
PROBLEMS FOR REAL GROUPS

James Arthur*

At the suggestion (or should I say gentle nagging?) of Bill Casselman, I have tried to
compile a set of interesting problems for real groups. I believe that others are also being polled,
so I have not made any attempt to represent the field as a whole. Some of the problems are
in fact quite idiosyncratic. They all come from real harmonic analysis, and are motivated by
global questions in automorphic forms.

I am afraid that the list has been put together quickly, without the reflection it should
have had. I am sure that I have overlooked some points, and misstated others. The problems
therefore are meant to include supplying corrections, as needed, to what I have written!

Unless otherwise indicated, G will denote a connected, reductive algebraic group over R in
the discussion below.
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1. Endoscopic transfer

It would be very useful to recast the work of Shelstad [She2], [She3], [She4], [She5] explicitly
in terms of the general transfer factors defined later by Langlands and Shelstad [LS1]. The
setting is an endoscopic embedding

(1.1) ξ′ : LG′ −→ LG,

where G′ represents an endoscopic datum (G′,G′, s′, ξ′) for G [LS1, (1.2)] for which G′ has been
identified with an L-group LG′ of G′. Shelstad’s work is anchored by two basic results. One is
her construction of an endoscopic transfer mapping

f −→ f ′, f ∈ C(G),
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from the Schwartz space C(G) on G(R) to the stable Schwartz space S(G′) on G(R). The other,
which we will leave for §2, is her proof of the resulting family of endoscopic character identities.

We recall that there are three Schwartz spaces attached to G, with surjective mappings

C(G) −→ I(G) −→ S(G).

Besides Harish-Chandra’s original (nonabelian) Schwartz space C(G) [Ha4], we have the invari-
ant Schwartz space

I(G) = IC(G) =
{
fG : f ∈ C(G)

}

of invariant orbital integrals

fG(γ) = |D(γ)|
1
2

∫

Gγ(R)\G(R)

f(x−1γx)dx,

and the stable Schwartz space

S(G) = SC(G) =
{
fG : f ∈ C(G)

}

of stable orbital integrals

fG(δ) = |D(δ)|
1
2

∫

(Gδ\G)(R)

f(x−1δx)dx =
∑

γ→δ

fG(γ).

The space I(G) consists of functions on the set of strongly regular conjugacy classes γ in G(R),
while S(G) is composed of functions on the set of strongly regular stable conjugacy classes δ.
Using the differential equations and boundary conditions of Harish-Chandra [Ha1, Theorem 3],
[Ha5, Theorem 9.1], Shelstad characterized S(G) explicitly as a space of functions of δ [She2].
We note that Shelstad (and Langlands) did not normalize orbital integrals in terms of the Weyl
discriminant

D(γ) = det
(
1 − Ad(γ)

)
g/gγ

,

as we have here, but this amounts to a minor notational difference.
Shelstad defined the transfer mapping as a finite linear combination

(1.2) f ′(δ′) =
∑

γ

∆(R)(δ′, γ)fG(γ)

of invariant orbital integrals on G(R). The coefficients are the somewhat ad hoc transfer factors
of [She5] (modified here to accommodate our normalization by the Weyl discriminant). They
predated (and anticipated) the systematic transfer factors ∆(δ′, γ) of [LS1]. With the hindsight
of [LS2, Theorem 2.6.A], we know that the mapping can be defined equivalently by means of
the later transfer factors of [LS1]. In other words,

∆(R)(δ′, γ) = c∆(δ′, γ),

for a nonzero constant c. Since the two transfer factors are defined anyway only up to a
multiplicative constant, they are therefore equal. However, the proof of this fact is indirect,
and depends on the existence of the mapping f → f ′ Shelstad had defined earlier. It would be
very instructive to show directly that the mapping defined by (1.2), but with ∆(δ′, γ) in place
of ∆(R)(δ′, γ), takes C(G) to the space S(G′).

The problem is by and large one of exposition, but it is no doubt harder than many questions
of original research. A satisfactory solution would probably be very influential. The general
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transfer factors of [LS1] have still not really been absorbed by mathematicians. A concrete
description for real groups of their four subfactors [LS1, (3.2)–(3.5)] would lead to a better
understanding of their analogues for p-adic fields. Each of these four factors has a precursor
in Shelstad’s papers. Shelstad’s constructions were driven in turn by certain aspects of the
work of Harish-Chandra. These antecedents from Harish-Chandra raised vaguely uncomfortable
questions, which in retrospect explain why transfer factors are complicated (and interesting).

One question concerns Harish-Chandra’s basic formula for the characters of discrete series.
What are the implications of the fact that this formula is given as a sum over the Weyl group
of a maximal compact subgroup KR of G(R), rather than the full Weyl group?

Other questions concern Harish-Chandra’s normalization of invariant orbital integrals. He
defined G to be acceptable if the usual half sum ρ of positive roots {α} on the Lie algebra of
any maximal torus T ⊂ G lifts to a character ξρ on T (C). The function

∆(γ) = ξρ(γ)
∏

α>0

(
1 − ξα(γ−1)

)
, γ ∈ T (R),

is then a refinement of the normalizing factor |D(γ)|
1
2 we used above. In particular, its absolute

value equals the nonnegative function |D(γ)|
1
2 . Harish-Chandra normalized invariant orbital

integrals in this case according to the further refinement

Ff (γ) = εR(γ)∆(γ)

∫

Gγ(R)\G(R)

f(x−1γx)dx,

in which εR(γ) is a locally constant sign function on the set Treg(R) of regular points in T (R)
[Ha1, §22]. This normalization was chosen so that if T (R) is compact, and f is a matrix
coefficient of discrete series, then Ff (γ) extends from Treg(R) to a smooth function on T (R).

The transfer factors pertain to relative forms of these questions, as they relate to both G
and G′. The term ∆1 in [LS1, (3.4)] addresses the first point, namely the discrepancy between
the Weyl groups of G and KR. The term ∆II in [LS1, (3.3)] addresses the product

εR(γ)
∏

α

(
1 − ξα(γ−1)

)
.

The reader will observe that the quotient of this function by the factor |D(γ)|
1
2 (which we

have built into the basic invariant orbital integrals, and which in [LS1] is the supplementary
term ∆IV in (3.6)) is quite simple, especially when G is acceptable. The term ∆2 from [LS1,
(3.5)] deals with the function ξρ(γ) if G is acceptable, and accounts more generally for what
happens if G (or G′) is not acceptable. Finally, the term ∆I from [LS1, (3.2)] is a sign, which
is independent of γ, and reflects the fact that the product of the other terms is based on some
noncanonical choices. As we have already said, these terms all go back to constructions in
Shelstad’s papers. For example, the term ∆2 is closely related to the embeddings (1.1), studied
in [S4] and discussed further in [S5, (3.3)]. If I have things straight, the precursor of the term
∆I is the set of signs treated in [S5, (3.5)].

It would be very useful to describe all of this explicitly. The goal might be to illuminate the
path that leads from Harish-Chandra to Shelstad to Langlands-Shelstad. A greater appreciation
of the role of Harish-Chandra’s work in the definition of the transfer factors of [LS1], and hence
in the foundations of the theory of endoscopy, would make the theory that much more accessible.

