to the
set of involutions of G in the inner class of γ. It factors to a surjection

(5.7) I(G, γ)/G³ {involutions of G in the inner class of γ}/G
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If G is adjoint this is a bijection, and the right hand side is in bijection with
the set of real forms of G (cf. Section 3).

We will make frequent use of the following construction. Choose a
set of representatives {xi | i ∈ I} of the set of equivalence classes of strong
involutions. That is

(5.8)(a) {xi | i ∈ I} = I(G, γ)/G.

(Note that G does not act on I(G, γ); the right hand side means I(G, γ)
modulo the equivalence relation: x ' x′ if x′ is G-conjguate to x.) If G is
semisimple I is a finite set. For i ∈ I let

(5.8)(b) θi = int(xi), Ki = Gθi .

Then the stabilizer of xi in G is Ki and we have

(5.8)(c) I(G, γ) ' ∪i∈IG/Ki.

The automorphisms θδ = int(δ) for δ as in Lemma 5.3 constitute a sin-
gle G-conjugacy class of distinguished automorphisms. This is the Cartan
involution of the “maximally compact” real form in the inner class of γ.

We say an involution of G is quasisplit if it is the Cartan involution of
a quasisplit group. For a characterization of quasisplit involutions see [5,
Proposition 6.24] (where they are called “principal”). By [5, Theorem 6.14]
there is a unique conjugacy class of quasisplit involutions in this inner class.

Lemma 5.9 Suppose GΓ is a weak extended group for (G, γ). (1) There
exists a strong involution x ∈ GΓ such that θx is distinguished. The involution
θx is unique up to conjugacy by G.
(2) There exists a strong involution x so that θx is a quasisplit involution.
The involution θx is unique up to conjugacy by G.

Remark 5.10 The extended group GΓ defined in [5, Definition 9.6] is de-
fined in terms of a quasisplit involution, rather than a distinguished one. The
equivalence of the two definitions is the content of [5, (9.7)]. This discussion
also shows that, applied to (G∨, γ∨), the group G∨Γ is isomorphic to the
L-group of G.

Remark 5.11 Since [2] works with real forms instead of involutions (cf. Re-
mark 3.4), the extended groups GΓ defined in [2, Chapter 3] are in terms
of an anti-holomorphic involution. The resulsts are equivalent, but some
translation is necessary between the two pictures.
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6 Representations

Fix basic data (G, γ) as in Section 2. A representation of a strong involution
x is a pair (x, π) where x is a strong involution of G and π is a (g, Kx(C))-
module. We say (x, π) is isomorphic to (x′, π′) if there exists g ∈ G such that
gxg−1 = x′ and πg ' π.

The next example is a key one for understanding the formalism of repre-
sentations of strong involutions.

Example 6.1 Suppose G = SL(2). Then γ = 1, δ acts trivially on G and
we may drop it from the notation. Let x = diag(i,−i). Then Kx(C) ' C

∗

and the corresponding real group is isomorphic to SL(2, R). Let π be a
(g, Kx(C))-module in the discrete series with the same infinitesimal character
as the trivial representation. Then (x, π) is a representation of the strong
involution x of G.

Now consider the representation (x, π∗) where π∗ is the contragredientn
representation. Then Π = {(x, π), (x, π∗)} may be thought of as an L-packet
of discrete series representations of SL(2, R). The key point is that there
exists g ∈ G conjugating x to −x. By our notion of equivalence of repre-
sentations of strong real forms we say (x, π∗) and (−x, π∗g) are equivalent.
Now π∗g ' π as a (g, Kx)-module. So another way to write our L-packet is
Π = {(x, π), (−x, π)}. In this way Π is parametrized by the set ±x.

More generally we also allow x = ±I. Note that these element are not
conjugate, and in each case Kx = G, so the corresponding involution is
compact. Let σ be the trivial representation of G. Then (I, σ) and (−I, σ)
are trivial representations of distinct strong involutions of G.

Thus Π = {(x, π), (−x, π), (I, σ), (−I, σ)} is the set of discrete series
representations of strong involutions of G, with trivial infinitesimal character,
up to equivalence. Note that it is parametrized naturally by {x ∈ H |x2 ∈
Z(G)}.

An infinitesimal character for g may be identified, via the Harish-Chandra
homomorphism, with a G-orbit of semisimple elements in g∗. Recall we have
a fixed Cartan subgroup H ⊂ G. The g∗/G is in bijection with h∗/W . For
λ ∈ h∗ we write χλ for the corresponding infinitesimal character; note that
χλ = χwλ for all w ∈ W .

Definition 6.2 We say λ and χλ are integral if λ ∈ P , and regular if
〈λ, α∨〉 6= 0 for all α ∈ ∆.
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Given a strong involution x and λ we let M(x, λ) be the category of
(g, Kx(C))-modules with infinitesimal character λ.

Lemma 6.3 Suppose λ, λ′ are regular and λ − λ′ ∈ X∗(H). Then there
is a canonical translation functor Ψλ′

λ : M(x, λ) → M(x, λ′) which is an
equivalence of categories. If (x, π) is an irreducible or standard module then
so is (x, Ψλ′

λ (π)).

Let Wλ be the integral Weyl group defined by λ, i.e. the Weyl group
of the root system {α | 〈λ, α∨〉 ∈ Z}. After acting by Wλ we may assume
〈λ, α∨〉 ∈ N if and only if 〈λ′, α∨〉 ∈ N. Then Ψλ′

λ is a standard translation
functor. See [16].

Definition 6.4 Fix a regular element λ0 ∈ h∗. Let

(6.5)(a) T (λ0) = {λ ∈ λ0 + X∗(H) |λ is regular}

A translation family based at λ0 is a set of representations {π(λ) |λ ∈
T (λ0)} satisfying

(1) π(λ) ∈ M(x, λ) (λ ∈ T (λ0))

(2) Ψλ′

λ (π(λ)) = π(λ′) (λ, λ′ ∈ T (λ0)).

We let Mt(x, λ0) be the set of all translation familes based at λ0.

7 L-data

Fix basic data (G, γ), with corresponding dual data (G∨, γ∨) (cf. Section 4).
Let G∨Γ be the weak extended group associated to (G∨, γ∨) (Definition 5.1).
We begin by parametrizing admissible maps of the Weil group into G∨Γ.

So let WR be the Weil group of R. That is WR = 〈C∗, j〉 where jzj−1 = z
and j2 = −1. An admissible homomorphism φ : WR → GΓ is a continuous
homomorphism such that φ(C∗) consists of semsimple elements and φ(j) ∈
GΓ\G.

Suppose φ : WR → GΓ is an admissible homomorphism. Then φ(C∗) is
contained in a Cartan subgroup H1(C) and φ(z) = exp(2πi(λz + νz)) for
some λ, ν ∈ h1. We define the infinitesimal character of φ to be the G-orbit
of λ. We say the infinitesimal character of φ is integral if λ ∈ P (4.2)(a).
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Definition 7.1 (1) A one-sided L-datum for (G∨, γ∨) is a pair (y,B∨
1 )

where y is a strong involution of G∨ (Definition 5.5) and B∨
1 is a Borel

subgroup of G∨.

(2) A complete one-sided L-datum for (G, γ) is a set (y,B∨
1 , λ) with (y,B∨

1 )
as in (1) and λ ∈ P ∨

reg
(cf. (4.2)(d)) satisfies exp(2πiλ) = y2.

Let

(7.2)
P(G∨, γ∨) = {one-sided L-data}/G∨

Pc(G
∨, γ∨) = {complete one-sided L-data}/G∨

If S = (y,B∨
1 ) is a one-sided L-datum we let z(S) = y2 ∈ Z(G∨). This

gives a well defined map

(7.3) P(G∨, γ∨) 3 S → z(S) ∈ Z(G∨).

