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THE ADJOINT REPRESENTATION IN RINGS OF FUNCTIONS

ERIC SOMMERS AND PETER TRAPA

Abstract. Let G be a connected, simple Lie group of rank n defined over
the complex numbers. To a parabolic subgroup P in G of semisimple rank
r, one can associate n−r positive integers coming from the theory of hyper-
plane arrangements (see P. Orlik and L. Solomon, Combinatorics and topology
of complements of hyperplanes, Invent. Math. 56 (1980), 167-189; Coxeter
arrangements, in Proc. of Symposia in Pure Math., Vol. 40 (1983) Part 2,
269-291). In the case r=0, these numbers are just the usual exponents of the
Weyl group W of G. These n−r numbers are called coexponents.

Spaltenstein and Lehrer-Shoji have proven the observation of Spaltenstein
that the degrees in which the reflection representation ofW occurs in a Springer
representation associated to P are exactly (twice) the coexponents (see N.
Spaltenstein, On the reflection representation in Springer’s theory, Comment.
Math. Helv. 66 (1991), 618-636 and G. I. Lehrer and T. Shoji, On flag vari-
eties, hyperplane complements and Springer representations of Weyl groups,
J. Austral. Math. Soc. (Series A) 49 (1990), 449-485). On the other hand,
Kostant has shown that the degrees in which the adjoint representation of G oc-
curs in the regular functions on the variety of regular nilpotents in g := Lie(G)
are the usual exponents (see B. Kostant, Lie group representations on poly-
nomial rings, Amer. J. Math. 85 (1963), 327-404). In this paper, we extend
Kostant’s result to Richardson orbits (or orbit covers) and we get a statement
which is dual to Spaltenstein’s. We will show that the degrees in which the
adjoint representation of G occurs in the regular functions on an orbit cover
of a Richardson orbit associated to P are also the coexponents.

1. Introduction

Let G be a connected, simple Lie group of rank n over C with Lie algebra g. Fix
a maximal torus and a Borel subgroup T ⊂ B with Lie algebras t ⊂ b. Let Φ be
the root system and W = W (Φ) the Weyl group of Φ. The choice of B determines
a set of simple roots Π = {α1, . . . , αn} and positive roots Φ+. Let J be a subset of
Π. Denote by ΦJ the root subsystem of Φ spanned by the roots in J . Let WJ be
the Weyl group of ΦJ and Φ+

J ⊂ Φ+ a set of positive roots of ΦJ .
The natural representation of W on t is called the reflection representation and

will be denoted by Vref . Let V J be the subspace of t fixed pointwise under the
action of WJ . Define MJ to be the complex manifold obtained by removing from
V J all points which lie in the kernel of a root in Φ which is not identically zero on
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V J . Orlik and Solomon [OS2] have shown that the Poincaré polynomial

P (MJ , t) =
∑
i≥0

dim Hi(MJ ,C) ti

factors as

(1 + bJ1 t)(1 + bJ2 t) · · · (1 + bJn−rt)

where the bJ ’s are positive integers and r is the cardinality of J . The bJ ’s are called
coexponents. When r = 0 the bJ ’s coincide with the usual exponents of W .

In a previous paper, the first author gave another way to compute the coexpo-
nents by counting lattice points in an extended fundamental domain for the affine
Weyl group [So]. We recall that result here. Let θ be the highest root in Φ+. Write

θ =
∑

α∈Π cαα and set c−θ = 1. Let Π̃ = Π ∪ {−θ}. For J̃ ⊂ Π̃ and t ∈ N, define

p(J̃ , t) to be the number of solutions to the equation∑
cαxα = t

where the xα’s must be strictly positive integers and the sum is over all α ∈ Π̃− J̃ .
Set

χJ(t) =
∑

p(J̃ , t)

where this sum is over all subsets J̃ of Π̃ that are W -conjugate to J . When t is
prime to all cα’s, it turns out that χJ(t) is polynomial in t of degree n− r and its
roots coincide with the coexponents. The polynomials χJ(t) arise geometrically in
the context of fixed point varieties of affine flag manifolds (see [So]), where they
measure (up to a constant) the Euler characteristic of a family of varieties.

