ONE-DIMENSIONAL REPRESENTATIONS OF U(p,q) AND THE HOWE
CORRESPONDENCE

ANNEGRET PAUL AND PETER E. TRAPA

ABSTRACT. We explicitly determine the theta lifts of all one-dimensional representations of U(p, q)
in terms of Langlands parameters, and determine exactly which lifts are unitary. Moreover, we
show that such a lift is unitary if and only if it is a weakly fair derived functor modules of the
form Aq(A). Finally we show that the correspondence of unitary representations behaves well with
respect to associated cycles.

1. INTRODUCTION

Let (G, G’) be a reductive dual pair in Sp(2n,R). Let G and G’ be the preimages of G and G’ in
Mp = Mp(2n,R), the connected double cover of Sp. Write Irr(é) for the set of equivalence classes of
irreducible Harish-Chandra modules for G, and likewise for Irr(é’ ). Two representations 7 € Irr(é)
and 7’ € Irr(G') are said to correspond if 7 ® 7’ is a quotient of a fixed oscillator representation for
Mp; in this case 7 and 7’ are said to occur in the correspondence. Howe proved that the map 7 — 7’
is well-defined and bijective when restricted to those representations which occur [H5]. Hence we
obtain a map

0 : Irr(G) — Irr(G') U {0},

where 0(m) = 0 if = does not occur in the correspondence. This map depends on a choice of one of
the two oscillator representations for Mp.

Because of its role in the construction of automorphic forms, it is of considerable interest to
compute the map 6 as explicitly as possible. This has been accomplished in some cases, most
notably when G and G’ are complex [AB1]; when, roughly speaking, G and G’ have the same size
[M], [AB2], [P1], [P2]; whenever n > p+gq for the (Sp(p,q), 0*(2n)) dual pair [LPTZ]; and for type
IT dual pairs [M], [AB1], [LPTZ]. In complete generality, very little is known explicitly. Among the
available abstract results, perhaps the most powerful asserts that when (G, G") is a type I dual pair
in the stable range (i.e., roughly speaking, when G’ is twice as large as G), then every representation
of G occurs and, moreover, if 7 is unitary, then so is 8(7') ([Lil], [M]).

The present paper deals with the dual pair (U(p,q),U(r,s)) and gives a complete description of
6(x), whenever x is a one-dimensional representation of U(p, q). It is important to clarify what we
mean by a ‘complete description’ in this context. We determine exactly when 6(x) # 0 in terms of the
well-known (and explicit) correspondence of K-types in the space of joint harmonics (see Section 3
for the relevant definitions). In this case we give a description of the Langlands parameters of 6(x)
(see Section 8); these representations will generally be very singular. While Langlands parameters
are, in some sense, complete information, they fall short of determining the unitarity of (). Worse
yet, there exist nice families of singular unitary representations whose Langlands parameters do not
look like families. To remedy this, we completely determine the unitarity of 6(x). In the cases when
6(x) is in fact unitary, we explicitly identify it as a derived functor module (more precisely, as a
weakly fair A4()\) module — see Section 2.3). This computation is very clean, and clearly indicates
the family of unitary representations obtained as theta lifts of one-dimensional representations. The
following summarizes these results; see Section 4 for more complete statements.
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Theorem 1.1. Let x € Irr([}(p, q)) be a one-dimensional representation. Then 6(x) # 0 if and
only if x occurs in the space of joint harmonics. There is a simple procedure to specify the Langlands
parameters of 6(x). Moreover, 0(x) is non-zero and unitary if and only if 0(x) is a weakly fair derived
functor module of the form Aq(X); here q and A are explicitly computable.

The precise statement in Theorem 4.1 below is notable both for the simplicity of its answer, and
because it suggests how to lift derived functor modules for arbitrary dual pairs. (We return to this
below.) We now briefly sketch our proof. The first step is to determine occurrence, i.e., for fixed p
and ¢ and a genuine one-dimensional representation x of ﬁ(p, q), find all r, s such that 6(x) # 0.
(To express the dependence of the lift on r and s, we denote this representation 6, ;(x).) Using the
mixed model [H1] of w one can show that whenever a representation 7 € Irr(U (p, ¢)) has a non-zero
theta lift to U (r,s), then 6,1k s1+k(m) will be non-zero for all positive integers k. This fact is called
persistence (Kudla). It is convenient to divide the collection of groups {U(r, s)} into Witt towers: for
any integer k, we call the set {U(r,s)|r — s = k} the k'* Witt tower. Because every representation
occurs in the stable range, persistence implies that for any 7 € Irr(ﬁ (p,q)) there is a well-defined
first occurrence in each Witt tower; this is the non-zero theta lift of = to the group of least rank.
So in order to determine all occurrences of x it is sufficient to determine the first occurrence in each
Witt tower. Because of the following result (which is essentially our Theorem 5.11), the same is true
in many cases for determining the Langlands parameters of each lift.