Fix a complete one-sided L-datum (y,B∨
1 , λ). By [9], also see [2, Lemma

6.18] there is a θy-stable Cartan subgroup H∨
1 of B∨

1 , unique up to conjugacy
by K∨

y ∩B∨
1 . Choose g ∈ G∨ such that gH∨g−1 = H∨

1 and 〈Ad(g)λ, α∨〉 ≥ 0
for all α ∈ ∆(B∨

1 , H∨
1 ). Let λ1 = Ad(g)λ ∈ h∨

1 .
Define φ : WR → GΓ by:

(7.4)
φ(z) = zλ1zyλ1

φ(j) = exp(−πiλ1)y

The first statement is shorthand for φ(ez) = exp(zλ1 + Ad(y)zλ1). It is easy
to see φ is an admissible homomorphism, and the G∨ conjugacy class of φ is
independent of the choice of H1 and g. The next result follows easily.

Proposition 7.5 There is a natural bijection between Pc(G
∨, γ∨) and G∨-

conjugacy classes of admissible homomorphisms φ : WR → G∨Γ with integral
infinitesimal character (Definition 6.2).

By [8] G∨-conjugacy classes admissible homomorphisms φ : WR → G∨Γ

parametrize “L-packets” of representations of real forms of G. As in (5.8)
choose a set {xi | i ∈ I} of representatives of equivalence classes of strong
involutions. We define an L-packet to be the union, over i ∈ I of L-packets
for the strong involution xi (which may be empty). We obtain:

Corollary 7.6 There is a natural bijection between P(G∨, γ∨) and the set
of translation families of L-packets of representations of strong involutions
of G with regular integral infinitesimal character.
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For the purposes of this Proposition we have defined one-sided L-data
P = P(G∨, γ∨) for (G∨, γ). It is evident that the definition is symmetric,
and applies equally to (G, γ).

Definition 7.7 An L-datum for (G, γ) is a set

(7.8) (x,B1, y, B∨
1 )

where x is a strong real form of G, y is a strong real form of G∨, B1 is a
Borel subgroup of G and B∨

1 is a Borel subgroup of G∨, satisfying

(7.9) θt
x,h = −θy,h∨

A complete L-datum is a set

(7.10) (x,B1, y, B∨
1 , λ)

where the same conditions hold, λ ∈ P ∨
reg

and exp(2πiλ) = y2.
Let

(7.11)
L = {L-data}/G × G∨

Lc = {complete L-data}/G × G∨

Note that

(7.12)
L ⊂ P(G, γ) × P(G∨, γ∨)

Lc ⊂ Pc(G, γ) × Pc(G
∨, γ∨).

If S = (x,B1, y, B∨
1 ) is an L-datum we let SG = (x,B1) and S∨

G = (y,B∨
1 ).

These are one-sided L-data for (G, γ), and (G∨, γ∨) respectively.
Suppose Sc = (x,B1, y, B∨

1 , λ) is a set of complete L-data for (G, γ).
By [1, Theorem 2.12] associated to Sc is a (g, Kx)-module I(Sc). This is
standard module, with regular integral infinitesimal character λ, and has a
unique irreducible quotient J(Sc).

Theorem 7.13 The map

(7.14) Lc 3 Sc → J(Sc)

is a bijection between Lc and representations of strong involutions of G with
regular integral infinitesimal character (Definition 6.2).
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We give several alternative formulations of this result.
Suppose S = (x,B1, y, B∨

1 ) is a set of L-data. Note that Sc = (S, λ) is a
set of complete L-data provided exp(2πiλ) = z(S∨

G) (cf. (7.3)). Consider the
map

(7.15) L 3 S → {J(S, λ) | exp(2πiλ) = z(SG∨), λ regular}.

This is a translation family of representations (Definition 6.4).

Corollary 7.16 (1) The map (7.15) induces a bijection between L and
translation families of irreducible representations of strong involutions
of G with regular integral infinitesimal character.

(2) Fix a set Λ ⊂ P ∨
reg

of representatives of P/X∗(H). The map (7.15)
induces a bijection between L and the union, over λ ∈ Λ, of irreducible
representations of strong real forms of G with infinitesimal character
λ.

(3) Suppose G is semisimple and simply connected . Then the map (7.15)
induces a bijection between L and the irreducible representations of
strong involutions of G with infinitesimal character the same as that of
the trivial representation.

(4) Suppose G is adjoint, and fix a set Λ ⊂ Preg of representatives of P/R.
Then the map (7.15) induces a bijection between L and the and the irre-
ducible representations of real forms of G, with infinitesimal character
in Λ.

8 Relation with the flag variety

The one-sided parameter space P = P(G, γ) has a natural interpretation in
terms of the flag variety. We see this by conjugating any pair (x,B1) to one
with x in a set of representatives of strong involutions. In the next section
we will instead conjugate B1 to B, and thereby obtain a combinatorial model
of P .

Now let B be the set of Borel subgroups of G. Then the set of one-sided
L-data for (G, γ) is I × B, and

(8.1) P = (I × B)/G.
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Every Borel subgroup is conjugate to B, so B ' G/B.
As in (5.8) choose a set {xi | i ∈ I} of representatives of equivalence classes

of strong involutions. Then

(8.2) P ' ∪i∈I(G/Ki × G/B)/G

with G acting by multiplication on G/Ki and G/B. It is now an elementary
exercise to see the map

(8.3) (x,B1) = (gxig
−1, hBh−1) → Ki(g

−1h)B (g, h ∈ G)

is a bijection:

Proposition 8.4 There is a canonical bijection

(8.5) P ↔ ∪i∈I Ki\G/B.

Let us apply this Proposition to (G∨, γ∨).

9 The One Sided Parameter Space

Fix basic data (G, γ), and let GΓ be a weak extended group (Definition 5.1)
as usual. We turn now to the question of formulating an effective algorithm
for computing P = P(G, γ). We begin by looking for a normal form for
one-sided L-data.

Recall P = (I × B)/G. Since every Cartan subgroup is conjugate to B,
every element of I ×B may be conjugated to one of the form (x,B). Thatis
the map

(9.1)(a) I 3 x → (x,B) ∈ (I × B)/G = P

is surjective. Since B is its own normalizer, we see (x,B) is G-conjugate to
(x′, B) if and only if x is B-conjugate to B ′. So we obtain a bijection

(9.1)(b) I/B ∈ x → (x,B) ∈ P .

Suppose x ∈ I. By [9] x ∈ NormGΓ(H1) for some Cartan subgroup
H1 ⊂ B. There exists b ∈ B such that bH1b

−1 = H, so bxb−1 ∈ NΓ. If b1 is
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another such element then b1 = hb with h ∈ H, and b1xb−1
1 = h(bxb−1)h−1.

Therefore

(9.1)(c) I/B ' (I ∩ NΓ)/H

and by (a) and (c) we have

(9.1)(d) P ' (I ∩ NΓ)/H

This gives our primary combinatorial construction:

Definition 9.2 Let

(9.3)
X (G, γ) = (I ∩ NΓ)/H

= {x ∈ NormGΓ\G(H) |x2 ∈ Z(G)}/H

the set of strong involutions normalizing H, modulo conjugation by H. By
NormGΓ\G(H) we mean {g ∈ NormGΓ(H) | g ∈ GΓ\G}. If (G, γ) are under-
stood we write X = X (G, γ).

From the preceding discussion we conclude:

Proposition 9.4 The map

(9.5) X 3 x → (x,B) ∈ P

is a bijection.

Let I ↔ I/G, θi and Ki be as in (5.8). By Proposition 8.4 we obtain a
combinatorial description of the flag variety:

Corollary 9.6 There is a canonical bijection

(9.7) ∪iKi\G/B ↔ X

From Corollary 7.6 we see

Proposition 9.8 There is a canonical bijection between X (G∨, γ∨) and the
set of translation families of L-packets for strong involutions of G with regular
integral infinitesimal character.
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We need to understand the structure of X (G, γ) in some detail. We now
give more information about it. At the same time we reiterate some earlier
definitions and introduce the twisted involutions in the Weyl group.