In An all the coefficients of θ equal 1. If 1 ≤ t ≤ n− r, then p(J̃ , t) = 0 for all J̃
that enter into the expression for χJ(t). Since all t are prime to the cα’s, we find
that {1, 2, . . . , n− r} are the roots of χJ (t).

In Bn and Cn similar reasoning shows that {1, 3, 5, . . . , 2(n−r)−1} are the roots
of χJ(t) since cα equals 1 or 2.

In Dn there are two cases. If J is notW -conjugate to a set of roots in An−2 ⊂ Dn,
then the same reasoning shows that {1, 3, . . . , 2(n−r)− 1} are the roots of χJ (t).
If J is W -conjugate to

Ai1 ×Ai2 × · · · ×Aik ⊂ An−2,

then {1, 3, . . . , 2(n− r)− 3} are definitely roots of χJ(t). But there is one root
missing. It is n− r+k−1 and can be computed by more closely analyzing the
expression for χJ(t).

In the exceptional groups, case by case computation leads to the determination
of the coexponents. Since χJ(t) is polynomial when t is prime to the cα’s, we only
have to compute it for a few values of t to determine its roots. Complete tables are
found in [OS2].

2. Springer representations

Let P ⊂ G be a parabolic subgroup containing B of semisimple rank r with
Lie algebra p. The choice of P determines a subset J of the simple roots and
b1, . . . , bn−r are the associated coexponents. Let P = LU be a Levi decomposition
with L containing T and with the Lie algebra version p = l⊕ u. Let N be a regular
nilpotent element in l.
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The flag manifold B := G/B can be identified with the set of all Borel subalgebras
in g. Then if X ∈ g, the corresponding fixed point subvariety of B is

BX = {b ∈ B|X ∈ b}.
The Weyl group acts on the cohomology H∗(BX) via Springer representation. It is
known that BX has no odd cohomology.

Proposition 2.1 (Alvis-Lusztig [AL]). The Springer representation of W on

H∗(BN ) is isomorphic to IndWWJ
(1).

By Frobenius reciprocity, it follows that the number of times the reflection rep-
resentation occurs in H∗(BN) is n−r. For two representations V, U of a group,
denote by [V : U ] the multiplicity of U in V . The next proposition was observed
by Spaltenstein and proved by Spaltenstein and Lehrer-Shoji [Sp], [LeS].

Proposition 2.2. The reflection representation appears in the Springer represen-
tation associated to N according to∑

i≥0

[H2i(BN ) : Vref ] q
i = qb1 + qb2 + · · ·+ qbn−r .

3. Rings of functions

In the previous section, the regular nilpotent in l played the central role. Now
we take the “dual” nilpotent X which is Richardson in u, that is, X is in the dense
orbit of P on u. Let OX ⊂ g be the orbit of X under the adjoint action of G and
ŌX its closure in g. Since two non-associated parabolics can give rise to the same
Richardson orbit, we compensate by passing to an orbit cover of OX . Define OP

to be G/PX where PX is the centralizer of X in P . Since (GX)0 ⊂ PX , OP is a
finite cover of OX of degree [GX : PX ].

Let R(OP ) be the ring of regular functions on OP . This ring carries a natural
G-action. Its structure as a G-module is given by

Proposition 3.1 (Borho-Kraft [BK]). The representation of G on R(OP ) is iso-

morphic to IndGL (1).

Again by Frobenius reciprocity, the number of times the adjoint representation
occurs in R(OP ) is n−r.

In fact, there is a grading of R(OP ) coming from a C∗-action on OP (which
lifts from a C∗-action on OX). We can describe the action as follows. Form the
G-variety

Z = G×P u := G× u modulo (gp, u) ∼ (g, Ad(p)u).

Let λ ∈ C∗ act on Z by λ ◦ (g, u) = (g, λu). For z = (1G, X) ∈ Z, the G-orbit
of z is isomorphic to OP and it is stable under the C∗-action. This is the desired
C∗-action on OP .

We can get a graded version of the previous proposition by keeping track of the
C∗-action. First, we recall Lusztig’s q-analog of weight multiplicities [Lu].

