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Abstract. We define an exact functor Fn,k from the category of Harish-Chandra modules
for GL(n, R) to the category of finite-dimensional representations for the degenerate affine
Hecke algebra for gl(k). Under certain natural hypotheses, we prove that the functor maps
standard modules to standard modules (or zero) and irreducibles to irreducibles (or zero).

1. introduction

In this paper, we define an exact functor Fn,k from the category HCn of Harish-Chandra
modules for GR = GL(n,R) to the category Hk of finite-dimensional representations for
the degenerate affine Hecke algebra Hk for gl(k). When we take k = n and restrict to an
appropriate subcategory, we prove that the functor maps standard modules to standard
modules (or zero) and irreducibles to irreducibles (or zero). We deduce the latter statement
from the former using a geometric relationship between unramified Langlands parameters for
GL(n,Qp) and Langlands parameters for GL(n,R) (or rather the Adams-Barbasch-Vogan
version of them). Our functor may be viewed as a real version of the one defined by Arakawa
and Suzuki [AS], and the geometric statement may be viewed as a real version of [Z2] due
(independently) to Lusztig and Zelevinsky.

The functor is very simple to define. Let KR = O(n), a maximal compact subgroup
of GR, write g = gl(n,C) for the complexified Lie algebra, and let V denote the standard
representation of GR. Let sgn denote the determinant representation of KR. Given a Harish-
Chandra module X for GR, we define

Fn,k(X) = HomKR
(1, (X ⊗ sgn)⊗ V ⊗k).

(The twist of X by sgn is a convenient normalization and is not conceptually important.) It
is known that Hk acts on Y ⊗ V ⊗k for any U(g)-module Y (e.g. [AS, 2.2]); see Section 3.1
below. In our setting, it is easy to see that this action commutes with KR, and thus Fn,k(X)
becomes a module for Hk. Obviously Fn,k is exact and covariant. Related functors appear
in the work of Etingof, Freund, and Ma ([EFM], [M]), and in that of Oda [O].

We note that (even if we take k = n) the functor Fn,k does not behave well on the
category of all Harish-Chandra modules for GR. This is not surprising. After all, using the
Borel-Casselman equivalence [Bo] and the reduction of Lusztig [Lu2], we may interpret Hn
as the category Isph

n of Iwahori-spherical representations of the p-adic group GL(n,Qp). The
objects in this latter category are exactly the subquotients of spherical principal series. So it

is natural to expect that Fn,n should only be well-behaved on some real analog of Isph
n , and

this is indeed the case. We make this more precise in Section 3.2 where we introduce a notion
of level for HCn, and define a category HCn,≥k consisting of modules of level at least k. (For
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instance, every subquotient of a spherical principal series for GR is an object in HCn,≥n; see
Example 3.2.) We prove that Fn,k maps standard modules in HCn,≥k to standard modules
in Hk (or zero). When k = n, we further prove that Fn,n maps irreducibles to irreducible
(or zero).

Theorem 1.1. Suppose X is an irreducible Harish-Chandra module for GL(n,R) whose level
is at least n. Then Fn,n(X) is irreducible or zero. Moreover, Fn,n implements a bijection
between irreducible Harish Chandra modules of level exactly n and irreducible Hn-modules.

Here is a sketch of the proof of Theorem 1.1. Since the theorem is about a nice relation-
ship between GL(n,R) and GL(n,Qp) (in the guise of Hn), the place to begin looking for its
origins is on the level of Langlands parameters. This is the setting of Section 2. The main
result there is Theorem 2.5, a suitably equivariant compactification of the space of unrami-
fied Langlands parameters for GL(n,Qp) by spaces of ABV parameters. As a consequence
(Corollary 2.8), we obtain that various coefficients in the expression of irreducible modules
in terms of standard ones coincide in both HCn and Hn. The conclusion is that if one could
find an exact functor which matches the “right” standard modules in both cases, it would
automatically match irreducibles too. In Section 3, we make the relevant computation of
Fn,k applied to standard modules (Theorem 3.5), and in Section 4 we check that the match-
ing is the right one from the viewpoint of the geometry of Section 2. The statement about
irreducibles mapping to irreducibles (or zero) follows immediately (Corollary 4.2).

The functor Fn,k has a number of other good properties which we shall pursue in detail
elsewhere. For instance, Fn,k takes certain special unipotent derived functor modules to
interesting unitary representations defined by Tadić; see Example 3.16(2). More generally,
it matches appropriately defined Jantzen filtrations in the real and p-adic cases (a real
version of the results of Suzuki [S]). We will use this fact to study unitary representations,
ultimately giving a functorial explanation of the coincidence of the spherical unitary duals
of GL(n,R) and GL(n,Qp) ([Vo5], [Ta1], [Ta2], [Ba]).

2. Geometric relationship between the langlands classification

for GL(n,R) and Hn

2.1. The Langlands classification for GL(n,R). We begin with the classification of ir-
reducible objects in HCn which does not involve the dual group. In order to do so, we must
recall the relative discrete series of GL(1,R) and GL(2,R), and accordingly we must discuss
representations of the maximal compact subgroups O(1) and O(2). As in the introduction,
we continue to write sgn for the determinant representation of O(n). Apart from 1 and sgn,
the remaining irreducible representations of O(2) are two-dimensional and parametrized by
integers n ≥ 1. We let V (n) denote the irreducible representation of O(2) with SO(2) weights
±n. It is also convenient to let V (0) denote the reducible representation 1⊕ sgn. Then we
always have V (k) ⊗ V (l) ≃ V (|k − l|)⊕ V (k + l) for instance.

For x ∈ GL(1,R) ≃ R×, write sgn(x) for the sign of x. Then any irreducible representation
of R× is a relative discrete series and is of the form

δ(ε, ν) := ε⊗ | · |ν . (2.1)

for ε ∈ {1, sgn} and ν ∈ C. Meanwhile, any relative discrete series for GL(2,R) is of the
form

δ(l, ν) := Dl ⊗ |det(·)|ν , (2.2)
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where l ∈ Z≥2, ν ∈ C, det is the determinant character, and Dn is a discrete series repre-
sentation of SL±(2,R) (the group of two-by-two real matrices with determinant ±1) with
lowest O(2)-type V (l). In more detail, Dl is characterized by requiring its restriction to O(2)
decompose as the sum V (l + 2k) over k ∈ N.

We now introduce a key parameter set ′PR
n . Its elements consists of pairs (PR, δ). Here

PR is a block upper triangular subgroup of GR whose Levi factor is an (ordered) product

LR = GL(n1,R)× · · · ×GL(nr,R)

with ni ∈ 1, 2, and δ = δ1 ˆ · · ·ˆ δr is a relative discrete series of LR. Thus each δi is of the
form δ(εi, νi) (as in (2.1)) if ni = 1, and otherwise of the form δi = δ(li, νi) (as in (2.2)). We
impose the further condition that

n−1
1 Re(ν1) ≥ n−1

2 Re(ν2) ≥ · · · ≥ n−1
r Re(νr). (2.3)

To each such pair γ′ = (PR, δ) in ′PR
n , we may form the parabolically induced standard

module

std(γ′) := IndGR

PR
(δ); (2.4)

here it is understood that δ has been extended trivially to the nilradical of PR. It is further
understood that the induction is normalized as in [Kn, Chapter VII]. The condition (2.3)
guarantees that std(γ′) has a unique irreducible quotient, which we denote irr(γ′). Alter-
natively, irr(γ′) is characterized as the constituent of std(γ′) containing its (unique) lowest
K-type.

The assignment γ′ 7→ irr(γ′) is not quite injective. To remedy this we let PR
n denote the

set of equivalence classes in ′PR
n for the relation (PR, δ) ∼ (P ′

R
, δ′) if the two differ by the

obvious kind of rearrangement of factors. Then std(γ′) (and thus irr(γ′)) depend only on the
equivalence class of γ′. It thus makes sense to write std(γ) and irr(γ) for γ ∈ PR

n . When we
want to emphasize that we are in the real case, we may write stdR(γ) and irrR(γ) instead.