Theorem 1.2. Suppose p+q <1+ s, and 7 is any irreducible admissible representation of U (p,q)
such that 0, s(m) # 0. Then there is a simple procedure to determine the Langlands parameters of
Ortk,s+k () from those of 0, s(m), and vice versa.

For reasons made apparent below, it is important to single out a particular Witt tower. It follows
from the results of [P1] and [P2] that for any 7 € Irr(U(p, )), the first occurrence is at rank less than
or equal to p+ ¢ in at most one Witt tower, which (if it exists) we will call the “good” tower. In any
event, Theorem 1.2 reduces Theorem 1.1 to determining the first occurrence of a given character x
in terms of its Langlands parameters, checking which lifts are A4(\) modules (hence unitary), and
finally determining which lifts are nonunitary.

We begin by tabulating the Langlands parameters of theta lifts of one-dimensional representations
of the compact group U (p, 0). Because the Howe correspondence for compact dual pairs is well-known
(e.g. [EHW], [A]), this is reasonably straightforward. Since every one-dimensional representation of
U (p, @) is the Langlands subquotient of a representation induced from a one-dimensional representa-
tion on a cuspidal parabolic subgroup with Levi factor U (p —¢,0) x (C*)?, we can use the compact
case, together with the induction principle, to determine all early occurrences of non-trivial x in the
good tower, as well as all first occurrences outside the good tower (for any x) if they are below the
stable range. This includes the Langlands parameters of the lifts. For the trivial representation this
reduction to the compact case is not possible since this character lifts to every group in the good
tower. Here we rely on the results of Lee and Zhu [LZ], who have determined all lifts of the trivial
representation.

We are thus reduced to the case when the first occurrence (outside the good tower) is in the
stable range. In fact we can compute all lifts of x in the stable range as follows. We first produce a
candidate for the stable range lift of x; this is a very small (and generally singular) weakly fair A4 (\)
module. We compute its associated varieties and conclude that it is of low rank. By the theory of
low rank representations due to Howe and Li [Lil], we conclude that our candidate must occur. Then
we use the infinitesimal character correspondence and the correspondence of associated varieties of
primitive ideals (which is given by the orbit correspondence in this situation [Pr3]) to prove that our
candidate lift is indeed the actual lift of x. To finish the proof, we convert Langlands parameters
to Aq(A) data (using [T]) and vice versa where appropriate, and use Parthasarathy’s Dirac operator
inequality [Pa] to prove that all lifts which are not of the form A4(\) are non-unitary.
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There are a couple of interesting complements worth mentioning. A conjecture of Vogan’s asserts
that any unitary representation of U(p, ¢) with integral infinitesimal character is a weakly fair A4()\)
module. Since 6 preserves the condition of having an integral infinitesimal character (see [Pr2]), and
since unitarity is preserved under stable range lifting, Vogan’s conjecture predicts that the stable
range theta lift of a weakly fair A4()\) module must again be a weakly fair A;()\) module. (There is
substantial evidence to make such prediction, with some obvious modifications', in the generality of
any dual pair.) At any rate, Theorem 1.1 verifies this prediction for the simplest kind of weakly fair
A4 (X) module for U(p, q), i.e. the one dimensional ones.

A further interesting point is that in the stable range the computation of Theorem 1.1 behaves well
with respect to associated varieties and the orbit correspondence. This is predicted by a conjecture
of Howe’s and is discussed in Section 6. But even more is true: the multiplicities in the associated
cycle are also preserved (Corollary 6.5). (They are all one in our case.) This kind of phenomenon
was first observed in [NOT]. The methods we use to compute multiplicities, which are a combination
of asymptotic and geometric techniques, turn out to be quite useful. For instance, they allow one to
recover the relevant results in [NOT] (Remark 6.6).

A final interesting feature of the correspondence is that the first occurrence in the good tower is
always finite dimensional.

2. PRELIMINARIES

2.1. Square roots of characters. Consider an arbitrary group G and a character x of G. Define
a two-fold covering of G (called the ,/x-covering or x'/?-covering) as follows

GVX:={(9,2) €GxC|2=x(9)} — G
(g,Z) —9g-

Recall that a representation of GVX is called genuine if it does not factor to G. For instance, the
character \/x = x'/2 defined by x'/2(g,z) = x(2)z is a genuine character of GVX.