We fix (G, γ) throughout and drop them from the notation.
Let

(9.9)(a) NΓ = NormGΓ(H), N = NormG(H)

and

(9.9)(b) W Γ = NΓ/H, W = N/H.

The group NΓ acts on H by conjugation, and this action factors to W Γ.
Restricted to W ⊂ W Γ this is the usual Weyl group action. We have a
natural embedding

(9.9)(c) W Γ\W ↪→ Aut(H).

and an exact sequence

(9.9)(d) 1 → H → NΓ → W Γ → 1.

This is equivariant for the action of N ; on H and W Γ this action factors to
W .

Recall (Definition 5.5)

(9.9)(e) I = {x ∈ GΓ\G |x2 ∈ Z(G)},

and that G acts on I by conjugation. Let

(9.9)(f)
X̃ = I ∩ NΓ

= {x ∈ NΓ\N |x2 ∈ Z(G)}.

These are the strong involutions in NΓ (see Definition 5.5). This carries an
action of N by conjugation. Let

(9.9)(g) X = X̃/H

as in (9.3). The action of N on X̃ factors to an action of W on X . Every

strong involution is conjugate to one in X̃ , and we see

(9.9)(h) X̃/N ' X /W.
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See Proposition 11.9 for an interpretation of this space.
For x̃ ∈ X̃ the restriction of θx̃ only depends on the image x of x̃ in X .

Therefore we may define

(9.9)(i) θx,H = θx̃ restricted to H.

Let RH denote multiplication on the right by H, and let

(9.9)(j) IW = X̃/RH = X /RH .

Let p̃ : X̃ → IW and p : X → IW be the natural maps. Then for x1, x2 ∈ X ,

(9.9)(k) θx1,H = θx2,H ⇔ p(x1) = p(x2).

So for τ ∈ IW define

(9.9)(l)
θτ,H = θx,H where p(x) = τ

= θx̃|H where p̃(x̃) = τ.

We have IW = (I ∩ NΓ)/H, which shows

(9.9)(m) IW = {w ∈ W Γ\W |w2 = 1}.

It carries an action of W , and the maps p, p̃ are equivariant for the action of
N . By (9.9)(n) IW may be thought of as the set of Cartan involutions of H:

(9.9)(n) IW ↔ {θx,H |x ∈ X}

The map x̃ → x̃2 ∈ Z(G) is constant on fibers of the map X̃ → X . For
x ∈ X we define x2 ∈ Z(G) accordingly.

Fix z ∈ Z(G). Let

(9.9)(o) X (z) = {x ∈ X |x2 = z}.

Define θ ∈ Aut(Z) to be int(δ) for any δ ∈ GΓ\G; this is independent of the
choice of δ. Note that X (z) is empty unless z ∈ Zθ.
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We can make these constructions more concrete using the splitting of
(5.2), i.e. an element δ as in Lemma 5.3. Let θ = int(δ). Then

(9.10)

X̃ = {x ∈ Nδ |x2 ∈ Z(G)}

= {gδ | g ∈ N, gθ(g) ∈ Z(G)}

↔ {g ∈ N | gθ(g) ∈ Z(G)}

X = X̃/{gδ → hgθ(h−1)δ |h ∈ H}

↔ {g ∈ N | gθ(g) ∈ Z(G)}/{g → hgθ(h−1) |h ∈ H}

IW = {τ ∈ Wδ | τ 2 = 1}

= {wδ |w ∈ W,wθ(w) = 1}

↔ {w ∈ W |wθ(w) = 1}

10 Fibers of the map φ : X → I

We continue with our basic data (G, γ) and X . It is important to understand

the fibers of φ̃ and φ. For τ ∈ IW let X̃τ = φ̃−1(τ) and Xτ = φ−1(τ). Recall
θx|H = τ , independent of x ∈ Xτ .

Proposition 10.1 Fix τ ∈ IW . Let

(10.2)(a) H1(τ) = {h ∈ H |hτ(h) ∈ Z(G)}

and

(10.2)(b) H2(τ) = {h ∈ H |hτ(h) = 1} ⊂ H1(τ)

Let

(10.2)(c) H2(τ)0 = {hτ(h−1) |h ∈ H}.

This is the identity component of H2(τ). Then

(1) H1(τ) acts simply transitively on X̃τ ,

(2) H1(τ)/H2(τ)0 acts simply transitively on Xτ ,

(3) Fix z ∈ Z(G). If Xτ (x) is non-empty then H2(τ)/H2(τ)0 acts simply
transitively on Xτ (z). If z 6∈ Z(G)τ then Xτ (z) is empty.
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In particular for each z ∈ Z(G), |Xτ (z)| is a power of 2. If G has no compact
central torus then then X is a finite set.

Proof. Choose x̃ ∈ X̃τ . Then X̃τ = {hx̃ |h ∈ H, (hx̃)2 ∈ Z(G)} =
{hx̃ |hτ(h)x̃2 ∈ Z(G)}. The first claim follows.

Because H is connected the image of the map h → hτ(h−1) is contained
in H2(w)0. On the other hand if h ∈ H2(w) then hτ(h−1) = h2, so the image
of this map is all of H2(τ)0.

For h ∈ H we have hx̃h−1 = hτ(h−1)x. This shows that the stabilizer in
H1(τ) of the image of x̃ in X is {hτ(h−1) |h ∈ H} = H2(τ)0. This proves (2),
and (3) follows immediately from the fact that (hx)2 = hτ(h)x2. The final
assertions are clear, since H2(τ)/H2(τ)0 is an elementary abelian two-group.
qed

Remark 10.3 We introduce some alternative notation, which will play a
role in Section 14. Let

(10.4)

Hτ = {h ∈ H | τ(h) = h}

H−τ = {h ∈ H | τ(h) = h−1} = H2(τ)

Tτ = (Hτ )0

Aτ = (H−τ )0

Note that H = TτAτ and Aτ ∩ Tτ is an elementary abelian two group. Then
the group in (3) is

(10.5) (H−τ )0/H−τ ' Tτ (2)/Aτ ∩ Tτ

If we write the real torus corresponding to τ as R
×a × S1b ×C

×c then this is
isomorphic to Z/2Z

b.

Remark 10.6 We give two alternative descriptions of the set in (3). Let Γ
act on H with the non-trivial element acting by τ . Let H∨ be the dual torus
of H, and let H∨(R) be the involution corresponding to −τ∨. Then

(10.7)
H2(τ)/H2(τ)0 ' H1(Γ, H)

' (H∨(R)/H∨(R)0)∧
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10.1 Root Systems and the Weyl group

It is convenient to collect some definitions and terminology.
Fix τ ∈ IW . Let

(10.8)

∆i = {α ∈ ∆ | τ(α) = α} (the imaginary roots)

∆r = {α ∈ ∆ | τ(α) = −α} (the real roots)

∆cx = {α ∈ ∆ | τ(α) 6= ±α} (the complex roots)

∆+
i = ∆i ∩ ∆+, ∆+

r = ∆r ∩ ∆+

Wi = W (∆i)

Wr = W (∆r)

We also let ρi = 1
2

∑
α∈∆+

i
α, and ρ∨

r = 1
2

∑
α∈∆+

r
α∨. As in [15, Proposition

3.12] let

(10.9)
∆C = {α ∈ ∆ | 〈ρi, α

∨〉 = 〈α, ρ∨
r 〉} = 0 ⊂ ∆cx

WC = W (∆C)

Now τ acts on W , and we let W τ be the fixed points. By [15, Proposition
3.12]

(10.10) W τ = (WC)τ
n (Wi × Wr).