Here is the classical Langlands classification in this setting ([La], cf. [Vo4, Section 2]).

Theorem 2.1. With notation as above, the map

PR

n −→ irreducible objects in HCn
γ −→ irrR(γ) (2.5)

is bijective.

In the Grothendieck group of HCn (where we denote the image of an object M by [M ]),
we may consider expressions of the form

[irrR(η)] =
∑

γ∈PR
n

MR(γ, η)[stdR(γ)]; (2.6)

here MR(γ, η) ∈ Z. Each such expression is finite. More precisely, fix a Cartan subalgebra h

of g, and fix λ ∈ h∗. According to the Harish-Chandra isomorphism, λ defines an infinitesimal
character for g. Let HCn(λ) denote the full subcategory of modules with this infinitesimal
character; there are only finitely many irreducible objects in HCn(λ). Using the classification
of Theorem 2.1, let PR

n (λ) denote the parameters γ such that irrR(γ) is an object of HCn(λ).
Then if γ ∈ PR

n (λ) and η /∈ PR
n (λ), we have MR(γ, η) = 0.

In the next section we give a geometric interpretation of the numbers MR(γ, η).
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2.2. Geometry of the Langlands classification for GL(n,R). One natural approach
to computing the numbers MR(γ, η) of (2.6) involves the Beilinson-Bernstein localization
functor from HCn(λ) to O(n,C)-equivariant λ-twisted D-modules on the flag variety of g

[Vo2]. But there is no analogue of this kind of localization in the p-adic case. From the
viewpoint of the local Langlands conjecture, it is instead more natural to work with the
geometry of the reformulated space of Langlands parameters due to [ABV].

Though not necessary, we find it convenient to work with one infinitesimal character at
a time. As above fix a Cartan subalgebra h of g, and fix λ ∈ h∗. At this point we have two
options. We could identify h∗ with h (using the trace form, for instance), and view λ as an
element of h. Alternatively, we could canonically identify h∗ with a Cartan subalgebra of
the Lie algebra g∨ of the complex Langlands dual group G∨. Of course g∨ ≃ gl(n,C), and
so both options are equivalent. To keep notation to a minimum, we choose the first route,
and henceforth consider λ as a semisimple element of g. But it is important to keep in mind
that the geometry we introduce below is naturally defined “on the dual side” (a fact which
is particularly important when considering generalizations outside of Type A).

Consider ad(λ). Let g(λ) denote the sum of its integral eigenspaces, let n(λ) denote the
sum of its strictly positive integral eigenspaces, and let l(λ) denote its zero eigenspace. Set
p(λ) = l(λ) ⊕ n(λ). Set y(λ) = exp(πiλ) and e(λ) = y(λ)2 = exp(2πiλ). Write G(λ) for the
centralizer in G of e(λ); clearly its Lie algebra is g(λ). Write L(λ) for the centralizer in G
of λ; its Lie algebra is l(λ). Let P (λ) denote the analytic subgroup of G with Lie algebra
p(λ). Finally let K(λ) denote the centralizer in G(λ) of y(λ); it’s Lie algebra k(λ) is the sum
of the even integral eigenspaces of ad(λ). Since y(λ) squares to e(λ), K(λ) is a symmetric
subgroup of G(λ). For instance if λ = ρ corresponds to the trivial infinitesimal character,
then G = G(λ) and K(λ) ≃ GL(⌈n2 ⌉,C)×GL(⌊n2 ⌋,C).

In practice, only the symmetric subgroup K(λ) will arise for us. But to formulate Theo-
rem 2.2 we need others (in order to account for other “blocks” of representations for GR).
Let {y0, . . . , yr} denote representatives of G conjugacy classes of semisimple elements which
square to e(λ). Arrange the ordering so that y0 = y(λ) above, let Ki(λ) denote the cen-
tralizer in G of yi. In the example of λ = ρ mentioned above, the collection {Ki(λ)} equals
{GL(p,C)×GL(q,C) | p+ q = n}.

We need to introduce notation for intersection homology, and it is convenient to do this
in greater generality. So suppose H is a complex algebraic group acting with finitely many
orbits on a complex algebraic variety X. Let φ be an irreducible H-equivariant local system
on X. Then φ naturally parametrizes both an irreducible H-equivariant constructible sheaf
con(φ) on X and an irreducible H-equivariant perverse sheaf per(φ) on X ([BBD, 1.4.1,
4.3.1]). By taking Euler characteristics, we may identify the integral Grothendieck group
of the categories of H-equivariant perverse sheaves on X and H-equivariant constructible
sheaves on X. In this Grothendieck group, we may write

[con(φ)] = (−1)l(φ)
∑

ψ

Mg(ψ, φ)[per(ψ)]; (2.7)

here the sum is over all H-equivariant local systems ψ, and l(φ) denotes the dimension of
the support of φ. (The superscript “g” is meant to stand for “geometric”.)

We return to our specific setting and let PR,g
n (λ) denote the disjoint union over i ∈

{0, . . . , r} of the set of irreducible Ki(λ) equivariant local systems on X(λ) = G(λ)/P (λ).
In fact, the centralizer in each Ki(λ) of any point in X(λ) always turns out to be connected,
and thus each such local system is trivial. As a matter of notation, if Q is an orbit of Ki(λ)
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on X(λ), then we will also write Q for the corresponding trivial local system; in particular,

we will write things like Q ∈ PR,g
n (λ) and implicitly identify PR,g

n (λ) with
⋃

iKi(λ)\X(λ).
Specializing (2.7) to this setting (taking H to be any of the groups Ki(λ) and X = X(λ)),
we thus obtain integers Mg

R
(Q,Q′) for Ki(λ) orbits Q and Q′ on X(λ) defined via

[con(Q)] = (−1)dim(Q)
∑

Q′∈PR,g
n (λ)

Mg
R
(Q′, Q)[per(Q′)]; (2.8)

The following is the geometric formulation of the local Langlands correspondence is our
setting ([ABV, Corollary 1.26(c), Corollary 15.13(b)]).

Theorem 2.2. Fix an infinitesimal character λ as above, recall the parameter space PR
n (λ)

of Section 2.1, and recall the integers MR(γ, η) and Mg
R
(Q,Q′) of (2.6) and (2.8). Then

there is a bijection

dR : PR

n (λ) −→ PR,g
n (λ)

such that
MR(γ, η) = ±Mg

R
(dR(η), dR(γ));

here the sign is that of the parity of the difference in dimension of (the support of) dR(γ)
and dR(η).

2.3. The Langlands classification for Hn. The graded Hecke algebra Hn is an associative
algebra with unit defined as follows. Fix a Cartan subalgebra h in g and a system of simple
roots Π(g, h) of h in g. The Hn contains as subalgebras the group algebra C[Wn] of the Weyl
group Wn ≃ Sn and the symmetric algebra S(h), subject to the commutation relations

sα · ǫ− sα(ǫ) · sα = 〈α, ǫ〉, for all simple roots α ∈ Π(g, h), and ǫ ∈ h. (2.9)

We write Hn for the category of finite-dimensional Hn modules.

We recall the classification of irreducible Hn modules. To begin, we recall the one-
dimensional Steinberg module St on which C[Wn] acts by the sign representation and S(h)
acts by the weight −ρ corresponding to the choice Π(g, h). For ν ∈ C, let Cν denote the one
dimensional representation of Hn where C[Wn] acts trivially and S(h) acts by the weight of
the center of g corresponding to ν. Any relative discrete series representation of Hn is of the
form St⊗ Cν.

We next introduce a parameter set ′PH
n analogous to ′PR

n in Section 2.1. As we implicitly
did there, we fix h to be the diagonal Cartan subalgebra and let Π(g, h) correspond to
the upper triangular Borel subalgebra. We let ′PH

n consist of pairs (HP , δ). Here HP is a
subalgebra of H corresponding to a block upper triangular subalgebra of g whose blocks we
write as the ordered product

l = gl(n1)⊕ · · · ⊕ gl(nr),

and δ = δ1 ˆ · · ·ˆ δr a relative discrete series of l. Thus each δi is of the form St⊗Cνi
. We

further require that
Re(ν1) ≥ · · · ≥ Re(νr). (2.10)

To each such pair γ′ ∈ ′PH
n , we form the induced module

std(γ′) = Hn ⊗HP
δ.