2.2. Generalities. Even though we will deal exclusively with U(p,q), it is conceptually a little
simpler to begin with a few more general results and definitions, which we will later apply to the
U(p,q) setting. So consider a linear real reductive group G, with maximal compact subgroup K.
Assume that all Cartan subgroups of G are abelian. Write g, for the Lie algebra of G, g for its
complexification, and G¢ for the corresponding complex group. Adopt similar notation for subgroups
of G. Let 7 denote the Cartan involution of G, and write g = €@ p for the corresponding complexified
decomposition. Write (-, -) for the trace form on g (which is positive definite on p and negative definite
on ) normalized so that short simple roots have length 2. Using the trace form, we will often identify
g and g*. We use the same notation (-,-) for the dual of the trace form.

Let N*(g) denote the cone of nilpotent elements in g*, and set N*(p) = N*(g) N p*. Recall that
K¢ acts with finitely many orbits on A*(p). Given a finite length (g, K) module X, let AV(X)
denote the closed points of the support of the associated S(g) module attached to any K-invariant
good filtration of X. This is a well-defined subvariety of p* which in fact is a (finite) union of closures
of equidimensional K¢ orbits on N*(p). If I is a primitive ideal in $(g), we write AV(I) for the
associated variety of the Harish-Chandra bimodule ${(g)/I, and in this case AV(I) is the closure of
a single nilpotent orbit on g*. Finally one can refine the associated variety by keeping track of the
rank of the corresponding associated graded object along the irreducible components of its support.
The resulting invariant, which can be viewed as a linear combination of the irreducible components
of the associated variety, is called the associated cycle; see [V5] for more details.

1Essentially the only modification is that one must also include representations cohomologically induced from
minimal representations, and not just one dimensionals.



4 ANNEGRET PAUL AND PETER E. TRAPA

2.3. Cohomological induction. Let h = t ® a be the complexification of a maximally compact
T-stable Cartan subalgebra h,. Choose a T-stable system of positive roots A*(g,h) and let g =1 D u
be a 7-stable parabolic containing h with A(u) C A*(g,h). Let L denote the analytic subgroup of
G corresponding to [N g,. Let 2p(u) denote the character of L defined by ! — det(Ad(l)|y), and

consider (see Section 2.1) the two-fold covering LV2?(W), As a matter of notation, we set LF(*) =

LV We let R? denote the jth cohomological induction functor, normalized as in [V4, Chapter
5]2. This functor takes genuine finite length (I, (L N K)?") modules to finite length (g, K') modules
and preserves infinitesimal character: if a genuine (I, (LNK)?™)) module X has infinitesimal character
given by v € h*, then so does Rﬂ (X).

Suppose now that Cy is a one dimensional genuine (I, (L N K)?)) module whose differential
restricted to b is given by A € h*. Recall our fixed choice of positive roots A*t. We say that )\ is
in the (weakly) good range for q if A + p([) is (weakly) dominant for A*. We say that X is in the
(weakly) fair range for q if A is (weakly) dominant for A™. Finally for S = dim(u N ¢), we set

A4(N) = R7(Cy).
Here are the main properties of these modules.

Theorem 2.1. (1) Aq(A) has infinitesimal character A + p(1).

(2) If A isin the good range for q, then A4(\) is nonzero, irreducible, and unitary. The Langlands
parameters of Aq(X) are explicitly computable.

(3) If A is in the weakly good range, then Aq(X) is irreducible and unitary (but possibly zero).

(4) If X is in the weakly fair range, then Aq(\) is unitary (but possibly reducible or zero).

(6) IfG =U(p,q) (or a square-root cover of U(p, q)) and X is in the weakly fair range, then Aq(\)
is irreducible and unitary (but possibly zero). The Langlands parameters (and in particular
the nonvanishing) of Aq(\) are explicitly computable.

Proof. The first statement is essentially built into the normalization of R4. The second, third, and
fourth statements are due to Vogan, Zuckerman, and Vogan-Zuckerman (see [KnV], for instance, or
the exposition of [T, Section 3]). The final statement summarizes the main results of [T] (see [T,
Theorem 3.1] and [T, Theorem 7.9]).

2.4. The orbit correspondence for reductive dual pairs. Fix a reductive dual pair G’ x G" C
G := Sp(2n,R), consider g’ ® g” C g and the corresponding complexification g¢ @ g¢ C gc. Assume
(as we may) that p’,p” C p. Consider the minimal orbit OF™™ in N*(gc), and fix one of the two
irreducible components (say O™") of O™ N p*. Write pf. and puf. for the restriction map from OFin
to (gc)* and (g¢t)*. (More precisely, the inclusion of g into gc gives g¢ — (g¢:)* which we then
restrict to O™ to obtain y(., and likewise for yfl.) Similarly write p/ and p” for the restriction of
O™ to (p’)* and (p”)*. It is easy to check that

pé o (ng) TV (gc)) € N (g8)
p" o (W) THN(P) C N (p").
In the stable range, the following result is well-known, and was observed independently by a number

of people.