Suppose α ∈ ∆i and choose x̃ ∈ X̃τ . If Xα is an α root vector θx̃(Xα) only
depends on the image x of x̃ in X . We say grx(α) = 0 if θx(Xα) = Xα and 1
otherwise. This is a Z/2Z-grading of ∆i in the sense that if α, β, α + β ∈ ∆i

then grx(α + β) = grx(α) + grx(β).
Let W (K,H) = NormK(H)/H∩K. This is isomorphic to W (G(R), H(R))

where G(R) is the real form of G corresponding to θ, and we call it the
real Weyl group (as opposed to the Weyl group of the real roots). Clearly
W (K,H) ⊂ W θ. Let A be the identity component of {h ∈ H | τ(h) = h−1}
and M = CentG(A). By [15, Proposition 4.16],

(10.11) W (K,H) = (WC)θ
n (W (M ∩ K,H) × Wr)

Furthermore

(10.12) W (M ∩ K,H) ' Wi,c n A(H)
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where Wi,c is the Weyl group of the compact imaginary roots and A(H)
is a certain two-group [15]. This describes W (K,H) in terms of the Weyl
groups (WC)θ, Wr and Wi,c, which are straightforward to compute, and the
two-group A(H). For more information on A(H) see Proposition 11.12 and
Remark 11.14.

11 Action of W on X

We now study the action of W on X , which plays an important role.
Let

(11.1) H = {(x,H1) |x ∈ I, H1 a θx − stable Cartan subgroup}/G.

With I ↔ I/G, θi and Ki as in (5.8) we have

(11.2) H = ∪i {θi-stable Cartan subgroups of G}/Ki.

On the other hand every Cartan subgroup is conjugate to H, and the nor-
malizer of H is N , so

(11.3) H ↔ I ∩ NΓ/N.

Recall I ∩ NΓ = X̃ , so

(11.4) (I ∩ NΓ)/N = X̃/N ' X /W.

Given i ∈ I let

(11.5) Xi = {x ∈ X |x is G-conjugate to xi},

the strong involutions in X equivalent to xi. We conclude

Proposition 11.6 For each i ∈ I we have

(11.7) Xi/W ↔ {θi-stable Cartan subgroups of G}/Ki.

Taking the union over i ∈ I gives

(11.8) X /W ↔ ∪i {θi-stable Cartan subgroups of G}/Ki

Recall that by Proposition (8.4) Xi ' Ki\G/B.
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Proposition 11.9 The map p : Xi/W → IW /W is injective. If θi is qua-
sisplit it is a bijection.

Remark 11.10 The map Xi/W → IW /W is discussed in [11].

Remark 11.11 The Lemma says that the conjugacy classes of Cartan sub-
groups of a real form of G embed in those of the quasisplit form. See [10].

Proof. For injectivity we have to show that x, x′ ∈ X , p(x) = p(x′) and
x′ = gxg−1 (g ∈ G) implies g′ = nxn−1 for some n ∈ N . The condition
p(x) = p(x′) implies x′ = hx for some h ∈ H, and then x′ = gxg−1 h =
gθx(g

−1). By [11, Proposition 2.3] there exists n ∈ N satisfying h = nθx(n
−1),

implying x′ = nxn−1.
We defer the proof of surjectivity in the quasisplit case until we have the

machinery of Cayley transforms.
qed

It is easy to interpret the real Weyl group (Section 10.1) in our setting.
Fix x ∈ X and let Kx = Gθx .

Proposition 11.12 W (Kx, H) ' StabW (x)

Proof. Choose a pre-image x̃ ∈ X̃ of x ∈ X . Then

(11.13)

W (K,H) = NormK(H)/H ∩ K

= StabN(x̃)/StabH(x̃)

= StabN(x̃)H/H.

It is easy to see that StabN(x̃)H = StabN(x), so this equals

StabN(x)/H ' StabN/H(x) = StabW (x).

qed

Remark 11.14 Recall the computation of W (K,H) comes down to the
computation of a certain elementary abelian two-group A(H) (cf. (10.12)).
We use Proposition 11.12 to compute A(H).

Now fix τ ∈ IW . By Proposition 11.12 and (10.11) we see (WC)τ and Wr

act trivially on Xτ . It is worth noting that we can see this directly.
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Proposition 11.15 Both (WC)τ and Wr act trivially on Xτ .

Proof. Fix x̃ ∈ X̃τ . The group (WC)τ is generated by elements sαsτα where
α ∈ ΦC . So suppose α ∈ ΦC and let σα ∈ N be a preimage of sα ∈ W . Let
στ(α) = x̃σαx̃−1. Note that α + τ(α) is not a root, since it would have to be
imaginary, and (by (10.9)) orthogonal to ρi. Therefore the root subgroups
Gα and Gτ(α) commute. Then x̃σαστ(α)x̃

−1 = στ(α)σα = σαστ(α).
If α is a real root with respect to τ this reduces easily to a computation

in SL(2). We omit the details.
qed

Another useful result obtained from the action of W θ is the computation
of strong involutions. Choose a distinguished element δ ∈ X (cf. Lemma
5.3) and let τ = p(δ) ∈ IW . By Lemma 5.9 the W -conjugacy class of τ is
independent of the choice of δ.

Every real form of G in the given inner class contains a unique “funda-
mental” (most compact) Cartan subgroup. In our setting this amounts to
the fact that every x ∈ X is G-conjugate to an element of Xτ .

Proposition 11.16 There is a canonical bijection between Xτ/W
τ and equiv-

alence classes of strong involutions of G.

12 The reduced parameter space

If G is adjoint the parameter space X = X (G, γ) perfectly captures the rep-
resentation of real forms (equivalently involutions) of G. If G is not adjoint
then strong involutions play an essential role, and the difference between in-
volutions and strong involutions is inescapable. Nevertheless in some respects
the space X is larger than necessary, and a satisfactory theory is obtained
with a quotient, the reduced one-sided parameter space. In particular this is
always a finite set.

There is a natural action of Z = Z(G) on X by left multiplication.
This preserves the fibers Xτ , and commutes with the conjugation action
of G. For x ∈ X and z ∈ Z multiplication by z is a bijection between
{x′ ∈ X |x′ is conjugate to x} and {x′′ ∈ X |x′′ is conjugate to zx}. In our
parametrization of representations (cf. Section 15) this will amount to the
same representations of two different strong involutions, corresponding to the
same ordinary involution (or real form). In other words the orbit pictures
for x and zx are identical.
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For example suppose G = SL(2) and take x = I and zx = −I. Then
x and zx both correspond to the compact group SU(2), and we are simply
getting the trivial representation of SU(2), counted twice. See the SL(2)
example in Section 16.

Recall (following (9.9)(o)) θ ∈ Aut(Z) is defined and X (z) is empty for
z 6∈ Zθ. Note that if x ∈ X (z′) and z ∈ Z then

(12.1) zx ∈ X (z′zθ(z).

It is easy to see that

(12.2) Zθ/{zθ(z) | z ∈ Z}

is a finite set. This comes down to the fact that if Z is a torus then
Zθ/{zθ(z)} ' Z/2Z

n where n is the number of R
× factors in the corre-

sponding real torus (cf. Remark 10.3).

Definition 12.3 Choose a set of representatives Z0 for Zθ/{zθ(z)}. The
reduced parameter space is

(12.4) X0(G, γ) = {X (z) | z ∈ Z0}

Remark 12.5 This is not the same thing X modulo the action of Z.

The calculations needed to understand representation theory (see Section
15) take place entirely in a fixed set X (z). The sets X (z ′) and X (z′zθ(z))
are canonically identified, so it is safe to think of X (z) as being defined for
z ∈ Z0. The Atlas software takes this approach.