2. Endoscopic character identities
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This is a continuation of the proposal of §1. In [She5], Shelstad established an equivalent
spectral version of the mapping (1.2). It is given by a linear combination

(2.1) f ′(φ′) =
∑

π

∆(φ′, π)fG(π)

of irreducible tempered characters

fG(π) = tr
(
π(f)

)
, π ∈ Πtemp(G),

on G(R). The coefficients are spectral transfer factors ∆(φ′, π). They are uniquely determined
by the original choice of transfer factors

∆ =
{
∆(δ′, γ) = ∆(R)(δ′, γ)

}
,

once the linear form f ′ → f ′(φ′) on S(G′) on the left hand side of (2.1) has been defined. (We
recall that ∆ is determined up to a scalar multiple.) If (1.2) is taken as the definition of the
mapping f → f ′, the identity (2.1) is to be regarded as a consequential formula. It expresses
f ′ explicitly as a function on the set of tempered Langlands parameters φ′ of G′.

Recall that a tempered Langlands parameter for G is an L-homomorphism

φ : WR −→ LG, φ ∈ Φtemp(G),

taken up to Ĝ-conjugacy, whose image in Ĝ is relatively compact. We assume implicitly that φ
is relevant to G, in the sense that if its image is contained in a parabolic subgroup LP ⊃ LG,
then LP is dual to a Q-rational parabolic subgroup P ⊂ G. It then gives rise to the L-packet
Πφ that was an integral part of Langlands’ earlier classification [L1] of representations of real
groups. Recall that Πφ is a finite subset of representations in Πtemp(G) whose constituents have
the same local L-functions and ε-factors, and that Πtemp(G) is a disjoint union over φ of the
subsets Πφ. Shelstad observed that for any φ, the distribution

(2.2) fG(φ) =
∑

π∈Πφ

fG(π), f ∈ C(G),

is stable, in the sense that it depends only on the image fG of f in S(G). Applied to G′ instead
of G, this gives meaning to the left hand side of (2.1).

Shelstad established striking properties of the spectral transfer factors ∆(φ′, π) in (2.1),
which had been conjectured earlier by Langlands [She1]. The problem we propose here is, again,
to establish them explicitly in terms of the transfer factors of [LS1].

In describing Shelstad’s spectral results, we assume implicitly that the given pair (G′, φ′)
is relevant to G, in the sense that the composite Langlands parameter

φ = ξ′ ◦ φ′ : WR −→ LG

is relevant to G. Given φ, one forms the centralizer

Sφ = Cent
(
Ĝ, φ(WR)

)

of the image of φ in Ĝ, and its group

Sφ = Sφ/S
0
φ = π0(Sφ)
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of connected components. The semisimple element s′ that is part of the endoscopic datum
represented by G′ belongs to Sφ. We thus have a mapping

(G′, φ′) −→ (φ, s′).

Conversely, for any φ ∈ Φtemp(G) and any semisimple element s′ ∈ Sφ, (φ, s′) is the image of
the unique pair (G′, φ′). The mapping is therefore invertible. (We have assumed for simplicity
that every endoscopic datum G′ for G has an endoscopic embedding (1.1). This is not true for
arbitrary G, but is easily accounted for [LS1, (4.4)].)

Shelstad’s spectral results may be summarized as the existence of nonvanishing normalizing
functions

ρ(∆, s′), φ ∈ Φtemp(G), s′ ∈ Sφ,

where (G′, φ′) maps to (φ, s′), and ∆ is a Langlands-Shelstad transfer factor for G′, with the
following two properties.

(i) The quotient

〈s, π〉 = ρ(∆, s′)−1∆(φ′, π), s′ ∈ Sφ, π ∈ Πtemp(G),

depends only on the image s of s′ in Sφ, and vanishes unless π lies in the subset Πφ of
Πtemp(G).

(ii) For any π ∈ Πφ, the function

s −→ 〈s, π〉, s ∈ Sφ,

is a character on Sφ.

It is not hard to see that the group Sφ is abelian. Shelstad showed that the quotient

Sφ = Sφ/π0

(
Z(Ĝ)Γ

)
,

where Z(Ĝ)Γ is the centralizer of LG in Ĝ, is actually a 2-group. She also arranged matters

(in the choice of the function ρ(∆, s′)) so that the characters in (ii) were trivial π0

(
Z(Ĝ)Γ

)
. Since

the mapping π → 〈·, π〉 is injective by construction, an irreducible representation
π ∈ Πtemp(G) can thus be identified with a parameter φ ∈ Φtemp(G), together with a character
on a 2-group. A slightly different way to say things is that Shelstad’s spectral results impose
an endoscopic interpretation on the tempered representations in the Langlands classification.
This of course is very important for the theory of automorphic forms.

The problem, once again, is to try to reorganize the proofs of Shelstad’s spectral results. As
they stand now, they are quite difficult to extract from their source in [S5, §4–5]. An exposition
would include the straightforward stabilization

(zf)′ = z′f ′, z ∈ Z(G),

of Harish-Chandra’s differential equations for invariant orbital integrals, as well as Shelstad’s
more difficult stabilization of the boundary conditions of [Ha5, Theorem 9.1].

3. Orthogonality relations

Elliptic tempered characters satisfy orthogonality relations. For example, the characters
of discrete series form an orthonormal set on the (regular) elliptic set Gell(R) in G(R). We
assume that G is cuspidal, in the sense that Gell(R) is nonempty. This is to say that G(R) has
a maximal torus Tell(R) that is compact modulo the split part of the center AG(R) of G(R). In
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general, suppose that Θ = Θπ and Θ′ = Θπ′ are two irreducible tempered characters with the
same central character on AG(R). One forms their elliptic inner product

(3.1) (Θ,Θ′)ell =

∫

Gell(R)/AG(R)

Θ(x) Θ′(x) dx,

in which dx is the normalized invariant measure. That is,

(Θ,Θ′)ell =
∣∣W

(
G(R), Tell(R)

)∣∣−1
∫

Tell(R)/AG(R)

|D(γ)|Θ(γ) Θ′(γ) dγ,

where W
(
G(R), Treg(R)

)
is the Weyl group of

(
G(R), Tell(R)

)
, and dγ is the normalized Haar

measure on the compact abelian group Tell(R)/AG(R).
If π and π′ belong to the discrete series, Harish-Chandra established the relations

(Θ,Θ′) =

{
1, if π = π′

0, otherwise,

in the course of his monumental classification [Ha4]. More general orthogonality relations
apply to irreducible constituents of induced tempered representations. They can be described
elegantly in terms of the finite groups Sφ. To adopt a broader perspective, let us take S to be
any complex reductive group, and

S = π0(S) = S/S0

to be its finite group of connected components. The example we have in mind here is of course
the case that S equals the group Sφ, so that S equals Sφ.

Given S, we define S1 to be the subgroup of connected components in S that have repre-
sentatives that commute with the identity component. The quotient

R = S/S1

then acts faithfully by outer automorphisms on S0. We also obtain an action of R on any
maximal torus T in S0 by fixing a Borel subgroup B of S0 that contains T , and choosing
representatives of classes in R that stabilize the pair (B, T ). This in turn gives an action of R
on the real vector space

aT = Hom
(
X(T )R,R

)
.