Proposition 2.2. Assume (G',G") is a type I dual pair in the stable range with G' the smaller
member. Fiz an orbit O’ of K. on N*(p'). Then p" o (') ~1(O’) is the closure of a single orbit 0"
of K{ on N*(p"). Moreover, if we set Op = G- O’ and Of = G{.- 0", then pgo (ug) 1 (OF) = OF.

Remark 2.3. Recall that the definition of ' and u” depends on a choice of minimal orbit O™i®,
The two different choices of O™™ lead to two different maps O’ — O".

2This normalization differs from the more standard one of, say, [KnV]. It has the advantage, however, of making
the statement of Theorem 4.1 much cleaner.
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Example 2.4. We compute the orbit O” (and hence also Of) appearing in the proposition for the
dual pair (G',G") = (U(p,q),U(r,s)); here the stable range assumption means min{r, s} > p+gq.
Recall (see e.g. [CM, Chapter 9]) that the orbits of K¢ on N*(p’) are parameterized by signed
Young diagrams of signature (p, q). Such a diagram consists of a Young diagram of size p+¢ with p
boxes labeled ‘+’ and g boxes labeled ‘—’ arranged in an alternating fashion along rows, modulo the
equivalence relation of interchanging rows of equal length. As a matter of notation, such a diagram
will be denoted by the sequence (1"’)";r (1), .., (k;“‘)”;c+ (k=)™ ,..., where n§ is the number of rows
of length k that begin with a box labeled e. For instance, the zero orbit for U(p, q) is parameterized by
(1*)P(17)9 and the two minimal orbits are given by (17)P~1(17)¢=1(2*)! and (1F)P~1(17)71(27).
Now fix notation as in Proposition 2.2, and suppose ' is parameterized by
(UH) )™ (R (k)
Then (for one of the choices in Remark 2.3) the diagram parameterizing 0" is obtained by adding a

single box of the required sign to each row-end of the diagram parameterizing O’, and arranging the
remaining signs in length-one rows. More precisely, O is parameterized by

WONADME@YT @)™, (R (k41T
where N and M are uniquely specified so that the number of plus (resp. minus) signs in the resulting
diagram is 7 (resp. s). Note that the stable range hypothesis insures that N and M are positive. (For

the other choice of minimal orbit, the diagram for 0" is obtained by adding signs to the beginning
(rather than end) of each row in the diagram parameterizing O’.)

Theorem 2.5 (Przebinda [Pr3]). Retain the hypothesis and notation of Proposition 2.2, but exclude
the case of (Sp(2n,R),0(2n,2n)). If X' is a genuine irreducible unitary representation of G' such
that AV(Ann(X)) = O, then AV(Ann(6(X))) = Of.

2.5. Low rank representations. Suppose G is a finite cover of a linear reductive group (so g can
be viewed as a subalgebra of matrices). In this case, we can define the rank of an element A € g,
denoted rk(A), to be the rank of A as a matrix. By identifying g and g* using the trace form, we
can also define the rank of an element of g*. Given a finite length (g, K) module X, we define the
rank of AV(X) as the maximal possible rank of an element in AV(X)

rk(AV(X)) := max{rk(4) | A € AV(X)}.

Finally define the rank of X to be the minimum of the rk(AV (X)) and the real rank of G (which we
henceforth denote rk(G)),

rk(X) = min{rk(AV(X)),rk(G)}.
A representation X is said to be of low rank if rk(X) < rk(G) (i.e. if rk(AV(X)) < 1k(G)). If X
is irreducible and unitary, theorems of Howe and Li imply that this definition is known to coincide
with the Howe’s original notion of rank [H3].

Theorem 2.6. [Li2] Let G' be the isometry group of a nondegenerate sesquilinear Hermitian form
on a vector space over a division algebra, and let X' be an irreducible low rank representation of G'.
Then there exists a type I reductive dual pair (G,G") in the stable range (with G the smaller member),
a character § of G', and an irreducible unitary representation X of G such that

8(X) = X' ®4.

2.6. Generalities about U(p, ¢) and covers. Let p and g be non-negative integers and set p+q = n.
Explicitly we define G = U(p, q) to be the set of n x n complex matrices preserving the Hermitian
form of signature (p,q) defined by the diagonal matrix with p diagonal entries +1 followed by ¢
entries —1, and choose K = U(p) x U(q) to be the maximal compact subgroup of U(p, q) embedded
diagonally. Fix the diagonal torus T' of K. Then the roots of g with respect to t (in obvious
notation) are A = A(g : t) = {£(e; — ¢;)|1 < i < j < n}. Fix a system of positive compact roots
A ={e;—¢€j]l1<i<j<p or p+1<i<j<n}.
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Consider the dual pair U(p,q) x U(r,s) C Sp(2(p+q)(r+s),R). In the notation of Section 2.1, its
preimage in the metaplectic group is isomorphic to U(p, )Vt * x U(r, s)V9e*" " *. When the context
is clear, to simplify notation we will write U (p,q) for U(p,q)¥V9*" ™ and likewise for U (r,s). Again
if the context is clear and H is a subgroup of U(p, q), HY*"° will be denoted H (and similarly for
subgroups of U(r, s)).