Because of (2.10), std(γ′) has a unique irreducible quotient irr(γ′).
Now let PH

n denote equivalence classes in ′PH
n for the relation of rearranging factors (while

still preserving (2.10) of course). Then the modules std(γ) and irr(γ) are well-defined on
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equivalence classes γ ∈ PH
n . When we want to emphasize that we are in the Hecke algebra

case, we may write stdH(γ) and irrH(γ) instead.

The Langlands classification in this setting is as follows ([BZ], cf. [Ev]).

Theorem 2.3. With notation as above, the map

PH

n −→ irreducible objects in Hn
γ −→ irrH(γ) (2.11)

is bijective.

In the Grothendieck group of Hn, we may consider expressions of the form

[irrH(η)] =
∑

γ∈PH
n

MH(γ, η)[stdH(γ)]; (2.12)

here MH(γ, η) ∈ Z. Each such expression is once again finite. More precisely, fix λ ∈ h∗.
Since the center of Hn is S(h)Wn , λ defines a central character. Let Hn(λ) denote the full
subcategory of modules with this central character. Using the classification of Theorem 2.3,
let PH

n (λ) denote the parameters γ such that irrH(γ) is an object of Hn(λ). Then of course
if γ ∈ PH

n (λ) and η /∈ PH
n (λ), we have MH(γ, η) = 0.

2.4. Geometry of the Langlands classification for Hn. As in the previous section, fix
λ ∈ h∗. With the same caveats in place as in Section 2.2, we identify h∗ with h via the trace
form, and thus view λ as a semisimple element of g.

Again as in Section 2.2, we let L(λ) analytic subgroup of G = GL(n,C) with Lie algebra
equal to the zero eigenspace of ad(λ). We let g−1(λ) denote the −1 eigenspace. Then
L(λ) acts (via the adjoint action) with finitely many orbits on g−1(λ). These orbits may
naturally be identified with orbits of G on the space of unramified Langlands parameters for
GL(n,Qp) (e.g. [Vo6, Example 4.9]), and so they are to be considered the p-adic analog of
the real Langlands parameters considered in Section 2.2.

Again it transpires that the centralizer in L(λ) of any point of g−1(λ) is connected, and

thus we may identity the set of orbits of L(λ) on g−1(λ) with the set PH,g
n (λ) of irreducible

L(λ)-equivariant local systems on g−1(λ). Specializing (2.7) to this setting (taking H = L(λ)
and X = g−1(λ)), we obtain integers Mg

H
(Q,Q′) defined via

[con(Q)] = (−1)dim(Q)
∑

Q′∈PH,g
n (λ)

Mg
H
(Q′, Q)[per(Q′)]; (2.13)

We have the following version of the local Langlands correspondence is this setting ([Lu1,
10.5], cf. [CG, 8.6.2]).

Theorem 2.4. Fix a central character λ as above, recall the parameter space PH
n (λ) of

Section 2.1, and recall the integers MH(γ, η) and Mg
H
(Q,Q′) of (2.12) and (2.13). Then

there is a bijection

dH : PH

n (λ) −→ PH,g
n (λ)

such that

MH(γ, η) = ±Mg
H
(dH(η), dH(γ));

here the sign is that of the parity of the difference in dimension of (the support of) dH(γ)
and dH(η).
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2.5. Geometric relationship between Langlands parameters for HCn(λ) and Hn(λ).
Fix a semisimple element λ of the diagonal Cartan subalgebra h. Consider the injective map

Φ : g−1(λ) −→ X(λ) = G(λ)/P (λ)

defined by

Φ(N) = (1 +N) · p(λ). (2.14)

Here, as usual, we view G(λ)/P (λ) as the variety of conjugates of p(λ). Then Φ is obviously
equivariant for the action of L(λ). Since L(λ) is a subgroup of K(λ), if Q is an L(λ) orbit
on g−1(λ), then Ψ(Q) = K(λ) · Φ(Q) is a single K(λ) orbit. We thus obtain an injection

Ψg : PH,g
n (λ) →֒ PR,g

n (λ). (2.15)

The image thus does not contain any parameters corresponding to the other symmetric
subgroups Ki(λ), i ≥ 1, introduced above.

The main result of this section is the following. It may be interpreted as a relation between
the intersection homology of the closures of spaces of real and p-adic Langlands parameters
for GL(n).

Theorem 2.5. In the notation of (2.8) and (2.13),

Mg
R
(Q,Q′) = Mg

H

(
Ψ(Q),Ψ(Q′)

)
.

We begin with a simple lemma.

Lemma 2.6. Let N(λ) denote the analytic subgroup of G(λ) with Lie algebra n(λ) consisting
of the strictly negative integral eigenvalues of ad(λ). Then the unipotent group K(λ)∩N(λ)
acts freely on the image of Φ. In particular, given an L(λ) orbit Q on g−1(λ), we have

dim (Ψ(Q)) = dim (Q) + dim
(
K(λ) ∩N(λ)

)
.

Proof. The assertion amounts to proving that k(λ) ∩ n(λ) ∩ (1 +N)p(λ)(1 +N)−1 is empty.
If this were not the case, then there would in particular be an element Y ∈ n(λ) such that
[Ad(1 + N)−1]Y ∈ p(λ). But [Ad(1 + N)−1Y ] is a sum of ad(λ) eigenvectors with strictly
negative eigenvalues, and so cannot belong to p(λ). ˜

The previous lemma shows how K(λ)∩N(λ) acts on the image of Φ; the next examines how
K(λ) ∩ P (λ) acts.

Lemma 2.7. Fix N ∈ g−1(λ). Then L(λ) · Φ(N) is dense in (K(λ) ∩ P (λ)) · Φ(N).

Proof. The main result of [Z2] (due independently to Lusztig) asserts that L(λ) · Φ(N) is
dense in P (λ) · Φ(N). Since L(λ) ⊂ K(λ), the lemma follows. ˜

Proof of Theorem 2.5. Let Y denote the union of K(λ) orbits in X(λ) = G(λ)/P (λ) which
meet the closure (in X(λ)) of Φ(g−1(λ)). Set

Y◦ := (K(λ) ∩N(λ)) · Φ(g−1(λ)).

Let A = k(λ) ∩ n(λ), an affine space. Lemma 2.6 implies that

ϕ : A× g−1(λ) −→ Y◦

(a,N) −→ exp(a) · Φ(N)
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is an isomorphism. Lemma 2.7 implies Y◦ is dense in Y . We next observe that analogous
facts also hold on the level of the relevant stratifications leading to the definitions of Mg

R

and Mg
H

in Theorem 2.5.

Fix an orbit Q in the stratification of g−1(λ) by L(λ) orbits. Then, as above, the previous
two lemmas imply that Ψ(Q) is the unique stratum in the stratification of Y by K(λ) orbits
such that ϕ(A × Q) ≃ A × Q is dense in Ψ(Q); and, moreover, all strata in Y arise in
this way. Thus the topological properties of intersection homology imply the assertion of
Theorem 2.5. ˜

With notation as in Sections 2.1 and 2.3, define the “pullback” of Ψg,

Ψ : PR

n −→ PH

n ∪ {0}, (2.16)

as follows. Fix γ ∈ PR
n . If there exists γ′ ∈ PH

n such that

Ψg(dH(γ′)) = dR(γ),

then γ′ is unique and we set

Ψ(γ) = γ′.

If no such γ′ exists, set Ψ(γ) = 0. Theorems 2.2 and 2.4 immediately give the following
corollary.

Corollary 2.8. Suppose Ψ(γ) 6= 0 and Ψ(η) 6= 0. Then

MR(γ, η) = MH(Ψ(γ),Ψ(η)).