The function
d(r) = det(1 − r)aT

, r ∈ R,

on R is independent of the pair (B, T ), as is the subset

Rreg = {r ∈ R : d(r) 6= 0}

of R.
If ξ is an irreducible character on the group S1, let Rξ be the subgroup of elements in R

that stabilize ξ. There is no a priori reason why ξ should extend to an irreducible character
on the preimage of Rξ in S. The obstruction will be a class in H2(Rξ,C

∗). It has never been
determined, so far as I know, whether this cocycle always splits, at least in the case that S
is the centralizer in Ĝ of some L-subgroup of LG. I pose this as a problem, even though it
does not look like it concerns real groups. Indeed, if S = Sφ, the group Sφ is abelian, and the
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answer is obvious. However, the problem does seem to be relevant to the nontempered packets
for G(R). We will return to it briefly later.

Suppose now that S = Sφ, and consider the associated short exact sequence

(3.2) 1 −→ S1
φ −→ Sφ −→ Rφ −→ 1.

The subgroup S1
φ of Sφ is isomorphic to SφM , where M is a Levi subgroup of G, and

φM : WR −→ LM

is a Langlands parameter for M whose image in LG equals φ, and whose L-packet πφM consists
of representations in the relative discrete series of M (R). Suppose σ ∈ ΠφM corresponds to
the character ξ on the group SφM

∼= S1
φ. Since Sφ is abelian, Rξ equals the full group Rφ,

and ξ extends to a character θ on Sφ. The set of such θ is a torsor under the action of the
group of characters in Rφ. It corresponds to a subset Πφ,σ of Πφ, composed of the irreducible
constituents of the induced representation IGP (σ), where P belongs to the set P(M ) of parabolic
subgroups of G with Levi component M . The group Rσ = Rφ is known as the R-group of σ.
We have described it here in its spectral form, rather than the dual form [KnSt, §13] defined
originally in terms of Plancherel densities. (See [KnZ].)

The general orthogonality relations apply to an arbitrary pair of irreducible tempered
characters Θ = Θπ and Θ′ = Θπ′ , where π and π′ correspond to characters θ and θ′ on
respective groups Sφ and Sφ′ . We form an elliptic inner product (θ, θ′)ell by defining it to be 0
unless π and π′ belongs to a set Πφ,σ as above, in which case we define

(3.3) (θ, θ′)ell = |Rφ|
−1

∑

r∈Rφ,reg

|d(r)|θ(r) θ′(r).

Since θ and θ′ here both restrict to the same character ξ on the subgroup S1
φ of Sφ, the summand

in (3.3) is a well defined function on Rφ = Sφ/S
1
φ. The general orthogonality relations are then

given by the identity

(3.4) (Θ,Θ′)ell = (θ, θ′)ell.

(See [A6, Corollary 6.3].) Notice the parallel structure in the definitions (3.1) and (3.3) of the
two sides of the identity. In particular, Rφ,reg is an analogue of the elliptic set Gell(R), and d(r)
is an analogue of the Weyl discriminant D(γ).

I pose a second question of deciding whether the identity (3.4) might have any role in
the proof of Shelstad’s spectral results. For example, is the identity easy to derive directly
from what is known of the characters Θπ? (The proof of (3.4) by the local trace formula is
indirect, and applies uniformly to all local fields of characteristic 0.) The R-groups Rφ are
an essential part of Shelstad’s arguments. The question of whether the orthogonality relations
have anything further to contribute would not be hard to resolve. The answer might well be
negative. Nonetheless, it is useful to be armed with concrete questions upon entering territory
as unfamiliar as the work of Shelstad might be to some. In any case, I have tried to raise the
question in a form that might also be posed for nontempered representations discussed in §8
and §9.

4. Weighted orbital integrals

Weighted orbital integrals are generalizations of invariant orbital integrals. They are inte-
grals

(4.1) JM (γ, f) = |D(γ)|
1
2

∫

Gγ(R)\G(R)

f(x−1γx)vM (x)dx, f ∈ C(G),
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over the G(R)-conjugacy class of a G-regular class γ in M (R), with respect to a noninvariant
measure vM (x)dx. The weight function vM (x) is the volume of a certain convex hull, which
depends on x, and is trivial in case M = G. Weighted orbital integrals are terms in the
noninvariant trace formula that are attributable to the boundary. Their invariant refinements

(4.2) IM (γ, f) = JM (γ, f) −
∑

L⊃M
L 6=M

ÎLM
(
γ, φL(f)

)

represent corresponding terms in the invariant trace formula. If G is quasisplit, these objects
in turn have stable refinements

(4.3) SM (δ, f) = IM (δ, f) −
∑

G′∈EM (G)

G′ 6=G

ιM (G,G′)ŜG̃
′

M̃
(δ, f ′),

where δ is a G-regular, stable conjugacy class in M (R), and

IM (δ, f) =
∑

γ→δ

IM (γ, f).

They become corresponding terms in the stable trace formula.
We refer the reader to [A7, §1] and [A8, §1] for discussion of the inductive definitions (4.2)

and (4.3). Keep in mind that although IM (γ, f) is an invariant distribution, in the sense that it
is invariant under conjugation by G(R), it is by no means equal to an invariant orbital integral.
Similarly, SM (δ, f) is not a stable orbital integral, even though it is a stable distribution.

The problem is to compute the Fourier transform of any of the three kinds of tempered
distributions. In each case, the problem is to compute the distribution explicitly as a linear
form on the relevant dual space. For example, since JM (γ, f) is a noninvariant distribution,

its Fourier transform is a continuous linear form on the Schwartz space C(Ĝ) of matrix valued
functions on Πtemp(G). Since IM (γ, f) is invariant, its Fourier transform can be treated as a
continuous linear form on I(G), regarded now as a Schwartz space of functions on Πtemp(G).
Since SM (δ, f) is stable, its Fourier transform becomes a continuous linear form on S(G),
regarded as a Schwartz space on the set Φtemp(G) of tempered Langlands parameters. (It is on

this understanding that the notation Î and Ŝ in (4.2) and (4.3) is based.)
The problem was solved for G = SL(2) in [AHS], and for G of real rank 1 in [Ho]. In

general, there are two sources of difficulty. The first is analytic. One tries to characterize
the Fourier transform uniquely in terms of the analytic properties it satisfies. The second is
combinatorial. This entails imposing some sort of order on the complicated functions that make
up the Fourier transform. W. Hoffmann has made considerable progress on both fronts.