Recall that the cover U (p, q) is split if and only if r—s is even (and similarly for U (r,s) if p—gq

is even). In this case, we will identify the genuine admissible dual of U (p,q) with the admissible
dual of U(p, q) (by tensoring with the nontrivial character of Z/2). In general, the one-dimensional

representations of U (p, q) are those of the form det? with k € Z, and the genuine ones will be those
E ~

with k = r — s(mod2). (Sometimes we will write detg, for the character det? of U (p,q) in order

to avoid confusion about the group in question.) Applied to the case of the torus, for instance, one

concludes that if o is a genuine irreducible representation of KcU (p,q), then the highest weight of
o will have entries in Z + 52

5.

We will use the following terminology: If G; is a reductive Lie group with maximal compact
subgroup K7 and o is an irreducible representation of K7, we will refer to o as a K;-type, as a
K-type for GGy, or, if there is no confusion likely about the group in question, simply as a K-type.
Moreover, we will identify K-types with their highest weights. If X is a representation of G1, we will
refer to a lowest K-type (in the sense of Vogan) of o as an LKT.

2.7. Langlands parameters for U(p,q). We use the parameterization of [V3] (see §3 of [P1] for
more details). Let 7 € Irr(U(p, g)). We can write 7 as the unique irreducible quotient of an induced

representation IndlUD(p ) (p®x). Here P = MN is a cuspidal parabolic subgroup of U(p,q) with
Levi factor M 22 U(p — m,q — m) x (CX)™ for some nonnegative integer m, p is a genuine limit of
discrete series representation of U (p—m,q—m), and x is a character of (C*)™. For 7 to be genuine,
p must be a genuine representation of U (p — m,q — m). We require that p and x satisfy conditions
F-1 (non-singularity w.r.t. simple compact roots) and F-2 (the non-parity condition) of [V3]. The
representation p is determined by a Harish-Chandra parameter A and a system of positive roots ¥, and
we sometimes write p = p(A, ¥). If m = p = ¢ then p is one of the two characters of (7(0, 0) =Z/2Z.
For 7 to be genuine, p must be the sign representation. We write sgn = p(Asgn, ¥sgn). The character

X may be given by an m-tuple of integers u = (p1, 2, - - -, 4m) and an m-tuple of complex numbers
v=(v1,...,Vn) in the following way:

m m
(2.7) X H rieti | = H r;'" g%

j=1 =1

The representation 7 is uniquely determined by the parameters m, A, ¥, u, and v.

Definition 2.8. If 7 is an irreducible admissible representation of U (p,q), we call the parameters
(m, A, ¥, u,v) (as above) the Langlands parameters of m. Given a set of parameters (m, A\, ¥, u,v)
satisfying conditions F-1 and F-2 of [V3], we let w(m, A\, ¥, u, v) denote the irreducible representation
of ﬁ(p, q) with Langlands parameters (m, A\, U, u, v).

k
Example 2.9. The Langlands parameters of det?, are (m, A, ¥, u,v) with

(2.10) m = min{p, q},

k+|p—q|—-1 k+|p—q|-3 k—|p—q|+1
(2.11) A:( lp—al=t ktlp—al=3  k=lp—d )
(2.12) p=(k,k,... k),
(2.13) v=(p—ql+1[p—q+3,...,]p—q +2¢-1),

and VU is the system of roots uniquely determined by A.
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2.8. Notation for Theorem 4.1. We need to define precisely the notation that appears in The-
orem 4.1 below. This is conceptually very simple (and doubtlessly overly detailed for the expert),
but nonetheless requires a little careful bookkeeping because of the covers involved. In any case, this
section should be read in conjunction with the statement of Theorem 4.1. So assume the dual pair
(U(p,q),U(r,s)) is fixed and adopt the notation of Section 2.6. Assume further that 7 > p and s > g.
Recall that the (K¢ conjugacy classes of) T-stable parabolic subalgebras of u(r, s) are parameterized
by sequences of pairs of integers {(p1,¢1),...,(p1,q)} such that >, p; = and ), g; = s. (See, for
example, [T, Section 2.1].) For the statement of Theorem 4.1(1), we are interested in the parabolic
q corresponding to the sequence {(p, q), (r—p,s—q)}. The corresponding Levi subgroup of U (r,s) is

then
det(Pta)/2 ®det(1’+‘1)/2

L~ (U(p,q) x U(r—p,s—0))
A direct calculation shows that 2p(u) = det™* (P9 g detP*. For applications to cohomological
induction, we are thus interested in representations (and in particular one dimensional characters
Cyx) of LPM) | which are genuine for the covering coming from p(u). For such a character Cy, we can
thus form Ay()) (with notation as in Section 2.3).