The corollary has the following consequence. Suppose F were an exact functor from HCn
to Hn such that

F(stdR(γ)) = stdH(Ψ(γ)) (2.17)

if Ψ(γ) 6= 0 and F(stdR(γ)) = 0 otherwise. Then Corollary 2.8 immediately allows us to
conclude

F(irrR(γ)) = irrH(Ψ(γ)) (2.18)

if Ψ(γ) 6= 0 and F(irrR(γ)) = 0 otherwise.

In the next two sections we will prove that the functor Fn,n of the introduction satisfies
(2.17), and hence (2.18), but only when restricted to those parameters γ ∈ PH

n of level at
least n (in the sense of Section 3.2).

3. images of standard modules

In this section we define the functor Fn,k : HCn → Hk carefully and compute the images
of certain standard modules (those of level ≥ k in the language of Section 3.2).

3.1. The functor Fn,k. For the computations below it will be convenient to introduce
coordinates. In this paragraph only, let a denote n or k. Recall that we have identified h

and h∗ using the trace form. We further fix an isomorphism to Ca so the pairing 〈·, ·〉 of h

and h∗ becomes the usual dot product in Ca. We set

αi = (0, . . . 0
︸ ︷︷ ︸

i−1

, 1,−1, 0 . . . , 0) ∈ Ca, 1 ≤ i ≤ a− 1,
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identify the simple roots of h in g with {α1, . . . , αa−1}, and set

ǫj = (0, . . . , 0
︸ ︷︷ ︸

j−1

, 1, 0, . . . , 0), 1 ≤ j ≤ a

In these coordinates, we have ρ = (a−1
2 , a−3

2 , . . . ,−a−1
2 ). The reflections in the simple roots

αi will be denoted by si.

Given an object X in HCn, consider

HomKR
(1, (X ⊗ sgn)⊗ V ⊗k),

where V = Cn is the standard representation of g. As in [AS, 2.2], we now define an action
of Hk on Fn,k(X), thus obtaining an exact covariant functor

Fn,k : HCn −→ Hk.
To begin, let B and B∗ denote two orthonormal bases of g = gl(n) (with respect to the trace
form inner product (A,B) = tr(AB)). Assume further that they are dual to each other in
the sense that there is a bijection B → B∗ such that the corresponding matrix representation
of (·, ·) is the identity. For E ∈ B, write E∗ for its image in B∗. For 0 ≤ i < j ≤ k define
the operator Ωi,j ∈ End((X ⊗ sgn)⊗ V ⊗k)

Ωi,j =
∑

E∈B
(E)i ⊗ (E∗)j , (3.1)

where, for simplicity of notation, we abbreviated the operator 1⊗i⊗E⊗1⊗j−i−1⊗E∗⊗1⊗k−j

by (E)i ⊗ (E∗)j . The definition of Ωi,j does not depend on the choice of orthonormal bases.

Moreover if 1 ≤ i < j ≤ k, notice that Ωi,j acts by permuting the factors of V ⊗k.

Consider the map Θ from Hk to End((M ⊗ sgn)⊗ V ⊗k) defined by

Θ(si) = −Ωi,i+1, 1 ≤ i ≤ k, Θ(ǫℓ) =
∑

0≤l<ℓ
Ωl,ℓ +

n− 1

2
, 1 ≤ l ≤ k. (3.2)

It is not difficult to verify this definition respects the commutation relation in Hk. It is also
easy to see that the action of Hk defined by Θ commutes with the g-action and the diagonal
KR-action. Thus we obtain the desired action of Hk.

Remark 3.1. It is interesting to replace the trivial KR type in the definition of Fn,k with
other KR types which are fine in the sense of Vogan (e.g. [Vo1, Definition 4.3.9]). We shall
return to this elsewhere.

3.2. A notion of level for HCn. In order to state the main computation of Fn,k applied to

standard modules (Theorem 3.5), we must consider finer structure on the set PR
n of Section

2.1. We define

lev : PR

n −→ Z≥0 (3.3)

as follows. Fix a (representative of a) parameter γ = (δ, PR) ∈ PR
n . Write PR = LRNR and

LR = GL(n1,R)× . . .GL(nr,R) δ = δ1 ˆ · · · ˆ δr.

Define

lev(γ) :=
r∑

i=1

lev(δi), where lev(δi) =







1, if δi = δ(1, νi) (as in (2.1))

0, if δi = δ(sgn, νi) (as in (2.1))

li, if δi = δ(li, νi) (as in (2.2))

(3.4)
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Clearly this is well-defined independent of the choice of representative for γ. Informally,
lev(γ) is a kind of measure of the size of the lowest LR ∩KR type of δ, and thus the lowest
KR type of stdR(γ) or irrR(γ). (This can be made precise but we have no occasion to do so
here.)

For l ≥ 0, define
PR

n,l = lev−1(l),

the parameters of level exactly l, and PR

n,≥l = ∪m≥lPR
n,m, the parameters of level at least l.

We say stdR(γ) or irrR(γ) is of level l if γ is. Define HCn,≥l to be the full subcategory of
HCn whose objects are subquotients of standard modules of level at least l.

Example 3.2. Suppose stdR(γ) is a spherical (minimal) principal series. Then γ = (BR, δ)
for a Borel subgroup BR and δ = δ1 ˆ · · ·ˆ δn with each δi of the form δ(1, νi). Thus γ has
level n, and every subquotient of a spherical principal series for GR is an object in HCn,≥n.

Though we make no essential use of it, we include the following result as indication that
level is a reasonable notion.

Proposition 3.3. Any irreducible object in HCn,≥l is of the form irrR(γ) for γ ∈ PR

n,≥l.
More precisely, every irreducible subquotient of a standard module of level l has level at least
l.

Sketch. By explicitly examining the Bruhat G-order of [Vo2, Definition 5.8], one may verify
the proposition directly. ˜

We next define a map
Γn,k : PR

n,≥k → PH

k ∪ {0}. (3.5)

as follows. If lev(γ) > k, set Γn,k(γ) = 0. Next assume lev(γ) = k and fix a representative
(PR, δ) of γ with δ = δ1 ˆ · · · ˆ δr. We define a representative of Γn,k(γ) as follows. Let
p = plev(γ) denote the block upper triangular parabolic subalgebra of gl(k,C) with Levi
factor l = llev(γ) consisting of (ordered) diagonal blocks of size lev(δ1), . . . lev(δr) (with
notation as in (3.4)). Write HP for the corresponding subalgebra of Hk. Let t denote the
number of GL(2,R) factors in PR and m denote the number of GL(1,R) factors in PR whose
corresponding relative discrete series in δ is trivial when restricted to O(1). Thus there are
m + t simple factors in l. List, in order, the corresponding relative discrete series in δ as
δ′1, . . . , δ

′
m+t. Write ν ′i for the central character of δ′i. Let δH be the relative discrete series

δH

1 ˆ · · ·ˆ δH
m+t of HP with δH

i = St⊗Cν′i
. Then (HP , δ

H) specifies an element of PH

k , which

we define to be Γn,k(γ). For later use we note that the central character of stdH(Γn,k(γ)) is
(
−ρ

(
gl(lev(δ′1))

)
+ ν ′1

∣
∣ · · · · · ·

∣
∣ − ρ

(
gl(lev(δ′m+t))

)
+ ν ′m+t

)
, (3.6)

where the vertical lines denote concatenation.

Remark 3.4. Note the identical construction could be made for parameters (PR, δ) not
satisfying the dominance hypothesis of (2.3). The resulting pair (HP , δ

H) would then be
well-defined but need not satisfy the dominance of (2.10).

With the convention that std(0) = 0, the main result of this section is as follows.

Theorem 3.5. Recall the map Γn,k of (3.5) . Then

Fn,k (stdR(γ)) = stdH (Γn,k(γ))

as Hk modules for all γ ∈ PR

n,≥k.
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Remark 3.6. In fact the proof below shows that induced modules which fail to satisfy (2.3)
are also mapped to induced modules (or zero). The correspondence of parameters is given
as in Remark 3.4.