The equation (4.3) is actually part of the solution of a similar (though simpler) problem.
It represents an inductive definition of the terms in a general identity, which was stated and
proved in [A8, Theorem 1.1], and which amounts to a stabilization of the invariant distributions
IM (γ, f). The analytic properties used in the proof are the differential equations

IM (γ, zf) =
∑

L⊃M

∂LM (γ, zL)ÎL(γ, f), z ∈ Z(G),

satisfied by IM (γ, f) as a function of γ, the boundary conditions satisfied by IM (γ, f) as γ
approaches a singular hypersurface, and an asymptotic formula [A7] for IM (γ, f) as both γ and
the support of f approach infinity. (Much of the paper [A8] was devoted to the stabilization of
these properties.) The three properties might also suffice to characterize the relevant Fourier
transforms. However, they do not seem to help with combinatorial questions.
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The problem of computing Fourier transforms of weighted orbital integrals goes back to
Selberg, or at least to the study of his work by Langlands in the 1960’s. The complicated nature
of these objects, and the lack of a clear application, has been discouraging. However, it does seem
to me that a solution could now be very useful. It might allow us to investigate local aspects of
Langlands’ proposal [L3] for using the trace formula to study the principle of functoriality. For
example, Langlands has used Hoffmann’s solution of the problem for G = GL(2) to investigate
relationships among some of the terms that arise for this group [L2].

5. Intertwining operators and residues

We can agree that the spectral analogues of invariant orbital integrals are irreducible char-
acters

fG(π) = tr
(
π(f)

)
=

∫

G(R)

f(x)Θπ(x)dx, f ∈ C(G).

Weighted orbital integrals have their own spectral analogues, known as weighted characters.
These objects are distributions obtained by taking a “noninvariant trace” of operators IP (σ, f),
for representations σ ∈ Πtemp(M ). In other words, they are defined by a trace

(5.1) JM (σ, f) = tr
(
RP (σ, P )IP (σ, f)

)
, f ∈ C(G),

of the product of IP (σ, f) with a natural non-scalar operator

RP (σ, P ) : HP(σ) −→ HP(σ),

on the space HP (σ) on which IP (σ, f) acts. This operator-valued weight factor is built out of
the normalized intertwining operators [A2]

(5.2) RQ|P (σλ) : HP (σ) −→ HQ(σ), P,Q ∈ P(M ),

between the induced representations IP (σλ) and IQ(σλ). It is defined as (a multiple of) a limit

(5.3) RM (σ, P ) = lim
λ→0

∑

Q∈P(M)

RQ|P (σ)−1RQ|P (σλ)
( ∏

α∈∆P

λ(α∨)
)−1

,

which reduces to the logarithmic derivative

lim
λ→0

(
RP̄ |P (σ)−1 d

dλ
RP̄ |P (σλ)

)
,

in case M is maximal in G.
Recall that σλ is a twist of the representation σ by a point λ in a complex vector space

a∗M,C = X(M )R ⊗ C∗.

The normalized intertwining operator (5.2) is a meromorphic function of λ, whose restriction to
the space ia∗M is analytic. It follows that weight factor (5.3) can be continued to a mermorphic
function RM (σλ, P ), which is also analytic on ia∗M . If f is compactly supported, IP (σλ, f)
is an entire function of λ ∈ a∗M,C. In fact, we may as well take f from the Hecke algebra
H(G) on G(R), relative to the maximal compact subgroup KR which is already implicit in the
construction above. Then the weighted character also extends to a meromorphic function of
λ ∈ a∗M,C, which is again analytic on ia∗M . Can one say anything about its residues at singular
points?
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The linear form JM (σλ, f) on H(G) is not invariant. It turns out in fact that the failure
of the weighted character (5.1) to be invariant is parallel (in a precise quantitative sense) to
the failure also of the weighted orbital integral (4.1) to be invariant. It is this property that is
behind the definition of the invariant distribution (4.2). Indeed, the argument

φL(f), f ∈ C(G),

on the right hand side of this formula is the function in I(L) defined by

φL(f) : πL −→ JL(πL, f),

for irreducible tempered representations πL of L(R). However, it is the meromorphic function
JM (σλ, f), defined for f ∈ H(G), that is our focus here. One sees from the quantitative
description of its failure to be invariant that its multi-residues in λ are actually are invariant
linear forms in f . What are they?

To form a multi-residue one takes a residue datum, consisting of the flag

aM = aM0
⊃ aM1

⊃ aMr
= aG

attached to a maximal chain of Levi subgroups

M = M0 ⊂M1 ⊂ · · · ⊂Mr = G,

a unit vector Ei in the orthogonal complement of a∗Mi
in a∗Mi−1

for each i, and a point ΛΩ in
a∗M,C. The associated iterated residue

Res
Ω

(
JM (σ, f)

)
= Res

Ω,Λ→ΛΩ

(
JM (σΛ, f)

)
, f ∈ H(G),

is invariant in f . More generally, the iterated residue

(5.4) Res
Ω,X

(
JM (σ, f)

)
= Res

Ω,Λ→ΛΩ

(
JM (σλ, f)e−Λ(X)

)
, f ∈ H(G),

is an invariant linear form in f that depends on a point X ∈ aM [A2, Lemma 8.1]. Can one
describe it as a linear combination of characters? Does the answer require derivatives at Λ = ΛΩ

of the function IP (σΛ, f)?
There is a formula that imposes some further structure on these questions by relating them

to elliptic tempered characters. It applies to cuspidal functions f ∈ H(G). We are assuming
here that G is cuspidal, as in §3. For simplicity, assume also that AG is trivial, and that
f satisfies the stronger condition that its image in I(G) is supported on the discrete series
characters of G(R). Suppose in addition that M is cuspidal, and that γ ∈Mell(R) is in general
position. There has been much study of the normalized discrete series characters

Φ(π, γ) = ΦG(π, γ) = |D(γ)|
1
2 Θ(π, γ)

over the years, beginning with the first [Ha3] of the two papers of Harish-Chandra. The formula
in question gives a relation

(5.5)
∑

π

ΦG(π∨, γ) tr
(
π(f)

)
=

∑

σ

∑

Ω

(−1)dim(AM ) ΦM (σ∨, γ) Res
Ω,X

(
JM (σ, f)

)

between these objects and the residues (5.4), in which

X = HM (γ)

10



is the image of γ in the vector space aM .
The formula (5.5) is a special case of [A6, (9.4)]. (See [A6, (9.1) and Remark (1) on p. 135].)

The first two sums are over discrete series representations π of G(R) and σ of M (R)/AM(R),
with contragredients π∨ and σ∨. The third sum is over the finite set of residue data Ω associated
with the residue scheme of the real Paley-Wiener theorem or the spectral decomposition of
Eisenstein series. Namely, it is the sum of residues encountered in deforming the contour of an
integral ∫

JM (σΛ, f)e−Λ(X)dΛ

from µ(X)+ia∗M to ε+ia∗M , where µ(X) is a large point in general position in the chamber (a∗P )+

for which X lies in a+
P , and ε is a small point in general position in a∗M . What is the meaning of

the right hand side of (5.5)? It seems to keep track of constituents of induced representations
IP (σΛ) that are discrete series, or at least that match discrete series on cuspidal functions f .
What is its relation to Osborne’s conjecture, which is the real analogue of Casselman’s p-adic
embedding theorem [C], and has been proved by Hecht and Schmid [HeSc]?

