Two remarks on graded nilpotent classes

A.V. Zelevinskii

1. Let $V = \bigoplus V_i \ (i \in \mathbb{Z})$ be a finite-dimensional graded vector space over an algebraically closed field and E(V) a set of linear operators $N: V \to V$ such that $N(V_i) \subset V_{i+1}$ for $i \in \mathbb{Z}$. Graded nilpotent classes of type V are defined as the orbits of the natural action of Aut $V = \Pi GL(V_i)$ on the set E(V). Their properties are analogous to those of ordinary nilpotent classes, that is, orbits of GL(V) on the set N(V) of all nilpotent operators $V \to V$. The results in this note corroborate this analogy.

It was proved independently in [1] and [3] that there are only finitely many graded nilpotent classes of a given type, and their degeneracies were described. Generally speaking, the closures of classes are singular varieties. Their geometry is studied in [2]. In [3] the author raised the question of computing the Deligne-Goreski-Macpherson cohomology sheaves $\mathcal{E}^{i}(X)$ in these varieties (see [5], [6]), and made a conjecture about the connection between these sheaves and the representations of the group GL(n) over a p-adic field. The non-graded analogue of this problem is considered in [6], where the $\mathcal{E}^{i}(X)$ are calculated for the closures of ordinary nilpotent classes and their connection with the representations of GL(n) over a finite field is indicated.

Proceeding as in [6], we construct in §2 a compactification of the graded nilpotent classes, which is a Schubert variety. As in [6], this enables us to compute the $\mathcal{H}^{i}(X)$ for the closures of graded nilpotent classes in terms of the Kazhdan-Lusztig polynomials [4]; in contrast to [6], the resulting polynomials are connected with the ordinary symmetric group.

In §3 we construct a parametrization of an arbitrary graded nilpotent class that enables us to compute very easily the number of its elements over a finite field. The non-graded analogue of this construction enables us to give a simple geometrical proof of Steinberg's well-known result that the number of nilpotent operators in an n-dimensional space over the field \mathbf{F}_q is equal to $q^{n(n-1)}$.

2. We put $n = \dim V$ and $n_i = \dim V_i$ and assume, without loss of generality, that $n_i \neq 0$ only for $1 \leq i \leq k$. For every operator $N \in E(V)$ and all pairs i, j with $i \leq j$, we denote by N_{ij} the compositum $V_i \to V_{i+1} \to \cdots \to V_j$ (in particular, N_{ii} is the identity operator $V_i \to V_i$) and we put $r_{ij} = r_{ij}(N) = rkN_{ij}$. We denote by M(V) the set of matrices $M = (m_{ij}), 1 \leq i, j \leq k$, having non-negative integral entries such that $m_{ij} = 0$ for i > j+1, and with the row- and column-sums n_1, \ldots, n_k .

Proposition 1 (see [1], [3]). Graded nilpotent classes of type V are parametrized by the set M(V): to a matrix M there corresponds the class $X_M = \{N \in E(V): r_{ij}(N) = \sum_{s \leq i \leq j \leq t} m_{st} \text{ for } i \leq j\}$.

ces,

 (φ) ,

981

The numbers m_{ij} are recovered from the r_{ij} by the formulae $m_{ij} = r_{ij} - r_{i-1,j} - r_{i,j+1} + r_{i-1,j+1}$ $(i \le j)$, and $m_{i,i-1} = r_{i-1,i}$. The closure of the class of the operator N is the set of those N' for which $r_{ij}(N') \le r_{ij}(N)$ for all $i \le j$.

We denote by F(V) the variety of flags $0 = U^0 \subset U^1 \subset \ldots \subset U^k = V$ such that $\dim U^i/U^{i-1} = n_i$ for $1 \le i \le k$. We put $V^i = V_1 \oplus \ldots \oplus V_i$, so that the flag F consisting of the spaces V^i lies in F(V). Let P be the stabilizer of F in GL(V). The P-orbits on F(V) are called Schubert cells, and their closures Schubert varieties, of type V. An important example for our purposes is the Schubert variety $G(V) = \{(U^i) \in F(V): U^i \supset V^{i-1} \text{ for } 1 \le i \le k\}$. It is known that the Schubert cells contained in G(V) are parametrized by the set M(V): to the matrix M there corresponds the cell

 $O_{M} = \{(U^{i}) \in F(V): \dim(U^{i} \cap V^{j}) | (U^{i} \cap V^{j-1} + U^{i-1} \cap V^{j}) = m_{ij} \text{ for } 1 \leq i, j \leq k\}.$ We define a map $E(V) \to F(V)$ that associates with $N \in E(V)$ the flag (U^{i}) , where $U^{i} = \{(v_{1}, \ldots, v_{k}) \in V_{1} \oplus \ldots \oplus V_{k}: v_{j+1} = N(v_{j}) \text{ for } j \geq i\}.$

Theorem 1. This map is an isomorphism between E(V) and an open subvariety of G(V) for which $X_M = O_M \cap E(V)$ for all $M \in M(V)$.