3.3. Proof of Theorem 3.5. We first prove the theorem on the level of vector spaces
(Lemma 3.7), then on the level of C[Wk] modules (Lemma 3.9), and then locate an appro-
priate cyclic vector which allows us to deduce the Hk-module statement.

Lemma 3.7. Fix a representative (PR, δ) of γ ∈ PR
n , write δ = δ1 ˆ · · · ˆ δr, and con-

sider stdR(γ) as in Section 2.1. Recall the level maps of (3.3) and (3.4). Then we have
Fn,k(stdR(γ)) 6= 0 only if lev(γ) ≤ k. Moreover, if lev(γ) = k, then

dimFn,k(stdR(γ)) =
k!

∏r
i=1 lev(δi)!

.

Thus, with notation as in Theorem 3.5,

dimFn,k (stdR(γ)) = dim stdH (Γn,k(γ)) .

Proof. We have the following string of isomorphisms:

F (stdR(γ)) = HomKR

(

1KR
,ResKR

GR

(

IndGR

PR
(δ) ⊗ sgn⊗ V ⊗k

))

= HomKR

(

sgnKR
,ResKR

GR

(

IndGR

PR
(δ) ⊗ V ⊗k

))

= HomKR

(

sgnKR
,ResKR

GR

(

IndGR

PR
(δ ⊗ V ⊗k)

))

(by a Mackey isomorphism)

= HomKR

(

sgnKR
, IndKR

KR∩LR
(δ ⊗ V ⊗k)

)

(restriction to KR)

= HomKR∩LR
(sgnKR∩LR

, δ ⊗ResKR

KR∩LR
V ⊗k) (Frobenius reciprocity)

= HomKR∩LR
(δ∗ ⊗ sgnKR∩LR

,ResKR

KR∩LR
V ⊗k).

(3.7)
Note that KR ∩ LR is a product of O(2) and O(1) factors. So we need to understand V ⊗k

as an O(2)s × O(1)n−2s module. Recall the notation V (j) for O(2) types from Section 2.1.
We have (as a representation of O(2)s ×O(1)n−2s):

V ≃(

s⊕

i=1

C ˆ · · ·ˆ
ith

V (1) ˆC ˆ · · · ˆ C)⊕ (

n−2s⊕

j=1

C ˆ · · ·ˆ (j+2s)th
sgn ˆC ˆ · · ·ˆ C). (3.8)

Notice that

V (1)⊗p = V (p) +

(
p

1

)

V (p− 2) + · · ·+
(
p

p′

)

V (1), if p = 2p′ + 1 is odd

V (1)⊗p = V (p) +

(
p

1

)

V (p− 2) + · · ·+ 1

2

(
p

p′

)

V (0) if p = 2p′ is even.

We have (up to permutation of the factors):

δ∗
∣
∣
KR∩LR

= V (l1) ˆ · · · ˆ V (lt) ˆ 1
ˆ(r−t−m)

ˆ sgnˆm + higher terms

where
∑t

i=1 li +m = lev(γ) and the higher terms involve larger LR ∩KR types. Using the
rules for the tensor powers of V (1) given above, we see that the only way (δ∗ ⊗ sgn)

∣
∣
KR∩LR

can appear in V ⊗k is if the ith V (1) factor in (3.8) contributes li times and there are m
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distinct contributions of the j + 2s sgn factors. This implies that if lev(γ) > k, then there

can be no overlap between δ∗ and ResKR

KR∩LR
V ⊗k, and therefore Fn,k(stdR(γ)) = 0.

Now for the second part assume that lev(γ) = k exactly. Then the dimension of the image

Fn,k(stdR(γ)) is the coefficient of X l1
1 · · ·X lt

t y1 . . . ym in (X1 + · · · + Xt + y1 + · · · + ym)k,

namely k!
l1!···lt! , as claimed. ˜

Remark 3.8. The proof did not use the dominance of (2.3) anywhere. So the result holds
for more general standard modules (not just those with Langlands quotients).

For calculations below, we will need to specify a basis of Fn,k(γ) for γ of level k. As before
let (PR, δ) denote a representative of γ. We will use the chain of isomorphisms of (3.7) and
specify a basis of Fn,k(γ) by instead specifying a basis of

HomKR∩LR
(sgnKR∩LR

, δ ⊗ V ⊗n). (3.9)

We need some notation. For gl(2,C), we will need the following basis:

H =

(
0 −i
i 0

)

, E+ =
1

2

(
1 i
i −1

)

, E− =
1

2

(
1 −i
−i −1

)

, Z =

(
1 0
0 1

)

. (3.10)

Then {E+,H,E−} form a Lie triple, and Z generates the center. Let f± be the eigenvectors

of H on C2: f+ =

(
1
i

)

, f− =

(
i
1

)

. Then we have

H · f+ = f+, E+ · f+ = 0, E− · f+ = if−,

H · f− = −f−, E− · f− = 0, E+ · f− = −if+.

Let w
(i)
± denote highest SO(2) weight vectors (of respective weights ±li) in the two-dimensional

lowest K-type of the relative discrete series δ(li, νi) of GL(2,R). Assume further that w
(i)
+

and w
(i)
− are interchanged by the element

(
0 1
1 0

)

in O(2). These vectors satisfy

E+w
(i)
− = 0, E−w

(i)
+ = 0, Hw

(i)
± = ±liw(i)

± .

We need to embed these kinds of gl(2,C) considerations inside gl(n,C), and this involves
some extra notation.

Fix (PR, δ) of level k and, as usual, let δ and δi denote the representation spaces of the

relevant relative discrete series. For each i such that ni = 1, fix nonzero vectors in x
(i)
± ∈ δi;

for each i such that ni = 2, set x
(i)
± = w

(i)
± . Set

x± = x
(1)
± ˆ · · ·ˆ x

(r)
± ∈ δ.

Next let e1, . . . , en denote the basis of V we have been implicitly invoking. For an index i
such that ni = 1, let epos(i) denote the basis element corresponding to the position of ith
component of the Levi factor of PR. For an index i such that ni = 2, let epos(i)−1, epos(i)

denote the pair of basis elements corresponding to the position of the ith component of the

Levi factor of PR. For an index i such that ni = 2 and z =

(
a
b

)

∈ C2 let z(pos(i)) denote

aepos(i)−1 + bepos(i) in V . Finally for an element X of gl(2,C) and an index i such that
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ni = 2, let Xpos(i) denote the image of X in gl(n,C) under the inclusion of gl(2,C) into the
ith component complexified Lie algebra of the Levi factor of PR. Set

u
(i)
∓ =







f
(pos(i))
∓ ⊗ · · · ⊗ f (pos(i))

∓
︸ ︷︷ ︸

li

, if ni = 2,

u
(i)
∓ = epos(i), if ni = 1 and δi = δ(1, νi)

and

u∓ =
⊗

i

u
(i)
∓ ∈ V ⊗k,

where the tensor is over indices i such that ni = 2 or ni = 1 and δi is trivial when restricted
to O(1). (This tensor is in V ⊗k since we have assumed γ to be of level k.) Finally set

vγ = x+ ⊗ u− + x− ⊗ u+ ∈ (δ ⊗ V ⊗k). (3.11)

Then the basis of the space in (3.9) is formed of the orbit of vγ under the Wk action

permuting the V ⊗k factors of vγ . Clearly the stabilizer of vγ is
∏

i=1Wlev(δi). Together with
the definition of the standard H modules, we obtain the following lemma.

Lemma 3.9. In the setting of Theorem 3.5, we have

Fn,k (stdR(γ)) = stdH (Γn,k(γ))

as modules for the group algebra C[Wk].