6. Twisted groups

All of the problems discussed so far can be posed more generally for twisted groups. To
do so, we need to inflate G to a triplet (G, θ, ω), where θ is an automorphism of G over R, and
ω is a character on G(R). This is the setting of Kottwitz and Shelstad [KS], who construct
transfer factors that generalize those of [LS1]. We shall include a few remarks here, leaving to
the reader the exercise of formulating more precisely the problems of §1–§5 for twisted groups.

The notation is easier to reconcile with that of previous sections if we write G0 in place of
G. We can then use the symbol G for the variety

G = G0 ⋊ θ

over R, equipped with the obvious two-sided G0-action

x1(x⋊ θ)x2 = (x1xθ(x2)) ⋊ θ.

In fact, following our convention for endoscopic data, we may as well let G also represent the
triplet

(G0, θ, ω).

A point γ ∈ G(R) may be called strongly G-regular if its G0-centralizer

G0
γ = {y ∈ G0 : y−1γy = γ}

is a torus, with the property that G0
γ(R) lies in the kernel of ω. It gives rise to a (twisted)

invariant orbital integral

fG(γ) = |D(γ)|
1
2

∫

G0
γ(R)\G0(R)

f(x−1γx)ω(x) dx, f ∈ C(G).

(Our understanding here is that a tempered distribution D in G(R) will be called invariant if

D(fy) = D(f)ω(y), f ∈ C(G), y ∈ G0(R),

where fy(x) = f(yxy−1).)

11



For the spectral analogue, we let Πtemp(G) denote the set of representations
π ∈ Πtemp(G0) such that π ◦ θ is equivalent to ω ⊗ π. These representations extend to G(R).

To be more precise, we introduce a set Π̃temp(G), consisting of unitary equivalence classes of
(continuous) mappings π̃ from G(R) to the space of unitary operators on a Hilbert space V
such that

(6.1) π̃(x1xx2) = π(x1)π̃(x)π(x2)ω(x2), x1, x2 ∈ G0(R),

for a representation π ∈ Πtemp(G) on V . Then Π̃temp(G) is a principal U (1)-bundle over

Πtemp(G), relative to the mapping π̃ → π, and the obvious action of U (1) on Π̃temp(G). The

(twisted) character of π̃ ∈ Π̃temp(G) is the tempered invariant distribution

fG(π̃) = tr
(
π̃(f)

)
= tr

( ∫

G(R)

f(x)π̃(x)dx
)
, f ∈ C(G),

on G(R). For any f , the function fG(π̃) can be regarded as a section of the bundle Π̃temp(G).

Following [KS, (2.1)], we choose an automorphism θ̂ of Ĝ0 that is dual to θ, and that
preserves a Γ-splitting. We also choose a 1-cocycle aω from WR to Z(Ĝ) that is the Langlands
dual of the character ω on G(R). We can then form the L-automorphism

Lθ = Lθω : g × w → θ̂(g)aω(w)−1 × w, g × w ∈ LG0,

of the L-group LG0 of G0. This in turn gives rise to the dual set

Ĝ = Ĝω = Ĝ0 ⋊ Lθω.

The L-group LG0 acts by conjugation on Ĝ.
Suppose that φ is a tempered Langlands parameter for G0. We can then form the finite

group
S0
φ = Sφ(G

0) = π0(Sφ(G
0)),

relative to G0 as in §2, and the finite set

Sφ = Sφ(G) = π0(Sφ(G)),

where
Sφ(G) = Cent(Ĝ, φ(WR))

is defined relative to G. We let Φtemp(G) denote the set of parameters φ such that Sφ(G) is
nonempty. For any such φ, the finite group S0

φ acts simply transitively on both the left and the
right of Sφ.

There is no need to generalize stable orbital integrals and stable characters to twisted
groups, since these objects are needed only for the twisted endoscopic groups G′ of G, which
are again quasisplit and connected. This time G′ represents a larger twisted endoscopic datum
(G′,G′, s′, ξ′), defined for G as in [KS, §2.1]. In particular, s′ is a semisimple element in Ĝ, G′ is

a split extension of WR by Ĝ′ and ξ′ is an L-embedding of G′ into LG0, whose image centralizes
s′. Given an L-embedding

ξ′ : LG′ −→ LG0,

obtained from an identification of G′ with LG′, one defines the twisted form of the original
transfer mapping by the natural analogue

f ′(δ′) =
∑

γ

∆(δ′, γ)fG(γ)
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of (1.2). Thus δ′ is a stable conjugacy class in G′(R) in general position, γ ranges over strongly
G-regular G0(R)-conjugacy classes in G(R), and ∆(δ′, γ) is a twisted transfer factor of [KS]. As
in §1, the problem is to show that f ′ belongs to S(G′). It was solved by Renard [R], at least in
the case that ω is trivial.

Renard’s results are based on the twisted transfer factors ∆(δ′, γ), which generalize the
ordinary transfer factors of [LS1]. In this sense, they represent an answer to some of the
inquiries of §1. However, they also depend to some extent on constructions from [She5]. It
would again be very useful to establish the twisted transfer mapping in more concrete terms,
relating it if possible to the work of Harish-Chandra.

The corresponding twisted character identities should be similar in form to the identities
of §2. For a given pair (G′, φ′), there will be an expansion

f ′(φ′) =
∑

π∈Πtemp(G)

∆(φ′, π̃)fG(π̃),

for coefficients ∆(φ′, π̃) which are determined by the choice of twisted transfer factor ∆ that
defines f ′, and which satisfy

∆(φ′, uπ̃) = ∆(φ′, π̃)u−1, u ∈ U (1), π̃ ∈ Π̃temp(G).

There ought then to be a function ρ(∆, s′) with analogues of the properties (i) and (ii) of §2.
In particular, the function

〈s, π̃〉 = ρ(∆, s′)−1∆(φ′, π̃), s ∈ Sφ,

on Sφ attached to any π̃ ∈ Π̃φ should be an extension of the corresponding function 〈·, π〉 on
S0
φ, in the sense that

〈s1ss2, π̃〉 = 〈s1, π〉〈s, π̃〉〈s2, π〉, s1, s2 ∈ S0
φ.

(We write Π0
φ, Πφ and Π̃φ for the subsets of Πtemp(G0), Πtemp(G) and Π̃temp(G) respectively

attached to φ.) The problem of establishing such identities appears to be completely open.
The twisted analogues of other problems require the notion of a Levi subset of G. A

parabolic subset of G is a nonempty subset P that equals the normalizer in G of a parabolic
subgroup P 0 of G0 over F . The correspondence P → P 0 is an injection from the set of such
P to the set of P 0 such that θ(P 0) is conjugate to P 0. A Levi subset of G is a rational Levi
component M of a parabolic subset P , which is to say, the normalizer in P of a Levi component
M 0 of P 0 over F . For any such M , one forms the finite set P(M ) ⊂ P(M 0) and the real vector
space aM ⊂ aM0 . One can then formulate twisted versions of weighted orbital integrals and
weighted characters, and corresponding analogues of the problems of §4 and §5.