13 Cayley Transforms

Fix basic data (G, γ). We continue to work on the one-sided parameters
space X . We begin with some formal constructions.

Fix x ∈ X and let τ = φ(x) ∈ IW . Recall (Section 10.1) τ defines the real,
imaginary and complex roots, and x defines a grading grx of the imaginary
roots. Suppose α is an imaginary non-compact root, i.e. τ(α) = α and
grx(α) = 1.

Let Gα be the derived group of CentG(ker(α)), and Hα ⊂ Gα the one-
parameter subgroup corresponding to α. Then Gα is isomorphic to SL(2) or
PSL(2) and Hα is a Cartan subgroup of Gα. Choose σα ∈ NormGα

(Hα)\Hα,
so σα(α) = −α.
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Definition 13.1 Suppose x ∈ X and α is a non-compact imaginary root
with respect to θx. Choose a representative x̃ ∈ X̃ of x, and define cα(x) to
be the image of σαx̃ in X .

Lemma 13.2 Fix x ∈ X .

(1) cα(x) is well defined, independent of the choice of σα and x̃.

(2) cα(x) is G-conjugate to x, and cα(x)2 = x2.

(3) p(cα(x)) = sαp(x) ∈ IW .

Proof. Fix x̃ ∈ X̃ , and let t = α∨(i) ∈ Hα. Suppose h ∈ Hα. We have a few
elementary identities, essentially in SL(2):

(13.3)

σαhσ−1
α = h−1, hσαh−1 = h2σα

x̃hx̃−1 = h

tgt−1 = x̃gx̃−1 (g ∈ Gα)

x̃σαx̃−1 = σ−1
α

The first two lines follow from σα(α∨) = −α∨ and θx̃(α
∨) = α∨. For the

third, int(t) and int(x̃) agree on Gα, since they agree on Hα and the ±α root
spaces. The last assertion follows from the third and a calculation in SL(2).

Now σαx̃ clearly normalizes H, and

(σαx̃)2 = σα(x̃σαx̃−1)x̃2 = x̃2 ∈ Z(G),

so σαx̃ ∈ X̃ .
Given a choice of σα any other choice is of the form h2σα = hσαh−1 for

some h ∈ Hα, and

(13.4) (h2σα)x̃ = (hσαh−1)x̃ = hσα(h−1x̃h)h−1 = h(σαx̃)h−1.

Therefore the image of σαx̃ in X is independent of the choice of σα.
We need to show that if h ∈ H then σαx̃ and σα(hx̃h−1) have the same

image in X . Write H = Hα(ker(α)). If h ∈ Hα then hx̃h−1 = x̃ so this is
obvious. If h ∈ ker(α) σαh = hσα, and σα(hx̃h−1) = h(σαx̃)h−1.
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For the second assertion, we actually show cα(x) is conjugate to x by an
element of Gα. By a calculation in SL(2) is t is easy to see g(σαt)g−1 = t for
some g ∈ Gα. Therefore

(13.5) g(σαx̃)g−1 = g(σαtt−1x̃)g−1 = g(σαt)g−1g(t−1x̃)g−1 = tt−1x̃ = x̃.

The final assertion is obvious.
qed

We next define inverse Cayley transforms, which have a somewhat dif-
ferent flavor. Suppose x̃ ∈ X̃ , and let τ = φ̃(x̃). Suppose α is a real root
with respect to θx̃, i.e. τ(α) = −α. Define Gα and Hα as before. Let
mα = α∨(−1).

Lemma 13.6 There exists σα ∈ NormGα
(Hα)\Hα so that σαx̃ = gx̃g−1 for

some g ∈ Gα. The only other element satisfying these conditions is mασα.

Proof. This is similar to the previous case. The involution θx restricted to
Gα is inner for Gα, and acts by h → h−1 for h ∈ Hα. Therefore we may
choose ỹ ∈ NormGα

(Hα)\Hα so that ỹgỹ−1 = x̃gx̃−1 for all g ∈ Gα. By
a calculation in SL(2) we may choose σα so that g(σαỹ)g−1 = ỹ for some
g ∈ Gα. Then

(13.7) g(σx̃)g−1 = g(σỹỹ−1x̃)g−1 = g(σỹ)g−1g(ỹ−1x̃)g−1 = ỹỹ−1x̃ = x̃

We have σαỹ ∈ Hα, and α(σαỹ) = −1. Therefore any two such choices differ
by mα.
qed

Definition 13.8 Suppose x̃ ∈ X̃ and α is a real root with respect to θx̃. Let
cα(x̃) = {σαx̃,mασαx̃}.

If x ∈ X choose x̃ ∈ X̃ mapping to x, and define cα(x) to be the image
of cα(x̃) in X . This is a set with one or two elements.

The analogue of Lemma 13.2 is immediate.

Lemma 13.9 Suppose x ∈ X and α is a a real root with respect to θx.

(1) cα(x) is well defined, independent of the choice of x̃.

(2) If c ∈ cα(x) then c is G-conjugate to x, and c2 = x2.
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(3) p(cα(x)) = sαp(x) ∈ IW .

We deduce some simple formal properties of Cayley transforms. Fix τ ∈
IW . If α imaginary with respect to τ let

(13.10)

Xτ (α) = {x ∈ Xτ |α is non-compact with respect to θx}

= {x ∈ Xτ | grx(α) = 1}

= {x ∈ Xτ | c
α(x) is defined}

Lemma 13.11

(1) If τ(α) = −α then for all x ∈ Xτ , cα(cα(x)) = x,

(2) If x ∈ Xτ (α) then cα(cα(x)) = {x,mαx}.

(3) The map cα : Xτ (α) → Xsατ is surjective, and at most two-to-one

(4) Suppose α is imaginary. The following conditions are equivalent

(a) cα : Xτ (α) → Xsατ is a bijection,

(b) cα : Xsατ → Xτ (α) is a bijection,

(c) cα(x) is single valued for all x ∈ Xsατ ,

(d) mα ∈ H2(τ)0 (see (10.2)(b))

(e) sα ∈ W (Gθx , H) for x ∈ Xτ (α),

(f) x ≡ mαx ∈ X for all x ∈ Xτ (α)

If these conditions fail then cα : Xτ (α) → Xsατ is two to one, and cα(x)
is double valued for all x ∈ Xsατ .

(5) Suppose α is imaginary with respect to τ . If there exists h ∈ H1(τ) (see
(10.2)(a)) such that α(h) = −1 then Xτ is the disjoint union of Xτ (α)
and hXτ (α). Otherwise Xτ (α) = Xτ .

It is important to understand the effect of Cayley transforms on the grad-
ing of the imaginary roots. This is due to Schmid [12]. Also see [15, Definition
5.2 and Lemma 10.9].

Lemma 13.12 Suppose τ ∈ IW and x ∈ Xτ (α). Then the imaginary roots
for sατ are the roots orthogonal to α, and

(13.13) grcαx(β) =

{
grx(β) if α + β is not a root

grx(β) + 1 if α + β is a root
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There is a simple relationship between Cayley transforms and the Weyl
group action. Suppose w ∈ W and x ∈ Xτ (α). Then x ∈ Xwτw−1(wα), so

Lemma 13.14

(13.15) w × cα(x) = cwα(w × x)

With Cayley transforms in hand we can complete the proof of Proposition
11.9.
Proof of Proposition 11.9. Fix τ ∈ IW . Assume there is an imaginary
root α for τ . By Lemma 13.11(5) there exists x ∈ Xτ (α), so cα(x) ∈ Xsατ

is defined. Now suppose β is an imaginary root with respect to sατ . By
the same argument we may choose x′ ∈ Xsατ so that x′′ = cβ(x′) is defined.
Replacing x ∈ Xτ with cα(x) ∈ Xτ we now have Xτ 3 x → cβcαx ∈ Xsαsβτ .
By Lemma 13.2(2) cβcα(x) is G-conjugate to x.