Let λ be a character of T and let S be any subset of Φ+. Define an analog of
Kostant’s partition function PS(λ) to be the polynomial in q given by∏

α∈S

1

(1− qeα)
=
∑
λ

PS(λ)eλ.
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For the case S = Φ+, we have the usual q-analog of the partition function, in which
case we omit the subscript S. For µ, λ both characters of T , Lusztig’s q-analog of
weight multiplicity Mµ

λ is defined to be

Mµ
λ :=

∑
w∈W

ε(w)P(w(λ + ρ)− (µ+ ρ)),

where ρ is half the sum of the positive roots and ε(w) is the sign of w. We are also
interested in the following polynomials. Define Mλ(S) to be

Mλ(S) :=
∑
w∈W

ε(w)PS(w(λ + ρ)− ρ).

We have the identity

Mλ(S) =
∑
µ

c(µ)Mµ
λ

where c(µ) is the coefficient of eµ in∏
α∈Φ+−S

(1 − qeα).

The following is extracted from McGovern [M] and Borho-Kraft [BK].

Proposition 3.2. Let Vλ be a representation of G of highest weight λ. Let S =
Φ+ − Φ+

J (the positive roots of G which are not positive roots of L). Then∑
i≥0[R

i(OP ) : Vλ] q
i = Mλ(S).

Proof. Consider again the smooth variety Z = G ×P u, which is the cotangent
bundle of G/P . We have a natural, surjective map φ : Z → ŌX given by φ(g, u) =
Ad(g)u. Consider the Stein factorization

Z
φ1−→ Y

φ2−→ ŌX

so that Y is affine with coordinate ring R(Y ) = R(Z). The action of G on Y has
an open, dense orbit which identifies naturally with OP . The complement of OP in
Y has codimension at least 2 since the complement of OX in ŌX has codimension
at least 2. Hence, R(OP ) ' R(Y ) ' R(Z) since Y is normal. This reduces the
problem to computing R(Z).

Let ωZ be the canonical line bundle on Z. The map φ1 is a proper, surjective,
birational map between the smooth variety Z and the variety Y . This is a setting
for the vanishing theorem of Grauert-Riemenschneider [GR] which implies that
Ri(φ1)∗ωZ = 0 for i > 0. But the canonical divisor of Z is trivial because Z is the
cotangent bundle of G/P . Consequently if OZ is the structure sheaf of Z, then
H i(Z,OZ) = 0 for i > 0 since Y is affine.

Consider the map π : Z → G/P . This map is affine with fiber u which implies

H i(Z,OZ) ' Hi(G/P, π∗(OZ)) ' Hi(G/P,G×P R(u)).

The left hand side vanishes for i > 0 so the functions of degree j on Z can be
computed as the Euler characteristic of the vector bundle G ×P Rj(u) over G/P .
By using a suitable filtration of this vector bundle, we can use the Bott-Borel-Weil
theorem to get the desired formula.

Remark 3.3. The case r = 0 is due to Hesselink [He2] and D. Peterson.
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Corollary 3.4. Let J, J ′ be subsets of Π which are conjugate under W . Let S =
Φ+ − Φ+

J and S′ = Φ+ − Φ+
J′ . Then

Mλ(S) = Mλ(S
′).

Proof. Since J, J ′ are conjugate under W , the Levi subgroups they determine are
conjugate under G. In other words, the parabolic subgroups of G that they deter-
mine are associated. But if P, P ′ are associated parabolics, then OP and OP ′ are
isomorphic G-varieties (with isomorphic C∗-actions) [LuS].

Our main result is

Theorem 3.5. 1 The adjoint representation Vθ of G appears in the functions on
OP according to ∑

i≥0

[Ri(OP ) : Vθ] q
i = qb1 + qb2 + · · ·+ qbn−r

(θ is the highest root of Φ+).

Remark 3.6. When r = 0 Proposition 3.1 and Theorem 3.5 are due to Kostant [Ko].

4. Proof of the theorem

The proof is case by case. In the classical groups we will use geometric argu-
ments so that we get slightly stronger results about the occurrence of the adjoint
representation in R(ŌX). In type Dn, however, in the case when J is conjugate to
a set of simple roots in An−2, we use a different argument.

We know that the number of times Vθ appears in R(OP ) is n− r. Also the
following inclusions hold:

R(ŌX) ⊂ R(OX) ⊂ R(OP ).