7. Trace identities for intertwining operators

To simplify the remaining discussion, we assume again that G is a connected reductive
group. The normalized intertwining operators RQ|P (σ) appear as local ingredients of several
terms in the global trace formula. The most sensitive of these concerns the case that

Q = w−1Pw, w ∈W (M ),

and
σ ∼= w−1σw, σ ∈ Πtemp(M ),

where w is represented by an element in G(R) that normalizes M . In this case, one uses RQ|P (σ)
to construct a self-intertwining operator

(7.1) RP (σw) = A(σw) ◦RQ|P (σ)
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of the induced representation IP (σ). The relevant local object is the trace

(7.2) tr
(
RP (σw)IP (σ, f)

)
.

The problem is to interpret this trace in terms of the endoscopic character identities of Shelstad.
There are really two questions. The first is to formulate a precise conjectural identity for

(7.2) in terms of the spectral transfer factors ∆(φ′, π) and the characters 〈s, π〉. This is already
quite subtle. Such a formula was stated in [A5, §7], by allowing representations with Whittaker
models to serve as base points. The conjectural formula is pretty complicated, partly because
it was stated in much greater generality. The theory of Whittaker models is well understood for
real groups [V1]. Following the discussion of Sections 1, 2 and 6, one might try to formulate the
conjectural identity as clearly and simply as possible in the special case of tempered distributions
of real groups we are dealing with here.

The second problem would be to prove the identity! Shahidi has done so in the special case
that the original inducing representation σ ∈ Πtemp(M ) has a Whittaker model [Sha]. The more
general situation seems to be considerably harder. If G is a classical group, it is likely that such
identities can be established by global means, which at present rely on the fundamental lemma.
Perhaps one could approach the problem locally through the theory of minimal K-types [V2].

It might be helpful to add a few remarks about the first question, by way of introduction
to the conjectural identity of [A5, §7]. We write Mw for both the R-rational subvariety Mw of
G, and the triplet

(
M, Int(w), 1

)
, following the convention of §6. The operator

A(σw) : HQ(σ) = Hw−1Pw(σ) −→ HP (σ)

in (7.1) is defined by (
A(σw)φ1

)
(x) = σw(w)φ1(w

−1x), φ1 ∈ HQ(σ),

where σw is an extension of the representation σ of M (R) to the group generated by Mw(R).
This last object is an essential ingredient. Since its restriction to Mw(R) satisfies (6.1), in the
special case here, σw can be regarded as an element in Π̃temp(Mw). Let φw be the Langlands
parameter for M such that σ lies in the packet Πφw . Then φw is an element in the subset
Φtemp(Mw) of Φtemp(M ). As such, it gives rise to the S0

φw
-torsor Sφw described in §6. Since

σw belongs to the packet Π̃σw , it should yield a function

〈sw, σw〉 = ρ(∆w, s
′
w)∆w(φ′w, σw), sw ∈ Sφw .

The extension of σw of σ is not unique. If it is replaced by its product ξσw with a character
ξ of cyclic subgroup of W (M ) generated by w, the expression (7.2) is multiplied by the complex
number u = ξ(w). On the other hand,

∆w(φ′w, ξσw) = ∆w(φ′w, σw)u−1.

It follows that the product

(7.3) 〈sw, σw〉tr
(
RP (σw), IP (σ, f)

)

of (7.2) with 〈sw, σw〉 is independent of the extension σw. The product is also independent of
the transfer factor ∆w. However, it does depend on the choice of function ρ(∆w, s

′
w), which in

turn is determined only up to multiplication by a function ρ(sw) on Sφw such that

ρ(s1sws2) = ρ0(s1)ρ(sw)ρ0(s2), s1, s2 ∈ S0
φw
,
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for some character ρ0 on S0
φw

.
Let φ ∈ Φtemp(G) be the Langlands parameter for G induced from φw. The short exact

sequence (3.2) actually sits in a larger commutative diagram [A5, (7.1)], which consists of four
exact sequences. The set Sφw = S0

φw
⋊ w is in bijection with the S1

φ-coset S1
φ,w = S1

φw of w in
the group Nφ at the center of this diagram. (We are following the notation of [A5, (7.1)] here,
but with φ in place of the more general parameter ψ.) Let

sw −→ s, sw ∈ Sφw ,

be the projection mapping from this subset of Nφ onto the group Sφ. The conjectural identity
of [A5] amounts to the assertion that (7.3) equals

(7.4) c(sw)
∑

π∈Πφ,σ

〈s, π〉fG(π),

for a constant c(sw) [A5, Conjecture 7.1]. The constant becomes explicit (and independent
of sw) with a judicious choice of functions ρ(∆w, sw) and ρ(∆, s) that is ultimately based on
Whittaker models. In order to formulate the identity in case G is not quasisplit, one would also
want to verify that the expression [A5, (7.9)] is a transfer factor for G, a hypothesis that was
put forward before the twisted transfer factors appeared in [KS].

8. Construction of A-packets

The spectral questions we have discussed to this point apply only to tempered represen-
tations. General nontempered representations do not behave in the same way. However, there
are some nontempered representations that inherit much of the structure of tempered represen-
tations. They are the representations that are thought to occur in discrete spectra of spaces of
automorphic forms. Such representations should of course be unitary. I do not know whether it
is expected that, conversely, unitary representations should all have structure in common with
tempered representations.

The structure in question arises from the endoscopic transfer of characters. In particular,
the relevant nontempered representations occur in packets Πψ. These packets generalize tem-
pered L-packets. However, they are quite different from general nontempered L-packets, which
are incompatible with endoscopic transfer. They are parametrized by mappings

ψ : WR × SL(2,C) −→ LG

for which the projection onto Ĝ of ψ(WR) is relatively compact. We take such mappings up

to Ĝ-conjugacy, and denote the resulting family by Ψ(G). The packets Πψ were constructed
by geometric means in [ABV], and were shown there to satisfy the conjectured endoscopic
properties.

As originally envisaged [A4], the representations in a packet Πψ were conjectured to be
irreducible. This would have provided a well defined construction of the packets in terms of
harmonic analysis, specifically a series of conjectural character identities. However, in their
study of the characters of unitary representations with (g, K)-cohomology [AJ], Adams and
Johnson showed that the constituents of a packet need not be irreducible. (See also [A5,
§5].) This was reflected in the expanded account [A5] of the conjectures, without however
being accompanied by a corresponding means for determining the packets Πψ uniquely. The
geometric methods by which the packets were eventually defined in [ABV] are remarkable, and
will probably be an important part of future progress. Nonetheless, it would be interesting to
have an alternative way to characterize the packets that are based purely on harmonic analysis.
I pose this as a problem, without having a sense of whether any such thing is possible in general.
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The basic problem is to define a stable distribution

(8.1) f −→ fG(ψ), f ∈ H(G),

in case G is quasisplit and ψ is any parameter in Ψ(G). If ψ is trivial on the second factor
SL(2,C), it reduces to a parameter φ ∈ Φtemp(G). The stable distribution was defined in this
case by the sum (2.2), taken over representations in the packet Πφ. The point here is that the
packet Πφ had already been defined in Langlands’ original classification [L1]. There is no such
a priori construction of a general nontempered packet Πψ.

Suppose that the distributions (8.1) have been defined, in some fashion, whenever G is
quasisplit. Let me recall how the conjectures, stated in [A5] and proved in [ABV], then lead to
the general packets Πψ.