˜

We now turn to the proof of Hecke algebra action in Theorem 3.5. Assume γ has level k, so
Γn,k(γ) 6= 0 by Lemma 3.7. From the definition of standard modules given in Section 2.3, the
Hk-module stdH(Γn,k(γ)) is generated under Wk by a cyclic vector v which transforms like
the sign representation of W (llev(γ)), and which is a common eigenvector for all generators
ǫi,

ǫi · v =
〈
ǫi, χ(Γn,k(γ))

〉
. (3.12)

where χ(Γn,k(γ)) denotes the central character of stdH(Γn,k(γ)) (as in (3.6)). In light of
Lemma 3.9, it is sufficient to find an element of Fn,k(stdR(γ)) which transforms like the sign
representation of W (llev(γ)) and which is a common eigenvector for Θ(ǫi) with the same
eigenvalues as in (3.12).

The correct cyclic vector in Fn,k(stdR(γ)) is the one corresponding to vγ (from (3.11))
under the chain of isomorphisms in (3.7). In fact, since Fn,k(stdR(γ)) is isomorphic to the
KR invariants (for the diagonal action) in

IndGR

PR
(δ ⊗ sgn)⊗ V ⊗k ≃ IndGR

PR
(δ ⊗ sgn)⊗ IndGR

GR
(V )⊗k

≃ Ind
Gk+1

R

PR×GR×···×GR
((δ ⊗ sgn)⊗ V ⊗ · · · ⊗ V ) , (3.13)

we will find it convenient to specify fγ as a KR invariant element of the latter space, i.e. as

a function on the (k+ 1)-fold product Gk+1
R

. The advantage of this point of view is that the

left-translation action of Gk+1
R

is transparent, and that will of course be helpful below. To
unwind the definition of fγ from vγ , first consider the induced representation

IndGR

PR
(δ ⊗ sgn⊗ V ⊗k)
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of δ ⊗ V ⊗k-valued functions on GR. Using the decomposition GR = KRPR = KRMRARNR,
set

f∆
γ (kman) = (man)−1 · vγ ;

the action of (man)−1 is the diagonal one. By construction, this is well-defined and KR

invariant. Finally define the function fγ in the space of (3.13) as

fγ(x0, x1, . . . , xn) = π0(x
−1
1 x0) · · · πn(x−1

n x0)f
∆
γ (x0); (3.14)

here πi(g) denote the action of g ∈ GR in the (i+ 1)st factor of the tensor product δ⊗ V ⊗k.
Then fγ is well-defined and KR invariant. It is completely characterized by the value

of f∆
γ at the identity 1, i.e. vγ . It is clear that fγ transforms like the sign representation

for Θ(s) with s ∈ W (llev(γ)) (since vγ does). So it remains to compute the action of
Θ(ǫℓ) =

∑

0≤l≤ℓ Ωl,ℓ on fγ and see that it is a simultaneously eigenvector with eigenvalues

as in (3.12).

We choose, as we may, a convenient basis for g = gl(n) and define Ω0,ℓ with respect to it.
Recall the notation pos(i) introduced before (3.11). Write {Ei,j}1≤i,j≤n for the usual basis
of g. The basis we choose consists of the following elements:

•
{ 1√

2
E

(pos(i))
+ ,

1√
2
E

(pos(i))
− ,

1√
2
H(pos(i)),

1√
2
Z(pos(i))}, (3.15)

for indices i such that ni = 2;
• Epos(i),pos(i) for indices i such that ni = 1; and
• Ei,j ∈ n⊕ n, where n denotes the complexified Lie algebra of NR, and n denoted the

opposite nilradical.

Recall the notation πi( ) for the action of g ∈ GR in the (i + 1)st factor of δ ⊗ V ⊗k. We
use the same notation for the corresponding action of an element E ∈ g.

The calculation is divided into three parts, depending if the element E ∈ g in the term
(E)0 ⊗ (E∗)ℓ of Ω0,ℓ belongs to n, n, or l.

Lemma 3.10. Assume that E,F are elements of p = l + n. Then, we have

[((E)0 ⊗ (F )ℓ)fγ ](1) = π0(E)πℓ(F ) vγ . (3.16)

In particular, if E ∈ n, then ((E)0 ⊗ (F )ℓ)fγ = 0.

Proof. From (3.14), we have:

((E)0 ⊗ (F )ℓ)fγ(1) =
d2

du ds

∣
∣
∣
∣
u=s=0

k∏

l=1,l 6=ℓ
πl(e

−uE)πℓ(e
sF e−uE)f△(e−uE)

=
d2

du ds

∣
∣
∣
∣
u=s=0

πℓ(e
sF )π0(e

uE) vγ = π0(E)πℓ(F ) vγ ,

(3.17)

where we have used that f△(e−uE) = [
∏k
l=1 πl(e

uE)]f△(1), since e−uE ∈ NR.

For the second claim, it is sufficient to notice that if E ∈ n, then π0(e
uE)vγ = vγ . ˜

Note that, in particular, Lemma 3.10 implies that

[
∑

E∈n

(E)0 ⊗ (E∗)ℓ]fγ = 0. (3.18)
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To compute the action of the terms (Ei,j)0⊗ (Ej,i)ℓ with Ei,j ∈ n, we will find the following
calculation useful.

Lemma 3.11. Assume that Ei,j ∈ n. Then

[((Ei,j)0 ⊗ (Ej,i)ℓ)fγ ](1) = [(−πℓ(Ej,j) + πℓ(Ej,i)
k∑

l=1,l 6=ℓ
πl(−Ei,j + Ej,i))] vγ . (3.19)

Proof. Since we have Ej,i ∈ n, from Lemma 3.10, it follows that (Ej,i)0 ⊗ (Ei,j) = 0 on fγ .
Therefore, if we set Hi,j = Ei,j − Ej,i, we see that (Ei,j)0 ⊗ (Ej,i)ℓ = (Hi,j)0 ⊗ (Ej,i)ℓ. Since
Hi,j ∈ k, the (equivalent) operator (Hi,j)0 ⊗ (Ej,i)ℓ is easier to compute. By a computation
similar to (3.17), we find that

((Hi,j)0 ⊗ (Ej,i)ℓ)fγ(1) =
d2

du ds

∣
∣
∣
∣
u=s=0

k∏

l=1,l 6=ℓ
πl(e

−uHi,j )πℓ(e
sEj,ie−uHi,j )f△δ (e−uHi,j ).

Notice that f△δ (e−uHi,j ) = vγ , since e−uHi,j ∈ KR. Then the claim follows by applying the
chain rule. ˜

Before computing the action of the terms
∑

Ei,j∈n(Ei,j)0 ⊗ (Ej,i)ℓ in Ω0,ℓ on fγ , we need

to establish more notation.

Notation 3.12. For every 1 ≤ ℓ ≤ k, set φ(ℓ) = i, if the ℓ-th factor of the tensor product u∓
from (3.11) is f

(pos(i))
∓ or epos(i). Set also prec(ℓ) =

∑i−1
j=1 |u

(j)
∓ |, where |u(j)

∓ | is the (tensor)

length of u
(j)
∓ . Notice that prec(ℓ) ≤ ℓ− 1, and if nφ(ℓ) = 1, then prec(ℓ) = ℓ− 1.

Lemma 3.13. With the notation as in 3.12, the action of
∑

Ei,j∈n

(Ei,j)0 ⊗ (Ej,i)ℓ on fγ equals:

[−
prec(ℓ)
∑

l=1

Ωl,ℓ − n+ p] Id, where p = pos(φ(ℓ)).

Proof. We use Lemma 3.11. There are two cases, depending if nφ(ℓ) = 2 or 1. Assume that
nφ(ℓ) = 2. In order for a term (Ei,j)0 ⊗ (Ej,i)ℓ to act nontrivially, it is necessary that either
πℓ(Ej,j) or πℓ(Ej,i) from (3.19) act nontrivially on the ℓth factor of vγ . With our notation,

the ℓth factor of vγ is f
(p)
∓ . Recall that the convention is that f

(p)
∓ is in the C-span of the

vectors ep−1, ep. This implies that we must be in one of the following two cases:

(1) j ∈ {p − 1, p}, and p+ 1 ≤ i ≤ n. Then (Ei,j)0 ⊗ (Ej,i)ℓ = −πℓ(Ej,j), and so

p
∑

j=p−1

(Ei,j)0 ⊗ (Ej,i)ℓ = − Id .