We now make this a little more explicit. The simplest case occurs when p+qg =r+s=0 mod 2
(and hence also (p+g+7+s) =0 mod 2) . In this case L ~ (U(p,q) x U(r—p,s—q)) x Z/2 and
LPM) ~ [ x Z/2 again. So a typical character of L") looks like Cy = (det, , ® detlr’_p,s_q Q€1 Qer)
with a,b € Z. This character is genuine for the p(u) cover if and only if € is the nontrivial character
sgn of Z/2, and the corresponding A4(\) is genuine for U (r, s) if and only if €; = sgn. In this case,
we write

Aq(det, , ® detf,_p7s_q)
b
© r—p,s—q
representations of U(r, s) appear in the statement of Theorem 4.1(1).

for the more precise Aq((det, , ® det ) ® sgn ® sgn). For instance, when b = 0 these genuine

Next we consider the case when p+gq is even, r+s is odd. In this case, one can check that
Lp(u) =~ (U(p7 Q) det X U(’f‘—p, s—q)) X Z/2

A typical character of L") is of the form (det“/ 2@ det’ ® €) with a,b € Z, which is genuine for
the p(u) cover if and only if a is odd. The corresponding A4()) is genuine for U(r, s) if and only if
€ = sgn, in which case we write
A, (det?’? @ det?)
for the more precise A4 (det“/ > ® det® ® sgn). When b = 0 and a is odd, for instance, these genuine
representations of U (r,s) appear in the statement of Theorem 4.1(1).
A more interesting case is when r+s = p+¢ =1 mod 2. From the definitions,

LF™ = {(A, B,z,y) | (A, B) € U(p,q)xU(r—p, ¢-s),z,y € C* s.t. det(A)det(B) = 2%, det(B) = y*},

where projection on x defines a genuine character for the U (r, 8) cover and projection on y defines a
genuine character for the p(u) cover. The map (4, B, z,y) — (4, B, (z/y),y) is an isomorphism onto

{(A,B,2,y) | (A,B) € U(p,q) x U(r—p,q—s), 2,y € C* s.t. det(A) = 2*,det(B) = y*},

which is simply U (p, q)m x U(r, s)‘/ﬁ. With this identification, a typical character of L is of the
form det®/? @ det®/? with a,b € Z. One checks that this character is genuine for the L*(*) cover if and
only if exactly one of @ and b is even and exactly one is odd, and the corresponding A4(\) is genuine
for [7(7', s) if and only if b is even. When a is odd and b = 0, for instance, these representations
appear in the statement of Theorem 4.1(1).

Finally if p4q is odd and r+s is even, a similar argument shows

Vast
)

LPW) ~ (U(p,q) x U(r—p,s—q) x 7/2,
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so that a typical character is of the form (deta/ 2@ det”? @ €) with a,b € Z both of the same parity.
Such a character is genuine for the p(u) cover if € = sgn and in this case we write A4 (det®? @ det®/?)
for the more precise Aq (det®? ® det®? ® €). This representation is genuine for U(r, s) if and only

if a and b are even. For instance, when b = 0 such representations appear in the statement of
Theorem 4.1(1).

Analogous notation applies to the modules that appear in Theorem 4.1(2-4) below. We leave it
to the reader to supply the details of the above analysis for these cases.

3. THE SPACE OF JOINT HARMONICS

The following discussion is in [H5]. Let (G, G’) be a reductive dual pair in Sp = Sp(2n,R), and
let F be the Fock space of the oscillator representation of Mp. Recall that the U (n)-finite vectors
may be realized as the space of polynomials in n variables, in such a way that the action of U (n),
and therefore, that of K and K’ (here K and K’ are maximal compact subgroups of G' and G'
respectively), preserves the degree. This allows us to associate to each K- and K’ -type occurring in
F a degree, which is the minimal degree of polynomials in the isotypic subspace.

There is a K x K'-invariant subspace H of F, the space of joint harmonics, with the following
properties.

Theorem 3.1 (Howe). There is a one-one correspondence of K-and K' -types on H with the following
propertzes Suppose m and 7’ are irreducible admissible representations of G and G’ respectively, and
m > 7' in the correspondence for the dual pair (G,G’). Let o be a K- -type occurring in w, and suppose
that o is of minimal degree among the K -types of w. Then o occurs in H. Let o’ be the K’ -type
which corresponds to o in H. Then o’ is a K'-type of minimal degree in .