Continue in this way until we obtain x ∈ Xτ , x
′ ∈ Xτ ′ , where x′ is G-

conjugate to x, and there are no imaginary roots with respect to τ ′. (This
corresponds to the most split Cartan subgroup of the quasisplit form of G.)
By [5, Proposition 6.24] θx′ is quasisplit.
qed

14 The Tits group and the algorithmic enu-

meration of parameters

The combinatorial enumeration of X is in terms of the Tits group W̃ intro-
duced by Jacques Tits in [14] under the name extended Coxeter group.ley

We begin by fixing G and a choice of of splitting data (H,B, {Xα})
(cf. Section 2). For each simple root α let φα : SL(2) → G be defined by

φα(diag(1,−1)) = α∨(−1) and dφα

(
0 1
0 0

)
= Xα. Let σα = φα

(
0 1
−1 0

)
.

(This is consistent with the definition of σα in Section 13.)

Definition 14.1 The Tits group W̃ is the subgroup of N generated by {σα}
for α simple, and the subgroup H(2) of H of elements of order 2.

Remark 14.2 The definition of W̃ in [14] uses the subgroup H0 ⊂ H(2) gen-
erated by the elements mα = α∨(−1). The larger group is more convenient
for our purposes, and the difference is unimportant.
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Theorem 14.3 (Tits [14])

(1) The kernel of the natural map W̃ → W is H(2) (2) The elements σα

satisfy the braid relations.
(3) There is a canonical lifting of W to a subgroup of W̃ : take a reduced
expression w = sα1

. . . sαn
, and let w̃ = σα1

. . . σαn
.

Now fix (G, γ) and an extended group GΓ for (G, γ) as in Section 5. We
fix a distinguished element δ ∈ GΓ (cf. Lemma 5.3) and let τ = p(δ) ∈ IW .

We are going to describe an algorithm for computing X (z) (cf. 9.9)(o).
Assuming X (z) is non-empty then Xτ (z) is non-empty, and we assume we
are given δz ∈ Xτ (z). Then Xτ (z) is naturally in bijection with H2(τ)/H2(τ)0

(cf. Proposition 10.1).
The algorithm goes roughly as follows.
We will maintain a first-in-first-out a list of triples

(14.4) (τ, xτ , Bτ )

where τ ∈ IW , xτ is an element of W̃ δz mapping to τ , and Bτ is a subset Bτ

of Tτ (2). The set Bτ is chosen to be a basis of

(14.5) H−τ/(H−τ )0 ' Tτ (2)/Tτ ∩ Aτ

as a Z/2Z vector space (cf. Remark 10.3). We initialize this list with
(τ, δz, Bτ ) where Bτ is a basis of Tτ (2)/Tτ ∩ Aτ .

Whenever we put a triple (τ, xτ , Bτ ) on the list, we add the corresponding
elements x ∈ Xτ , obtained by acting on xτ with Tτ (2)/Tτ ∩ Aτ , to a store.

If the list is non-empty, take the first element (τ, xτ , Bτ ). Try conjugating
τ by sα for each simple root α. If sατsα is not on the list, add sα(τ, xα, Bτ )sα

to the list.
Next, for each simple imaginary root α, see if τ ′ = sατ is not on our list,

and if there are is an element h ∈ H(2) so that hxτ ∈ Xτ (α) i.e. so that α
is non-compact imaginary with respect to hxτ . If so, choose such an h (this
is either half or all of Tτ (2)) and let xτ ′ = σαhxτ . Now Tτ ′(2)/Tτ ′ ∩ Aτ ′ is
the quotient of Tτ (2)/Tτ ∩Aτ by {1,mα}. Use this to compute a basis Bτ ′ of
Tτ ′(2)/Tτ ′∩Aτ ′ . Add (τ ′, xτ ′ , Bτ ′) to the list, and the corresponding elements
of Xτ ′ to the store.

Continue until the list is empty, at which point the store will contain a
list of the elements of X (z).
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15 The Parameter Space Z

We can now describe the parameter space for representations of strong real
forms of G.

Fix basic data (G, γ), and let (chG, γ∨) be the dual data (cf. Section 4).
Let

(15.1)
X = X (G, γ)

Y = X (G∨, γ∨).

Definition 15.2 Define Z to be a subset of X × Y as follows:

(15.3) Z = {(x, y) ∈ X × Y | θt
x = −θy}.

Corollary 7.16(1) now becomes:

Theorem 15.4 There is a natural bijection between Z and the set of trans-
lation families of irreducible representations of strong real forms of G with
regular integral infinitesimal character.

We give several alternative formulations, restating those of Corollary 7.16.

Corollary 15.5 (1)
Fix a set Λ ⊂ Preg of representatives of P/X∗(H). Then there is a natural
bijection between Z and the union, over λ ∈ Λ, of irreducible representations
of strong real forms of G, with infinitesimal character λ.
(2) Suppose G is semisimple and simply connected. Then there is a natural
bijection between Z and the irreducible representations of strong involutions
of G with infinitesimal character ρ.
(3) Suppose G is adjoint, and fix a set Λ ⊂ Preg of representatives of P/R.
Then there is a natural bijection between Z and the irreducible representa-
tions of real forms of G, with infinitesimal character in Λ.

16 Examples

16.1 Example: Defining G and an inner class of real
forms

(1) Here is SL(2). There is only one inner class.
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empty: type

Lie type: A1

elements of finite order in the center of the simply connected group:

Z/2

enter kernel generators, one per line

(ad for adjoint, ? to abort):

enter inner class(es): s

(2) Here is SO(3) = PGL(2) = PSL(2), again there is only one inner class.

real: type

Lie type: A1

elements of finite order in the center of the simply connected group:

Z/2

enter kernel generators, one per line

(ad for adjoint, ? to abort):

ad

enter inner class(es): s

main: components

(weak) real forms are:

Let’s check the component group:

main: components

(weak) real forms are:

0: su(2)

1: sl(2,R)

enter your choice: 1

component group is (Z/2)^1

Yes, this is PGL(2) and not SL(2).

(3) Here is GL(2), which is C
× ×SL(2, C)/{±(1, 1)}, there is only one inner

class.

main: type

Lie type: T1.A1

elements of finite order in the center of the simply connected group:

Q/Z.Z/2
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enter kernel generators, one per line

(ad for adjoint, ? to abort):

1/2,1/2

enter inner class(es): ss

main: components

(weak) real forms are:

0: gl(1,R).su(2)

1: gl(1,R).sl(2,R)

enter your choice: 1

component group is (Z/2)^1

real:

(3) There are two inner classes in type A2. First the split one:

real: type

Lie type: A2

elements of finite order in the center of the simply connected group:

Z/3

enter kernel generators, one per line

(ad for adjoint, ? to abort):

enter inner class(es): s

main: realform

there is a unique real form: sl(3,R)

real:

Here is the other (compact) inner class:

real: type

Lie type: A2

elements of finite order in the center of the simply connected group:

Z/3

enter kernel generators, one per line

(ad for adjoint, ? to abort):

enter inner class(es): c

main: realform

(weak) real forms are:
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0: su(3)

1: su(2,1)

enter your choice:

16.2 Example 4: Real forms of SO(2n) with n even

In the usual terminology there is a single equivalence class real forms of
G = SO(2n) denoted SO∗(2n) (with maximal compact subgroup U(n)).
This corresponds to a single Aut(G(C)) conjugacy class of anti-holomorphic
involutions of G(C). However this conjugacy class is the union of two G con-
jugacy classes; what this means is that there are two subgroups SO(2n, C)
which are conjugate via the outer automorphism of SO(2n, C) (and are there-
fore isomorphic real Lie groups) which are not conjugate by SO(2n, C).