(2) i ∈ {p− 1, p}, and 1 ≤ j ≤ p− 2. Then we have

(Ei,j)0 ⊗ (Ej,i)ℓ = πℓ(Ej,i)

prec(ℓ)
∑

l=1,l 6=ℓ
πl(−Ei,j + Ej,i).
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It is not hard to verify directly that

p−2
∑

j=1

p
∑

i=p−1

(Ei,j)0 ⊗ (Ej,i)ℓ = −
prec(ℓ)
∑

l=1

Ωl,ℓ.

In the second case (nφ(ℓ) = 1), the ℓth factor of vγ is ep. Therefore, the only nonzero
contributions come from:

(1) j = p, and i ≥ p+ 1. Then we have (Ei,p)0 ⊗ (Ep,i)ℓ = −πℓ(Ep,p) = − Id .
(2) i = p, and j ≤ p− 1. Then we have

(Ep,j)0 ⊗ (Ej,p)ℓ = πℓ(Ej,p)

ℓ−1∑

l=1

πl(−Ep,j).

When we sum over all j, we get

ℓ−1∑

j=1

(Ep,j)0 ⊗ (Ej,p)ℓ = −
ℓ−1∑

l=1

Ωl,ℓ.

˜

Next, we compute the action of the terms corresponding to l.

Lemma 3.14. With the notation as in 3.12 and (3.6), the action of
∑

E∈l

(E)0 ⊗ (E∗)ℓ on fγ

equals:

[−
lev(δ′p)

2
+ ν ′p +

n

2
− p+ 1] Id, where p = pos(φ(ℓ)).

Proof. We use Lemma 3.10. Assume first that nφ(ℓ) = 2, so that the ℓth factor in u∓ is

f
(p)
∓ . The only nontrivial actions could come from { 1√

2
E

(p)
± , 1√

2
H(p), 1√

2
Z(p)} (notation as in

(3.15)):

(1)

[(
1

2
(H(p))0 ⊗ (H(p))ℓ)fγ ](1) = −

lev(δ′p)

2
vγ ,

since H(p)w
(p)
± = ± lev(δ′p)

2 w± and H(p)f
(p)
∓ = ∓f (p)

∓ ;
(2)

[(
1

2
(Z(p))0 ⊗ (Z(p))ℓ)fγ ](1) = (ν ′p +

n

2
− p+ 1)vγ ,

where n
2 − p+ 1 is the ρ-shift in the normalized induction in this case;

(3)

[(
1

2
(E

(p)
± )0 ⊗ (E

(p)
∓ )ℓ)fγ ] = 0,

since E±w
(p)
∓ = 0, and E∓f

(p)
∓ = 0.

In the case that nφ(ℓ) = 1, the only nontrivial action of fγ is that of (Ep,p)0 ⊗ (Ep,p)ℓ =

[ν ′p+ n−1
2 −p+1] Id where n−1

2 −p+1 is the ρ-shift in this case. Recall also that lev(δ′p) = 1
if nφ(ℓ) = 1. ˜

Finally we can compute the eigenvalue of Θ(ǫℓ) on fδ, which concludes the proof of
Theorem 3.5.
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Proposition 3.15. We have

Θ(ǫℓ)fγ = 〈ǫℓ, χ(Γn,k(γ))〉fγ , for all 1 ≤ ℓ ≤ n,
where the action of Θ(ǫℓ) is defined in (3.2), χ(Γn,k(γ)) is the central character from (3.6),
and fγ is the eigenfunction (3.14).

Proof. By putting together (3.18) and Lemmas 3.13, 3.14, we see that

Ω0,ℓfγ = −
prec(ℓ)
∑

l=1

Ωl,ℓ −
lev(δ′p)− 1

2
− n− 1

2
,

where p = pos(φ(ℓ)). From (3.2), we find then

Θ(ǫℓ)fγ = −
lev(δ′p)− 1

2
+

ℓ∑

l=prec(ℓ)+1

Ωl,ℓfγ .

Now the claim follows by observing that Ωl,ℓfγ = fγ , for every l such that prec(ℓ) < l < ℓ,
since in this case Ωl,ℓ permutes identical factors. ˜

Example 3.16. We give some basic examples.

(1) If n = k and stdR(γ) is the spherical minimal principal series of GL(n,R), with
spherical quotient, then stdH(Γn,k(γ)) is the spherical principal series of Hk with
spherical quotient (and the same central character as the infinitesimal character of
stdR(γ)).

(2) Assume that n = 2m and k = dm, d ≥ 2, and define

stdR(γ) = IndGR

PR

(

δ

(

d,
m− 1

2

)

ˆ · · · ˆ δ

(

d,−m− 1

2

))

.

where LR = GL(2,R)m. Then Theorem 3.5 implies that

F2m,dm(stdR(γ)) = stdH(Γ2m,dm(γ)) = Hdm ⊗H
m
d

(St⊗ C m−1

2

ˆ · · ·ˆ St⊗ C−m−1

2

).

The unique irreducible quotient of stdR(γ) is a Speh representation for GL(2m,R),
while the unique irreducible quotient of stdH(Γ2m,dm(γ)) is a Tadić representation
for Hdm.

4. images of irreducible modules

This section is devoted to the following result.

Theorem 4.1. Write Ψn,n for restriction of the map Ψ of (2.16) to the set of parameters

PR

n,≥n for GL(n,R) of level at least n (Section 3.2). Recall the map Γn,n of (3.5). Then

Φn,n = Γn,n.

Arguing as at the end of Section 2, and using the convention that irrH(0) = 0, we imme-
diately obtain our main result.

Corollary 4.2. If X is an irreducible object in the category HCn,≥n Harish-Chandra modules
for GL(n,R) with level at least n (Section 3.2), then Fn,n(X) is irreducible or zero. More
precisely

Fn,n (irrR(γ)) = irrH (Γn,n(γ)) ,



18 DAN CIUBOTARU AND PETER E. TRAPA

which is nonzero if and only if γ has level n. All irreducible objects in Hn arise in this way.
In particular, Fn,n implements a bijection between the irreducible objects in HCn of level n
and the irreducible objects in Hn.

˜

Example 4.3. There are two extremes:

(1) When irrR(γ) is the spherical quotient of the minimal principal series stdR(γ), then
irrH(Γn,n(γ)) is the spherical quotient of the corresponding minimal principal series
stdH(Γn,n(γ)) (see Example 3.16(1)). In particular, the trivial GR representation is
mapped to the trivial Hn-module.

(2) Set stdR(γ) = IndGR

PR
(δ(sgn, n−1

2 − 1) ˆ · · ·ˆ δ(n, 0) ˆ · · ·ˆ δ(sgn,−n−1
2 + 1)), where

LR = GL(1,R)⌈
n
2
⌉−1 × GL(2,R) × GL(1,R)⌊

n
2
⌋−1, and δ(n, 0) is inserted between

δ(sgn, 1
2) and δ(sgn,−1

2) when n is even, or δ(sgn, 0) and δ(sgn,−1), if n is odd. Then
Fn,n(stdR(γ)) is the Steinberg Hn module St, and Fn,n(irrR(γ)) = irrH(Γn,n(γ)) = St.

Since we have defined Γn,n and Ψn,n quite explicitly, the proof of Theorem 4.1, which we
shall sketch in the remainder of this section, amounts to a rather unenlightening combinato-
rial verification. First we note that it is obvious from the definitions that we may work with
a fixed infinitesimal and central character λ. It is then not difficult to reduce to the case of
integral λ, and we impose that assumption henceforth. (There is hard work involved in this
reduction to the integral case, but it is buried in Theorems 2.2 and 2.4 and the references to
[ABV] and [Lu1].) After twisting by the center, there is no harm in assuming that λ consists
of a (weakly) decreasing sequence of n integers.

The map Γn,n is given very explicitly in (3.5). We need to be similarly explicit with the
maps dR, dH, and Ψg which go into the definition of Ψn,n. We treat each of these individually,
starting with Ψg.