Since one-dimensional representations contain only one K-type, Theorem 3.1 implies that in order
for this representation to occur in the correspondence, the corresponding K-type must occur in
the space of joint harmonics. We now determine for which choices of r and s the one-dimensional
representation x = det? occurs in the space H . Let us first recall the (well known) correspondence
of K-types in # (see [P1], e.g.).

Lemma 3.2. The correspondence of K -types for ﬁ(p, q) and (7(7‘, s) in the space of joint harmonics
for the dual pair (U(p,q),Ul(r,s)) is given as follows:

(1) If o is a K-type for ﬁ(p, q), then o occurs in H if and only if o is of the form

]
>

+ (a1,a2,...,a5,0,...,0,b1,...,by;¢c1,¢2,...,¢5,0,...,0,d1,...,dy),
withx +v <7 and y+ 2 < s. Then p <> p', where u' is the K-type for (7(1", s) given by

T S
A A

(34) (;7—11 P—q‘.rq;l” ‘1—1;)

2 ,-.-’?, 2 PRI 2
+(al,aQ,...,az,O,...,O,dl,...,dv;cl,cz,...,cz,O,...,O,bl,...,by).

(2) If o is a K-type for U (p, q) which occurs in the oscillator representation, given by

(3.5) (52, 55 5, ) F (@1, %2, Tps YLy - - Yg)s
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then the degree of o (for the dual pair (U(p,q),U(r,s))) is given by

(36) 2 lzil+ > il

i=1
Remark 3.7. Notice that the degree of a K-type depends on the dual pair under consideration. In
particular, for the dual pair (U(p,q),U(r,s)), the degree of a K-type for U(p, q) depends on r — s.

Using Lemma 3.2, it is now easy to determine when x occurs in 7. Table 1 summarizes the
result. Let x be the character det? of ﬁ(p, q). We consider the dual pair (U (p,q),U(r, s)), and let
w = r — s. Recall that we must have w = k(mod2) for x to be genuine. (For p > ¢ and k = 0,
Table 1 is summarized in Figure 4.1. For p > ¢ and k > 0, see Figure 4.2.)

k w r, s
k>0 w=Ek s>q
w=—k T>Dp

—k<w<k|r>ps>gq
lw| >k stable range

k=0 w=20 all cases
w#0 stable range

k<0 w=k r>q
w=—k s>p

—k<w<k|r>qs>p
|lw| >k stable range

TABLE 1. Occurrence of x in the space of joint harmonics

4. THE MAIN THEOREM

We now state our main theorem. As in the last section, we look at the theta lifts of the one-
dimensional representation xy = det? of U (p,q)- For pg = 0, this is just a restatement (and refine-
ment?) of some of the results of [A]. For the derived functor module notation, the reader is referred
to Section 2.8.

Theorem 4.1. Let x = det® be a one-dimensional representation of ﬁ(p, q), and suppose r and s
are such that x occurs in H for the dual pair (U(p, q),U(r, s)) (see Table 1 and Figures 4.1 and 4.2).

(1) If k>0, r > p, and s > q then
k
0rs(x) = Aq(detg g @ yr_p s—g).
(2) If k<0, 7r>gq, and s > p, then

k
Ors(X) = Aq(Ly—g,s—p ® detgp).

(3) If pg # 0 and we are neither in Case (1) nor in Case (2), then 6, s(x) is nonzero and
nonunitary.

(4) Suppose pg = 0 and we are neither in Case (1) nor (2). (If we define w := r—s, these
hypotheses imply that either w = k or w = —k.) We have the following computations.
(a) FG=U(p,0) andw ="k >0, let t =p—r. (Notice that t > 0 by assumption.) Then

k+t =t
07‘,3 (X) = Aq (detr,%) &® detO?s )

3Some of the derived functor modules listed in [A] actually vanish.
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A
s
k=0
p+q
Pl (P.p)
unitary, including (p,p)
i N
nonunitary
q p p+d r

FIGURE 4.1. Occurrence of the trivial representation of ﬁ(p, q)- The shaded areas
and heavy lines indicate unitary lifts, and the lighter line segment indicates nonuni-
tary lifts. (Theorem 5.1 reduces the general case to the indicated case of p > q.)