For an arbitrary G and ψ, we first form the centralizer

Sψ = Cent
(
Ĝ, ψ(WR × SL(2,C)

)
,

and its group Sψ of connected components, as in the special case of §2. This gives rise to a
bijective correspondence

(G′, ψ′) −→ (ψ, s′),

again as in §2. The distribution
f −→ f ′(ψ′), f ∈ H(G),

is then defined by hypothesis, and depends implicitly on a choice of transfer factor ∆ for (G,G′).
Following (2.1), we decompose it as a linear combination

(8.2) f ′(ψ′) =
∑

π

∆(ψ′, π)fG(π)

of irreducible (nontempered) characters π, with coefficients ∆(ψ′, π).
The first assertion is that there is a function ρ(∆, s′) such that for any π, the quotient

q(s, π) = ρ(∆, s′)−1∆(ψ′, π)

depends only on the image s of s′ in Sψ. At this point there is a new wrinkle. It comes from
the central element

sψ = ψ

(
1,

(
−1 0
0 −1

))

in Sψ, which we identify with its image in Sψ. The second assertion is that for any π, the
function

s −→ q(s−1
ψ s, π) = q(sψs, π), s ∈ Sψ,

is a character (possibly 0) on the group (possibly nonabelian) Sψ. We decompose it as a linear
combination

q(s−1
ψ s, π) =

∑

ξ

ξ(s)nξ,π

of irreducible characters ξ of Sψ, with nonnegative integral coefficients nξ,π. For any ξ such
that ηξ,π 6= 0 for some π, we set

τ = τξ =
⊕

π

nξ,ππ.

We then define the packet Πψ to be the disjoint union over ξ of the representations (possibly
reducible) τξ. Any representation τ = τξ in Πψ thus comes with an irreducible character

s −→ 〈s, τ〉 = ξ(s)
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on Sψ. The decomposition (8.2) then takes the form

(8.3) f ′(ψ′) = ρ(∆, s′)
∑

τ∈Πψ

〈sψs, τ〉fG(τ).

With its explicit dependence on the transfer factors ∆, the statement of (8.3) differs slightly
from that of its counterpart in [ABV] (or rather the special case in [ABV] that applies to
functions supported on only one of the several groups G that make up an “extended group”.)
In the spirit of the questions posed in §1, one could try to compare the two formulations
directly. Notice that the function ρ(∆, s′) is forced on us here, as it was in §2, since the transfer
factor ∆ attached to s′ is determined only up to a scalar multiple. This function ought to be
determined up to multiplication by a linear character in s, a change that would be reflected in
a corresponding translation of the image of the injective mapping

τ −→ 〈·, τ〉, τ ∈ Πψ.

In [ABV], the mapping was normalized by relating it to a certain representation with a Whit-
taker model.

From the perspective of harmonic analysis, the problem is thus to characterize stable
distributions (8.1). For many classical groups, a candidate for (8.1) can be obtained through
endoscopic transfer from GL(N).

Suppose for example that G is a quasisplit orthogonal or symplectic group. There is then
a triplet

G̃ = (G̃0, θ̃, 1),

where G̃0 = GL(N) and θ̃(x) = tx−1, for which G represents a twisted endoscopic datum. In
particular, there is a canonical L-embedding

ξ : LG −→ LG̃0.

For any ψ, the mapping

w −→ ξ

(
ψ

(
w,

(
|w|

1
2 0

0 |w|−
1
2

)))
, w ∈WR,

is a Langlands parameter (typically nontempered) for G̃0 = GL(N). Its L-packet consists of
course of one element π0

ψ, a unitary Langlands quotient sometimes called a Speh representation.

Using the theory of Whittaker models, one can define a canonical extension πψ of π0
ψ to the

group generated by G̃(R). This granted, we set

(8.4) f̃G(ψ) = f̃G̃(πψ) = tr
(
πψ(f̃)

)
, f̃ = H(G̃).

Of course, for this to make sense, one has to show that the right hand side depends only on the
image f̃G of f̃ in the stable Hecke algebra

SH(G) =
{
fG : f ∈ H(G)

}

on G(R) under twisted endoscopic transfer. If G is of the form SO(2n + 1) or Sp(2n), the

image of H(G̃) under the mapping f̃ → f̃G is the entire space SH(G). In this case, (8.4)
serves to define the distribution (8.1). If G is of the form SO(2n), the image is the subspace
of functions in SH(G) that are fixed by the nontrivial outer automorphism θ of G(R) (an
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automorphism induced from the nontrivial component in O(2n)). In this case, (8.4) specifies
only the symmetrized distribution

1

2

(
fG(ψ) + fG(θψ)

)
.

The linear form (8.4) can be studied by global means. A global comparison of trace formulas
will likely yield stable distributions and character formulas (8.3), with the caveat above that
implies weaker assertions in case G = SO(2n). Such methods lead also to results for p-adic
groups, but for the moment are conditional on the fundamental lemma (in its most general
form that applies to twisted weighted orbital integrals).

Let me pose the problem of comparing (8.4) with [ABV]. In the case of classical groups,
does the definition (8.4) match the geometric construction of [ABV]? In general, the nontem-
pered character identity (8.3) should have a twisted analogue, along the lines of the twisted
generalization in §6 of the discussion of §2. The formula (8.4) amounts to a very special case of
this. An extension of the general results of [ABV] to twisted groups would undoubtedly provide
an answer to the question.

9. Properties of A-packets

There are many other questions one can pose for A-packets Πψ. The most obvious concern
the structure of the representations in a given packet. When are these representations irre-
ducible? When do they have tempered constituents? When does a packet Πψ contain elliptic
representations? I do not know whether such questions are amenable to the geometric methods
of [ABV]. It is not even clear the extent to which explicit answers might exist. Be this as it
may, the case of classical groups is particularly interesting. Any new information in this case is
likely to have immediate applications to spectra of automorphic forms.

As a matter of fact, most of the questions posed for tempered representations in §1–§7
have natural analogues for the nontempered packets Πψ. For example, the conjectural trace
identity, described for tempered representations in §7, was originally stated for A-packets in
[A5, §7]. Once again, it is likely that for classical groups the identity can be established by
global methods that rely on the fundamental lemma. Any local insights would of course be very
interesting.

Consider the orthogonality relations of §3. Might they have some analogue that applies to
representations in a packet Πψ? This is a sharper form of the question of which representations
in Πψ are elliptic. I have no idea whether it has any kind of reasonable answer. The first step
would be to look at examples — say the unitary representations with (g, K)-cohomology studied
by Adams and Johnson [AJ]. The characters of these representations are quite transparent. It
ought to be possible to compute their elliptic inner products. In so doing, can one discern any
pattern? If an answer does emerge, will it have any bearing on whether the representations in
Πψ are irreducible?

In the tempered case, the stable characters (2.2) satisfy their own orthogonality relations.
These formulas are simpler, for the reason that a stable character is elliptic if and only if the
corresponding packet Πφ is composed of discrete series. They give rise to a stabilization of
the orthogonality relations for representations π ∈ Πφ. Is there anything similar for the stable
characters (8.1)? In the case of classical groups, can one relate such things to the formula
(8.4)? This would entail establishing twisted orthogonality relations for characters of Speh
representations.