First we discuss the parameter space PR,g
n (λ). Recall that the only relevant parameters for

us are the ones corresponding to the set of K(λ) orbits on G(λ)/P (λ). Since λ is assumed to
be integral, G = G(λ) and K(λ) ≃ GL(p,C)×GL(q,C) for p+q = n (where p is the number
of even entries in λ and q is the number of odd entries). Let B denote a Borel subgroup of
G, and (since λ is fixed), write K = K(λ), P = P (λ), and P = LU to conserve notation.
Write π for the projection of G/B to G/P . The orbits of K on G/P thus are parametrized
by equivalence classes of K orbits on G/B for the relation Q ∼ Q′ if π(Q) = π(Q′). The
orbits of K on G/B are parametrized by certain twisted involutions on which the equivalence
relation is easy to read off ([RS]). We recall the combinatorics now.

The set of K orbits on G/B is parametrized by involutions in Sn with signed fixed points
of signature (p, q); that is, involutions in the symmetric group Sn whose fixed points are
labeled with signs (either + or −) so that half the number of non-fixed points plus the
number of + signs is exactly p (or, equivalently, half the number of non-fixed points plus the
number of − signs is q). Given such an involution σ±, write Qσ± for the corresponding orbit.
Identify the Weyl group of P with Sm1

× · · · × Smr inside Sn. For a simple transposition
s ∈WP in the coordinates i and i+ 1 and an involution with signed fixed points σ±, define
a new involution with signed fixed points s · σ± as follows: (1) if the coordinates i and i+ 1
of σ± are fixed points with opposite signs, replace them by the transposition s but make no
other changes to σ±; (2) if the coordinates i and i+ 1 of σ± are fixed points with the same
sign or else are nonfixed points interchanged by σ±, do nothing; and (3) in all other cases,
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let s · σ± be obtained from σ± by the obvious conjugation action of s on involutions with
signed fixed points. (See [McT, Section 2], for instance, for a more careful discussion.) Then
the equivalence relation Q ∼ Q′ on K orbits is generated by Qσ± ∼ Qs·σ±.

Correspondingly we introduce a combinatorial model for PH,g
n . Define a segment to be a

finite increasing sequence of complex numbers, such that any two consecutive terms differ
by 1. A multisegment is an ordered collection of segments. If τ is a multisegment, define
the support τ of τ to be the set of all elements (with multiplicity) of all the segments in the
multisegment. Set

M(λ) = {τ multisegment : τ = λ (up to permutation)}. (4.1)

If τ, τ ′ ∈ M(λ), define τ ∼ τ ′ if τ and τ ′ have the same segments (in different order). This
is an equivalence relation on M(λ), whose classes we shall denote by M◦(λ) Then there is
a one-to-one correspondence ([Z1])

L(λ)\g−1(λ)←→M◦(λ), (4.2)

and, as discussed in Section 2.4, PH,g
n identifies with the orbits of L(λ) on g−1. For example, if

λ = ρ, there are 2n−1 multisegments inM◦(ρ). In (4.2), the zero L(ρ)-orbit is parameterized
by the multisegment {{n−1

2 }, . . . , {−n−1
2 }}, while the open L(ρ)-orbit is parameterized by

{{−n−1
2 , . . . , n−1

2 }}.

Next we describe the map Ψg of (2.15) in terms of this parametrization, i.e. as a map
which assigns to each multisegment an (equivalence class of an) involution with signed
fixed points. We shall do so through a detailed example. Suppose n = 11 and λ =
(4, 4, 3, 3, 3, 3, 2, 2, 1, 1, 0) and τ is the multisegment {{0, 1, 2, 3, 4}, {1, 2, 3}, {2}, {3}, {3}, {4}}.
Since there are five even entries of λ and six odd ones, we will assign to τ an involution in
S11 with signed fixed points of signature (5, 6). We first start with a diagram where the
entries of λ are arranged in columns and replaces by signs according to their parity.

4 3 2 1 0
+ −− ++ −− +

− ++ −+

−
−

+

Start with the longest connected component of τ . If starts at 0 and ends at 4. We connect a
+ in the 0 column with a + in the 4 column. Since these columns have the same parity, we
invert one sign in each of the intermediate columns. (If the signs we connected had opposite
parities, we would need no such inverting.) The picture we get is

4 3 2 1 0
• + − + •

− ++ −+

−
−

+

The next longest connected component in τ connects 1 to 3. So we take a − in the 1 column
and connect it to a − in the 3 column. (We never use signs which were changed in previous
steps.) Since we connected two signs of the same parity, we change a + sign to a − sign in
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the intermediate column labeled 2. We obtain:

4 3 2 1 0
• + − + •
+ • − •

−
−

+

Now we come to a final flattening procedure. In this step, we want to produce a linear array
of +’s and −’s and connected dots. To do so, we throw away the numbers and collapse each
column of the above diagram to the same height, but do make any identifications in the
process and do not mix adjacent columns. This step is ambiguous. For instance, we could
collapse the above diagram to obtain either of the following diagrams (among many others).

+ • ))• ++− + − − − + + •ss •uu

• ))+ + − − • ((− − + •vv

+ •uu

Each of these diagrams may be interpreted as an involution with signed fixed points on 11
elements in the obvious way. Although individually they are not well-defined they automati-
cally belong to the same equivalence class described above, so indeed determine a well-defined

orbit of K on G/P . Thus we have taken the multisegment parameter for PH,g
11 (λ) and defined

a signed involution parameter for PR,g
11 (λ).

The example clearly generalizes to give a map from PH,g
n (λ) to PR,g

n (λ) in general. It is
not difficult to verify that this map indeed coincides with Ψg of (2.15).

Next we remark that the explicit details of the map dH are given in [Z1]. More precisely,
there is an obvious correspondence between multisegments M◦(λ) and the parameter set
PH
n (λ). It takes a multisegment represented by τ = {{a1, . . . , b1}, . . . , {ar, . . . , br}} ∈ M(λ)

satisfying Rea1+b1
2 ≥ Rea2+b2

2 ≥ · · · ≥ Rear+br
2 to the parameter (HP , δ) where P corre-

sponds to the parabolic subalgebra whose (ordered) Levi factor is

l = gl(b1 − a1 + 1)⊕ · · · ⊕ gl(br − ar + 1),

and δ = δ1 ˆ · · ·ˆ δr where δi = St⊗C ai+bi
2

. We already remarked above that there is a also

natural correspondence between M◦(λ) and PH,g
n (λ). With these identifications in place,

the map dH : PH
n (λ)→ PH,g

n (λ) is simply the identity map on multisegments.

Finally, we discuss dR. It takes a parameter γ ∈ PR
n (λ) and produces an element of PR,g

n ,
which we have now identified with the the orbits of K ≃ GL(p,C) × GL(q,C) on G/P .
In turn we may identify such orbits with a subset of K orbits on G/B, namely the ones
which are maximal in the preimage under the projection from G/B to G/P of an orbit on
G/P . Using Beilinson-Bernstein localization, the orbits of K on G/B correspond to irre-
ducible Harish-Chandra modules for U(p, q) with trivial infinitesimal character. Unwinding
these identifications, we can interpret the map dR as sending a parameter γ ∈ PR

n (λ) to
an irreducible Harish-Chandra module for U(p, q), and it is this correspondence we seek to
describe explicitly. Let irrreg(γ) denote an irreducible Harish-Chandra module with regular
infinitesimal character which translates by a “push to walls” translation functor to irr(γ).
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The paper [Vo3] assigns to irrreg(γ) an irreducible Harish-Chandra module, say irr∨(γ), for
U(p, q). Then, with all the identifications in place, the map dR takes γ to irr∨(γ). Each of
these identifications (and the map of [Vo3]) can be made very explicit.

We have thus sketched the explicit details of the ingredients dR, dH, and Ψg in the defi-
nition of Ψn,n. It is thus possible to compare Ψn,n to Γn,n directly and check they coincide.
We omit further details. ˜
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