The first inclusion is an isomorphism if and only if ŌX is a normal variety. Both
inclusions are always isomorphisms in type An, but neither holds in general [KP1],
[KP2]. When possible, our strategy will be to find n− r copies of the adjoint
representation in the symmetric algebra S(g∗) which are non-zero when restricted
to R(ŌX) and which occur in the correct degrees. We will use Hesselink’s results
about Richardson elements in classical groups [He1].

Type An. We have g = sln+1(C), the set of n+ 1× n+ 1 matrices of trace zero.
Let φm : g → g be the G-equivariant map defined by φm(X) = Xm. Let xi,j be the
linear function on g which returns the value of the i, j-component of a matrix in g.
The composition xi,j ◦ φm is then a function on g of degree m. In fact, the linear
span of the functions {xi,j ◦ φm|1 ≤ i, j ≤ n + 1} determine a copy of the adjoint
representation of G in S(g∗) in degree m. Denote this representation by V m

θ .
Given a parabolic subgroup P of semisimple rank r, its Richardson element X

will satisfy Xn−r+1 = 0 and Xn−r 6= 0 [He1]. Hence for 1 ≤ m ≤ n − r the
adjoint representation V m

θ in S(g∗) is non-zero when restricted to R(ŌX). The
proof follows since we have located n− r copies of the adjoint representation in
R(ŌX) (which in this case equals R(OP )).

1Note added in proof : A. Broer has informed us that he has also proved this theorem using
methods different from ours.
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Type Cn. Let

M =

(
0 In
−In 0

)
∈ sl2n(C)

and g = {X ∈ sl2n(C)|XM + MXt = 0}. The map φm preserves g if m is odd.
Hence if m is odd, the representation Vm

θ when restricted from functions on sl2n(C)
to functions on g is isomorphic to the adjoint representation of G.

Given a parabolic subgroup P of semisimple rank r, its Richardson element X
will satisfy X2(n−r)+1 = 0 and X2(n−r)−1 6= 0 [He1]. Hence for m = 1, 3, . . . ,
2(n−r)−1, V m

θ will be non-zero when restricted to R(ŌX). We have located the
required n − r copies of the adjoint representation in R(ŌX). Note in this case,
R(OP ) can be larger than R(ŌX) (on account of normality failing or the fact that
PX 6= GX) but this is not detectable with the adjoint representation.

Orthogonal cases. Let g be the set of skew-symmetric matrices in sll(C). As
above, when m is odd the map φm preserves g and so the representation V m

θ when
restricted to functions on g is isomorphic to the adjoint representation of G.

Type Bn. If P is a parabolic subgroup of semisimple rank r, its Richardson
element X will satisfy X2(n−r)+1 = 0 and X2(n−r)−1 6= 0 [He1]. Hence for
m = 1, 3, . . . , 2(n− r)−1, V m

θ will be non-zero when restricted to R(ŌX). We
have located the required n−r copies of the adjoint representation in R(ŌX). As
in type Cn, R(OP ) can be larger than R(ŌX).

Type Dn. Let P be a parabolic subgroup of semisimple rank r such that J is not
conjugate to a set of simple roots of An−2. Then its Richardson element X satisfies
the same conditions as in type Bn [He1] and we get the desired occurrences of the
adjoint representation in R(ŌX).

Now assume P is a parabolic subgroup of semisimple rank r such that ΦJ
∼=

Ai1 × · · · × Aik ⊂ An−2. If r > k, then there are only n− r − 1 occurrences of the
adjoint representation in R(ŌX). The missing coexponent detects either the failure
of normality of ŌX or the fact that PX 6= GX . So we give a combinatorial proof
using Proposition 3.2 to reduce to the case r = k and then use a normality result
of Broer [Br].

Suppose ΦJ
∼= Ai1 × · · · × Aik ⊂ An−2 and some ij > 1. We show in Lemma

4.1 that the polynomial Mθ(Φ
+ − Φ+

J ) stays the same when we pass from Dn

to Dn−1 and ij decreases by one. Noting that the coexponents coincide in these
two situations allows us to repeat this process until i1 = i2 = · · · = ik = 1 (or
equivalently, r = k).