In terms of Cartan involutions there is a single Aut(G) conjugacy C class
of involutions in Aut(G) such that Gθ ' GL(n) (θ ∈ C); C is the union of
two G conjugacy classes.

What this means in practice is that SO(2n) (with n even) has two weak
real forms labelled SO∗(2n)[0, 1] and SO∗(2n)[1, 0] in the software.

real: type

Lie type: D4 ad c

main: realform

(weak) real forms are:

0: so(8)

1: so(6,2)

2: so*(8)[0,1]

3: so*(8)[1,0]

4: so(4,4)

If G = Spin(2n), SO(2n) or PSO(2n) then the two real forms corre-
sponding to the two version of SO∗(2n) are isomorphic. However there is
another isogeny in which these two groups become different. This is a very
subtle example:

main: type

Lie type: D4

elements of finite order in the center of the simply connected group:

Z/2.Z/2
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enter kernel generators, one per line

(ad for adjoint, ? to abort):

1/2,0/2

enter inner class(es): c

main: realform

(weak) real forms are:

0: so(8)

1: so(6,2)

2: so*(8)[0,1]

3: so*(8)[1,0]

4: so(4,4)

enter your choice: 2

real: components

group is connected

real: realform

(weak) real forms are:

0: so(8)

1: so(6,2)

2: so*(8)[0,1]

3: so*(8)[1,0]

4: so(4,4)

enter your choice: 3

real: components

component group is (Z/2)^1

In the case of SO(8) something more dramatic happens. Consider the
adjoint group PSO(8). There are three real forms: PSO(6, 2), PSO(8)[0, 1]
and PSO∗(8)[1, 0]. These are interchanged by outer automorphisms of G,
and are isomorphic as real groups, and are considered one equivalence class in
the usual sense. The same statements are true in Spin(8). However in SO(8),
SO(6, 2) is disconnected, and the two versions of SO∗(8) are connected, and
isomorphic.

main: type

Lie type: D4

elements of finite order in the center of the simply connected group:

Z/2.Z/2
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enter kernel generators, one per line

(ad for adjoint, ? to abort):

1/2,1/2

enter inner class(es): c

main: realform

(weak) real forms are:

0: so(8)

1: so(6,2)

2: so*(8)[0,1]

3: so*(8)[1,0]

4: so(4,4)

enter your choice: 1

real: components

component group is (Z/2)^1

real: realform

(weak) real forms are:

0: so(8)

1: so(6,2)

2: so*(8)[0,1]

3: so*(8)[1,0]

4: so(4,4)

enter your choice: 2

real: components

group is connected

real: realform

(weak) real forms are:

0: so(8)

1: so(6,2)

2: so*(8)[0,1]

3: so*(8)[1,0]

4: so(4,4)

enter your choice: 3

real: components

group is connected

real:

See the information on realform under the help command.
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16.3 Example 3: involutions in the compact inner class

Ordinary (weak) involutions of G are the same as those of the adjoint group,
so suppose G is adjoint. Also assume γ = 1, so we are considering involutions
in the inner class of the compact group. Then

(16.1) X1 = {x ∈ H |x2 = 1} ' P∨/2P∨.

involutions of G are parametrized by X1/W .
For example take G = PSO(2n). Then P ∨ = Z

n ∪ (Z + 1
2
)n. For repre-

sentatives of X1 we can take

(16.2) {(a1, . . . , an−1, 0) | ai = 0, 1} ∪ {
1

2
(b1, . . . , bn−1, 1) | bi = ±1}

For representatives of X1/W we take

(16.3)
xk = (

k︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0) (0 ≤ k ≤ n/2)

x′
± =

1

2
(1, . . . , 1,±1)

The first line corresponds to the real forms PSO(2k, 2n − 2k). In addition
PSO(2n) has two real forms, which are isomorphic as Lie groups, denote
PSO∗(2n). See the next example.

The number of elements in the W -orbit of these elements are

(16.4)

xk :

(
n

k

)
k ≤

n − 1

2

xn/2 :
1

2

(
n

n/2

)

x± : 2n−2

Note that

(16.5)

[n−1

2
]∑

k=0

(
n

k

)
+

1

2

(
n

n/2

)
+ 2 × 2n−2 = 2n

real: type

Lie type: D4 ad c
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main: strongreal

(weak) real forms are:

0: so(8)

1: so(6,2)

2: so*(8)[0,1]

3: so*(8)[1,0]

4: so(4,4)

enter your choice: 4

cartan class (one of 0,1,2,3,4,5,6): 0

Name an output file (hit return for stdout):

real form #4: [0,1,2] (3)

real form #0: [3] (1)

real form #3: [4,5,6,7] (4)

real form #2: [8,9,10,11] (4)

real form #1: [12,13,14,15] (4)

In this case the fiber X1 has order 16 = 3 + 1 + 4 + 4 + 4. See the next
example for an example of X1 in a non-adjoint group.

16.4 Example: Strong real forms

Here are the strong real forms of SL(2):

real: type

Lie type: A1

elements of finite order in the center of the simply connected group:

Z/2

enter kernel generators, one per line

(ad for adjoint, ? to abort):

enter inner class(es): s

main: strongreal

(weak) real forms are:

0: su(2)

1: sl(2,R)

enter your choice: 1
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cartan class (one of 0,1): 0

Name an output file (hit return for stdout):

there are 2 real form classes:

class #0:

real form #1: [0,1] (2)

class #1:

real form #0: [0] (1)

real form #0: [1] (1)

This says there are two strong real forms corresponding to (weak) real
form 0, i.e. SU(2). There is one strong real form corresonding to (weak) real
form 1, i.e. SL(2, R).

Here are the strong real forms of Spin(8)

real: type

Lie type: D4 sc c

main: realform

(weak) real forms are:

0: so(8)

1: so(6,2)

2: so*(8)[0,1]

3: so*(8)[1,0]

4: so(4,4)

enter your choice: 4

real: strongreal

cartan class (one of 0,1,2,3,4,5,6):

sorry, value must be one of 0,1,2,3,4,5,6

try again (? to abort): 0

Name an output file (hit return for stdout):

there are 4 real form classes:

class #0:

real form #4: [0,1,2,4,5,6,8,9,10,12,13,14] (12)

real form #0: [3] (1)

39



real form #0: [7] (1)

real form #0: [11] (1)

real form #0: [15] (1)

class #1:

real form #2: [0,1,2,7,8,9,10,15] (8)

real form #2: [3,4,5,6,11,12,13,14] (8)

class #2:

real form #3: [0,2,3,4,6,7,9,13] (8)

real form #3: [1,5,8,10,11,12,14,15] (8)

class #3:

real form #1: [0,2,3,5,9,12,14,15] (8)

real form #1: [1,4,6,7,8,10,11,13] (8)

This says there are 5 real forms. The number of corresponding strong
real forms is:

real form #strong real forms |Ox|

Spin(8) 4 1

Spin(6, 2) 2 8

Spin(4, 4) 1 12

Spin∗(8)[0, 1] 2 8

Spin∗(8)[1, 0] 2 8

The last column in the table gives the cardinality of the W -orbit of x, in
the fiber X1. The cardinality of this fiber is |Z|24 = 4 × 16 = 64, note that
4 × 1 + 2 × 8 + 1 × 12 + 2 × 8 + 2 × 8 = 64.

If γ = 1 then GΓ = G × Z/2Z, and we may safely drop δ from the
notation.
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16.5 Example 1: SL(2)

Let G = SL(2), so then G∨ = PGL(2). In this case Out(G) = 1 so there is
only one inner class of involutions, and we drop δ from the notation.