We split the set $\{1, 2, \ldots, n\}$ in running order into blocks B_1, \ldots, B_k , where Card $B_i = n_i$. For every $M = (m_{ij}) \in M(V)$ we put $S^M = \{w \in S_n : \operatorname{Card}(w(B_i) \cap B_j) = m_{ij} \text{ for } 1 \leqslant i, j \leqslant k\}$. It is known that S_M has a unique element w(M) of maximal length.

Corollary 1 (see [6]). The sheaves $\mathcal{H}^{i}(\overline{X}_{N})$ are 0 for odd i, and for $x \in X_{M'} \subset \overline{X}_{M}$ we have $\sum_{i \geq 0} q^{i} \dim \mathcal{H}^{2i}(\overline{X}_{M})_{x} = P_{w(M'), w(M)}(q), \text{ where the right-hand side is the Kazhdan-Lusztig polynomial ([4], [5]).}$

3. Let $M = (m_{ij}) \in M(V)$, $N \in X_M$, and $r_{ij} = r_{ij}(N)$. For all i, j with $i \le j$, let $I_{ij} = \operatorname{Im} N_{ij}$, so that dim $I_{ij} = r_{ij}$. For $1 \le j \le k$ we denote by F_j the flag $(I_{1j} \subset I_{2j} \subset \ldots \subset I_{jj} = V_j)$ in the space V_j . It is clear that the map $N \mapsto (F_1, \ldots, F_k)$ of X_M into the product of flag varieties of this type is a fibration. Let us describe a typical fibre, that is, the set of operators N with fixed I_{ij} . We choose a complement C_{ij} to $I_{i-1,j}$ in I_{ij} . The operator N is determined by its restrictions to all the C_{ij} , which can be chosen independently of one another, as the sum of an arbitrary operator $C_{ij} \to I_{i-1,j+1}$ and an arbitrary surjective operator $C_{ij} \to C_{i,j+1}$. This leads to the following result.

Proposition 2. The number of elements of X_M over F_q is $q^d \left[\Phi_q(n_i) / \prod_{i \leq j} \Phi_q(m_{ij}) \right]$ where $\Phi_q(r) = (q-1)(q^2-1) \dots (q^r-1)$, and

$$d = \sum_{i < j} r_{ij} m_{ij} + \sum_{i} \left[n_{i} r_{i-1}, i+1 - {r_{i, i+1} + 1 \choose 2} \right].$$

We now consider the non-graded analogue of our construction. The nilpotent classes in N(V) are parametrized by the collections $\lambda = (m_i)$ of non-negative integers with $\sum (i+1)m_i = n$: the class X_{λ} consists of operators with m_i Jordan blocks of order (i+1). (The numbers m_{ij} above have a similar meaning.) For $N \in X_{\lambda}$ and $0 \le i \le n$ we put $I_i = \operatorname{Im} N^i$ and $r_i = \dim I_i$. By assigning to N the flag (I_i) we see that X_{λ} is a fibration over the variety of flags of this type. As above, this readily yields the well-known formula for the number of elements of X_{λ} over F_q (see [7]).

In conclusion, we show how to break up N(V) into pieces from which we can build an affine space of dimension n(n-1). (The assumption that such a decomposition exists is made in [7].) We consider an (n-1)-dimensional vector space U with a preferred complete flag $0 = U^0 \subset U^1 \subset \ldots \subset U^{n-1} = U$. To any nilpotent class X_{λ} we assign the variety

 $Y_{\lambda} = \{A \in \text{Hom}(U, V): \dim A(U^{r_i-1}) = r_{i+1} \text{ for } 0 \leqslant i \leqslant n-1\}.$

It is easy to see that the Y_{λ} are pairwise disjoint and that their union is $\operatorname{Hom}(U, V)$. By assigning to any $A \in Y_{\lambda}$ the flag $(A(U^{r_i-1}))$ we see that Y_{λ} is a fibration over the same variety as X_{λ} , and it is easy to see that their fibres are isomorphic. From this it is clear that X_{λ} breaks into pieces from which we can build Y_{λ} . By taking these decompositions for all X_{λ} , we obtain the required decomposition of N(V).

References

- [1] S. Abeasis and A. Del Fra, Degenerations for the representations of an equi-oriented quiver of type A_m , Boll. Un. Mat. Ital. Suppl. 1980, no. 2, 157-171. MR 84e:16019.
- [2] _____, ____, and H. Kraft, The geometry of representations of A_m , Math. Ann. 256 (1981), 401-418. MR 83h:14038.
- [3] A.V. Zelevinskii, A p-adic analogue of the Kazhdan-Lusztig conjecture, Funktsional. Anal. i Prilozhen. 15:2 (1981), 9-21. MR 84g:22039.

 = Functional Anal. Appl. 15 (1981), 83-92.
- [4] D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165-184. MR 81j:20066.
- [6] G. Lusztig, Green polynomials and singularities of nilpotent classes, Adv. in Math. 42 (1981), 169-178. MR 83c:20059.
- [7] T.A. Springer and R. Steinberg, Conjugacy classes, Lecture Notes in Math. 131 (1970), 167-266. MR 42 # 3091.

Translation: Seminar po algebraicheskim gruppam, Mir, Moscow 1973, 162-262.

Institute of Earth Physics USSR Acad. Sci. Received by the Board of Governors 4 April 1983