Let α1 = e1 − e2, . . . , αn−1 = en−1 − en, αn = en−1 + en be the simple roots
(in standard coordinates) of a root system Φn of type Dn. Then α2, . . . , αn span a
root system Φn−1 of type Dn−1. We may assume α1, α2 ∈ J by Corollary 3.4. Set
S = Φ+

n − Φ+
J . Let J ′ = J − {α1} and S′ = Φ+

n−1 − Φ+
J′ . Define a map σ from the

real span of the αi to the subspace spanned by the αi for i ≥ 2 via

σ(a1, a2, . . . , an) = (0, a1, a2 + a3, a4, . . . , an).

Denote by S0 the roots of S which have zero coefficient on e3. Then σ restricts to
a bijection between S0 and S′ and carries the highest root θ = e1 + e2 of Φn to the
highest root σ(θ) of Φn−1. Let si ∈W (Φn) be the reflection by the simple root αi.
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Consider the parabolic subgroups

W1 = 〈s1, s4, s5, . . . , sn〉 ⊂W (Φn),

W2 = 〈s2, s4, s5, . . . , sn〉 ⊂W (Φn−1) ⊂W (Φn).

Denote the map from W1 to W2 taking s1 to s2 and sj to sj for j ≥ 4 likewise
by σ; then σ extends to an isomorphism from W1 to W2. For any weight γ, set
γw = w(γ + ρ)− ρ.

Lemma 4.1. Mθ(S) = Mσ(θ)(S
′). The former computation is in Dn and the

latter is in Dn−1.

Proof. In fact we show that σ sets up a bijection between the terms contributing
to Mθ(S) and Mσ(θ)(S

′). By definition,

Mθ(S) =
∑

w∈W (Φn)

ε(w) PS(θw)(4.1)

and

Mσ(θ)(S
′) =

∑
w∈W (Φn−1)

ε(w) PS′(σ(θ)w).(4.2)

In the notation introduced above, we have

θw = w(n, n− 1, n− 3, n− 4, . . . , 1, 0)− (n− 1, n− 2, n− 3, n− 4, . . . , 1, 0).

Since α1, α2, α1 + α2 /∈ S (by assumption), all roots in S have non-negative coeffi-
cient on e1, e2, and e3. Consequently if PS(θw) 6= 0, then the first three coordinates
of θw must be non-negative. This implies that w ∈ W1. For such a w, the third
coordinate of θw is zero and hence all terms in an expression contributing to PS(θw)
must actually belong to S0. In other words, for w ∈W1,

PS(θw) = PS0(θw).

On the other hand, if PS′(σ(θ)w) 6= 0, then w ∈ W2. So the sum in equation
(4.1) is really over W1 and the sum in equation (4.2) is really over W2 = σ(W1).
Furthermore, σ(θw) = σ(θ)σ(w) for w ∈ W1. To complete the proof of the lemma,
we have to show that

PS0(θw) = PS′(σ(θw))

whenever w ∈ W1. But this is clear since σ is a bijection between S0 and S′. The
lemma is proved.

We can complete the proof of the theorem. When ΦJ
∼= A1 × A1 × · · · × A1

(k times) ⊂ An−2, the Richardson element X has Jordan normal form in sl2n(C)
corresponding to the partition [2(n−k)−1, 2k+1] and also OX = OP . Furthermore,
Broer [Br] has shown that for these nilpotents ŌX is a normal variety, whence
R(ŌX) = R(OX). So we need to locate the degrees in which the n−k copies
of Vθ occur in R(ŌX). All occurrences of Vθ in R(ŌX) are just restrictions of
occurrences of Vθ in the functions on the nilpotent cone Ōreg ⊂ g. By Kostant
[Ko] Vθ occurs in R(Ōreg) in degrees 1, 3, . . . , 2n−3, n−1, where all but one of the
occurrences comes from the restriction of V m

θ from functions on sl2n(C) to R(Ōreg).

Since X2(n−k)−1 = 0, we see that for m = 2(n−k)− 1, 2(n−k)+1, . . . , 2n−3, the
restriction of V m

θ to R(ŌX) is zero. But there are n− k copies of Vθ in R(ŌX) and
so they must occur in degrees 1, 3, . . . , 2(n−k)− 3, n−1 which is the desired result.
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Exceptional Groups. In the exceptional cases, we used a computer to calculate
the polynomials Mθ(Φ

+ − Φ+
J ) for J ⊂ Π verifying the theorem in those cases.

By Corollary 3.4 we only needed to do the compution for one subset J in each
W -conjugacy class of subsets of Π.
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