Write H = {diag(z, 1
z
) | z ∈ C

∗} and w =

(
0 1
−1 0

)
. Write W = {1, s}

and let t = diag(i,−i). In this case

(16.6)

I = {x ∈ G |x2 = ±I}

X̃ = {h ∈ H |h2 = ±I} ∪ Hw

= {±I,±t} ∪ Hw

X = {±I,±t, w}

X1 = {±I,±t}, Xs = {w}

Of course we mean the elements on the right are representatives of the ele-
ments of X .

Proposition 11.16 says

(16.7) {strong involutions of G} ↔ {I,−I, t}

It is easy to see directly that each element of X is conjugate to precisely one
of these. The group Kx is equal to G if x = ±I, or H otherwise. The first two
cases correspond to the (weak) involution SU(2), and the third to SL(2, R) '
SU(1, 1). It is helpful to think of these groups as SU(2, 0), SU(1, 1) and
SU(0, 2).

Then X /W = {I,−I, t, w}. Proposition 11.9 says this corresponds to:
the compact Cartan subgroup of SU(2, 0), SU(0, 2), SL(2, R), and the split
Cartan subgroup of SL(2, R), respectively.

We now consider Proposition 10.1. We have

(16.8)

H1(1) = {±I,±t}

H2(1) = {±I} H2(1)
0 = I

H1(1)/H2(1)
0 = {±I,±t} = X1

H2(1)/H2(1)
0 ↔ {±I} = X1(I)

↔ {±t} = X1(−I)

On the other hand if s is the non-trivial element of W , H1(s) = 1, and
Xs is a singleton. We have the following picture:
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I
−I

−t w

W: 1             s

z=I

z=−I
 t

We next consider the orbit picture of Section 8. The space G/B is iso-
morphic to the two-sphere. The group KI = G has a single orbit on G/B,
which we denote O2,0. Similarly write O0,2 for the single orbit of K−I . The
group Kt has three orbits, labelled O± (which are points) and O∗ (which is
open and of dimension 1).

The bijection of Proposition 8.4 (using Proposition 9.4) is
X orbit
I O2,0

-I O0,2

t O+

t O−

w O∗

16.6 Example 2: PGL(2)

Recall PGL(2) ' SO(3), and it is easier to work with the latter realization,

with respect to the form




0 1 0
1 0 0
0 0 1


. We can take H = {diag(z, 1

z
, 1 | z ∈

C
×}. The center is trivial, and it is easy to see

(16.9) X = {I, diag(−1,−1, 1), w}

where w is the matrix above with −1 in place of 1 in the lower right hand
corner. The latter two elements are conjugate by G, and the corresponding
involutions are SO(3, 0) and SO(2, 1) ' PGL(2, R).

For x = I we write O′
3,0 for the corresponding orbit (which is a point).

If x = diag(−1,−1, 1) there are two orbits, the closed orbit O′
+ and the

open orbit O′
∗. a The representation theory of SL(2) and PGL(2) may be

summarized in the following table. We write C for the trivial representation,
DS± for the two discrete series representations of SL(2, R), and PSodd for
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the (irreducible) non-spherical principal series representation of SL(2, R).
All these representations have infinitesimal character ρ.

On the other hand PGL(2, R) has the trivial, sgn, and discrete series rep-
resentations at infinitesimal character ρ. It also has two irreducible principal
series representations PSC and PSsgn at infinitesimal character 2ρ, distin-
guished by their lowest K-types C and sgn of O(2).
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Table of representations of SL(2) and PGL(2)

Orbit x x2 θx Gx λ rep Orbit y y2 θy Gy λ rep

O2,0 I I 1 SU(2, 0) ρ C O′
∗ w I -1 SO(2, 1) 2ρ PSC

O0,2 -I I 1 SU(0, 2) ρ C O′
∗ w I -1 SO(2, 1) 2ρ PSsgn

O+ t -I 1 SU(1, 1) ρ DS+ O′
∗ w I -1 SO(2, 1) ρ C

O− -t -I 1 SU(1, 1) ρ DS− O′
∗ w I -1 SO(2, 1) ρ sgn

O∗ w -I 1 SU(1, 1) ρ C O′
+ t I -1 SO(2, 1) ρ DS

O∗ w I 1 SU(1, 1) ρ PSodd O′
3,0 I I 1 SO(3) ρ C
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16.7 Example 7: Discrete Series

Suppose G is semisimple and γ = 1. Then we can take δ = 1 and θ1 = 1,
and this inner class of groups contains a compact Cartan subgroup. Then

(16.10) X1 = {x ∈ H |x2 ∈ Z(G)}

and |X1| = 2n|Z(G)| where n = rank(G). In particular X1 is a two-group if
G is adjoint.

Let P∨ be the co-weight lattice, and X∗ the co-character lattice. Then
the map P∨ 3 γ∨ → exp(πiγ∨) ∈ X1 induces an isomorphism

(16.11) X1 ' P∨/2X∗.

Let G∨ be the dual group, with extended group G∨Γ. Then IW (G∨)
contains an element w0 satisfying w0(h) = h−1 for all h ∈ H∨. It is easy to
see that X∨

w0
= {y0} is a singleton. If x ∈ X1 then (x, y0) ∈ Z, and we see

(16.12) X1 ↔ {(x, π)}

where x is a strong involution of G and π is a discrete series representation
of this strong involution with infinitesimal character ρ. In this bijection a
W -orbit on X1 corresponds to the discrete series of a fixed strong involution.

The parameters

(16.13) {(x, y0) |x ∈ H, x2 ∈ Z(G)}

correspond to discrete series representation of strong involutions of G, with
infinitesimal character ρ. These are dual to the principal series representa-
tion of the split involution of G∨. There are 2n of these at each of |Z(G)|
infinitesimal characters for G∨.

In particular if G is adjoint there are 2n discrete series representations of
involutions of G, with trivial infinitesimal character ρ. These are dual to the
2n principal series representation of the split involution of G∨, also at trivial
infinitesimal character.

16.8 Example 4: Discrete Series of SO(5)

Let G = SO(5). Then γ = 1, and the preceding example applies. We can
choose a quadratic form so that H = {t(z1, z2) | zi ∈ C

×} where t(z1, z2) =
{diag(z1, z2, z

−1
1 , z−1

2 , 1)} Then

(16.14) X1 = {t(ε1, ε2) | εi = ±1}
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There are three (strong) involutions:

(16.15)

t(1, 1) ↔ SO(5, 0)

t(−1,−1) ↔ SO(4, 1)

t(1,−1) ↔ SO(3, 2)

The dual group is Sp(4). The long element of the Weyl group of Sp(4) is
w0 = −1, and

(16.16) X∨
w0

= {y0}.

Then
(16.17)

(t(1, 1), y0) ↔ trivial representation of SO(5)

(t(−1,−1), y0) ↔ unique discrete seres representation of SO(4, 1)

(t(1,−1), y0) ↔ holomorphic discrete series representation of SO(3, 2)

(t(−1, 1), y0) ↔ anti-holomorphic discrete series representation of SO(3, 2)

These four representations are dual to the four principal series representations
of Sp(4, R) at infinitesimal character ρ.

16.9 Example: Representations of E8

main: type

Lie type: E8 sc s

main: blocksizes

0 0 1

0 3150 73410

1 73410 453060

These are the blocks for real forms of E8. The split group has a self-dual
block of size 453, 060. It also has an irreducible principal series representa-
tion; this is a block of size 1, dual to the trivial representation of the compact
form. The split group also has a block of size 73, 410 dual to the quaternionic
real form of E8, with K of type A1 × E7.

These blocks on the split form of E7, together with their duals, give every
block, except for a self-dual block of size 3, 150 on the quaternionic real form.

The total number of representations (for example at infinitesimal charac-
ter ρ) is 603, 320.
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The number of unitary representations with infinitesimal character ρ is

(16.18)

1 compact form

1575 the quaternionic form

2157 split form

3, 733 total

(this has also been computed by Scott Crofts). This is approximately .62%
of the representations.
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