In another direction, consider the identity (5.5). This formula relates residues of inter-
twining operators with values of tempered characters on noncompact tori. Does it have any
analogue for characters of representations τ ∈ Πψ? The residue scheme that defines the right
hand side (5.5) is given by a deformation of a contour µ(X)+ ia∗M , where µ(X) is a large point

18



in the chamber (a∗P )+ such that X lies in a+
P . If there is any nontempered analogue of (5.5),

it will have to involve deformation of other contours. These would presumably be of the form
µ(c) + ia∗M , where µ(c) is a large point in some other chamber c = c(τ,X) in aXM that depends
on τ and X.

The questions I have tossed about in this section are quite scattered. They need to be
better focused before we can see what merit (if any) they have. They do at least have a
common foundation in harmonic analysis. For this reason, we can hope that any answers for
the real groups under discussion here might also apply to p-adic groups. As I have suggested,
the case of classical groups is worthy of special consideration.

10. Functorial transfer

The problems we have discussed up until now are all related in one way or another to
endoscopic transfer. For example, the question of Fourier transforms from §4 is probably most
natural for the stable distributions SM (δ, f), even though it was originally posed for the basic
weighted orbital integrals JM (γ, f). I would like to end by bringing up another open ended
question. This one applies to a completely different kind of transfer.

The starting point for endoscopic transfer was the endoscopic embedding (1.1). Suppose
now that

(10.1) ρ : LG′ −→ LG

is an arbitrary embedding. We assume only that G and G′ are quasisplit groups over R, and
that ρ is an L-embedding of their L-groups. This is the local setting for Langlands’ principle of
functoriality, which applies to reductive groups over a global field. In [L3], Langlands proposed a
tentative strategy for attacking the general global conjecture. It is highly speculative. However,
it is also of great interest for what it offers, the possibility of being able to extend functoriality
beyond the limited number of cases that are related to endoscopy.

Since [L3] is ultimately predicated on a comparison of trace formulas, it implicitly includes
a transfer of functions. Recall that the stable Schwartz space S(G′) can be identified with the
natural Schwartz space on the set Φtemp(G′) of tempered Langlands parameters for G′. Given
the general L-embedding (10.1), and also a function f ∈ C(G), we define a function fρ on
Φtemp(G′) by setting

(10.2) fρ(φ′) = fG(ρ ◦ φ′), φ′ ∈ Φtemp(G′).

It follows from the definitions imply that f → fρ is a continuous linear mapping from C(G)
to S(G′). Since fρ depends only on the image fG of f in S(G), we in fact obtain a mapping
fG → fρ from S(G) to S(G′). The hope is that it will some day be part of a comparison of
stable trace formulas.

The trouble is that the mapping does not have a simple geometric characterization. Unlike
its endoscopic companion f → f ′, it does not have a simple expression in terms of invariant
orbital integrals. Since any comparison of trace formulas would be focused primarily on the
geometric terms, the matter is serious. On the other hand, it is not the stable trace formula
for G that one would hope to compare with its counterpart for G′. It is rather a hypothetical
formula, attached to a finite dimensional representation r of LG (or perhaps several r), and
derived from the stable trace formula of G. The relevant point here is that the geometric terms
in the latter would depend on the stable orbital integrals of f only obliquely. The situation
is murky, to say the least. Might one be able to guess at some aspect of the structure of the
hypothetical r-trace formula for G by studying the mapping fG → fρ in terms of stable orbital
integrals? Do matters become any simpler if one takes a linear combination of mappings over
several related groups G′?
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One can of course consider special cases. For example, if G and G′ are tori, the mapping
fG → fρ has a simple geometric formulation. This observation can be applied to the general
case if f is restricted to be a cuspidal function. The image fρ then vanishes unless there are
elliptic maximal tori Tell ⊂ G and T ′

ell ⊂
LG, with admissible L-embeddings LT ′

ell ⊂
LG′ and

LTell ⊂ LG [LS1, (2.6)] such that ρ( LT ′
ell) is contained in LTell. In this case, the problem

reduces to its analogue for the groups T ′
ell and Tell. The admissible embeddings of LT ′

ell and
LTell are of course an essential part of the answer. They play the same role as they did for
endoscopic transfer [She4], [LS1, (3.5)], though it is more transparent here.

We could also take minimal Levi subgroups M ⊂ G and M ′ ⊂ G′, since these groups are
again maximal tori. Suppose that there are admissible embeddings LM ′ ⊂ LG′ and LM ⊂ LG
such that ρ( LM ′) is contained in LM . If f is any function in C(G), the restriction

fρ(δ′), δ′ ∈M ′(R),

of fρ to the stable conjugacy classes in G′(R) that meet M ′(R) then has a simple formulation
in terms of the associated restriction

fG(γ), γ ∈M (R),

of fG. It is of course given by the obvious reduction of the problem to the tori M and M ′.
I mention the last example for the relation it bears to the stable distributions SM (δ, f).

These objects are among the most interesting geometric terms in the stable trace formula. I
am assuming now that M and M ′ are as above, so in particular, M is a minimal Levi subgroup
of G. It seems to me that it would be useful to try to relate the function

SM (δ, f), δ ∈M (R) ∩Greg(R),

with its analogue
ŜM ′(δ′, fρ), δ′ ∈M ′(R) ∩G′

reg(R),

for G′, which is obtained by functorial transfer of f . One would first transform SM (δ, f) to a
function

SM (δ′, f), δ′ ∈M ′(R) ∩G′
reg(R),

of δ′ by the simple prescription above for M and M ′. There would then be two functions of δ′

one could try to compare. It is at this point that an explicit formula for the Fourier transform
of SM (δ, f) would be needed.

If there are any simple relations to be found, they will probably show up in a linear
combination of functions SM ′(δ′, fρ). Assume that we are given only the torus M ′, together
with an L-embedding LM ′ → LM . It is conceivable that the endoscopic relations (4.3) could
offer guidance. One might look for a family FM ′(G) of functorial embeddings (10.1), with M ′

being a minimal Levi subgroup of G′, such that

(10.3) SM (δ′, f) =
∑

ρ∈FM′ (G)

ιM ′(G, ρ)ŜM ′(δ′, fρ),

for coefficients ιM ′(G, ρ). This is at best only a natural guess. My point is simply that there
seem to be a number of experiments that can be performed with the distributions SM (δ, f).

Suppose for example that M ′ = M . In this case, we could take FM ′(G) to be set EM (G)
that indexes the sum in (4.3), or perhaps some related set of endoscopic data for G. The
functorial embeddings ρ would then coincide with endoscopic embeddings ξ′. This of course
does not mean that the functorial transfer mappings f → fρ are the same as their endoscopic
companions f → f ′. What are the implications in this case for a possible identity (10.3)? If f
is restricted to be a cuspidal function, SM (δ, f) has a simple expression as a linear combination
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of stabilized discrete series characters, evaluated at the point δ ∈M (R). The experiment then
becomes quite accessible. However, it still seems to offer us the possibility of new insights.
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