(b) FG=U(p,0) and w=k <0, lett =p—5>0. Then
t Bt
0rs(x) = Aq (detﬁ’0 ® dety? ).
(c) IfG=U(0,q) andw=—k >0, lett =q—r > 0. Then
¢ Bt
QT,S(X) = Aq (detg,s ® detr,%) )
(d) fG=U(0,9) andw=—k <0, lett =q—s>0. Then
Bt =t
0r,s(x) = Aq (detofs &® detr,zo)-

Remark 4.2. Tt follows from [T, Theorem 7.9] that all of the derived functor modules indicated in the
theorem are nonzero.

Corollary 4.3. Let x be a genuine one-dimensional representation of ﬁ(p, q). Then 6,5(x) # 0 if
and only if X occurs in the space of joint harmonics for the dual pair (U(p,q),U(r,s)) (see Table 1
and Figures 4.1 and 4.2).

Proof. The “only if” statement is part of Theorem 3.1. The opposite direction follows from the
computation in Theorem 4.1. 1

For k > 0, Figures 4.1 and 4.2 indicate the occurrence of det®/? in the theta correspondence for

(U (p,q),U(r, s)) Note that the general shape of the figures depends only on the relative sizes of p—q
and k.
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s s
p+k

p+q p+q
p+k

p p
pk Kb

q \ nonunitary q

k|-

k q p p+q r q k# p otk ptq r

FIGURE 4.2. Occurrence of the det®/? representation of ﬁ(p, q) for (respectively)
0<k<p—-—qgand k > p—q > 0. Again heavy lines and shaded regions indicate
unitary lifts, and Theorem 5.1 reduces the general case to the indicated case of p > g.

5. GENERAL FACTS

In this section we recall some, and state and prove a few more, facts about the Howe correspondence
which we need for the proof of Theorem 4.1

The groups U(p,q) and U(g,p) are canonically isomorphic, but their Howe correspondences are
different. The following theorem relates the two correspondences and is in [P1].

Theorem 5.1. Let m and 7' be genuine irreducible admissible representations or U (p,q) and U (r,8)
respectively, with m* and ©'* the contragredient representations. Then
(1) 0, s(m) =7 if and only if b, ,(7*) = 7'*;
(2) m 4> ' in the correspondence for the dual pair (U(p,q),U(r,s)) if and only if = <> ' in the
correspondence for the dual pair (U(g,p),U(s,r)).

A crucial part of our argument will rely on the induction principle ([Ku],[AB1],[P1]) which we
state next.

Theorem 5.2 (Induction principle for U(p, q)). Fori = 1,2, letw; € Irr(U(p;, 4;:)), i € Irr(GL(k;,C)),
and suppose that w1 <> Ty and o1 <+ o2 in the correspondences for the dual pair (U(p1,q1),U(p2, q2))
and (GL(k1,C), GL(k2,C)) respectively. Let x1 and x2 be the characters of GL(k1,C) and GL(kz,C)
given by

X1(g1) — |det(gl)|P2+¢12+k2—P1—Q1—k1’ and

x2(g2) = |det(gp)|PrTarthri=P2=a2=k2 = {4 5. € GL(k;, C).

Let w be the oscillator representation for the dual pair

(5.4) (G1,Ga) = ([7(101 ki, a1+ k1), U2 + k2, g2 + k2)).

Then there are parabolic subgroups P; = M;N; of G; with Levi factors M; = ﬁ(pi,qi) x GL(k;,C),
and a nonzero (g1 ® gz, K1 X Ks2)-map of the associated Harish-Chandra modules

(5.3)

(5.5) d:w— Indg!(m ® 01 ® x1) ® Ind§? (72 ® 02 ® X2).
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Remark 5.6. If we formally define the oscillator representation of S’E(O,R) & 7/27 to be the non-
trivial character of this group, and the correspondences for (U(p, q),U(0,0)) and (GL(k, C), GL(0, C))

(both dual pairs in ,’5’79(0, R)) tobe I > 1, we can allow p; = ¢, =0or k;, =0for¢ =1or 2 in
Theorem 5.2.

In order to be able to apply the induction principle successfully, we need to know something about
the correspondence for the dual pairs (GL(k,C), GL(l,C)). For our purposes, it will be sufficient to
consider the case k = [. Recall that the irreducible admissible representations of GL(k,C) may be
parametrized by pairs (u,v) € Z* x C*¥ [D]. Given such a pair, let p,, be the unique irreducible
quotient of

GL(k,C
(5.7) nd$EFO (x,.,),

where M N is a parabolic subgroup of GL(k,C) with Levi factor M = (C*)* and N such that
Re(v,a) > 0 for all & € A(n). The following Theorem is in [AB1]. We have accounted for the fact
that the embedding of the groups there is different from ours (see §4 of [P1] for details).

Theorem 5.8 (Adams-Barbasch). In the Howe correspondence for the dual pair (GL(k,C), GL(k,C)),
every irreducible admissible representation of GL(k,C) occurs. Ezplicitly, the correspondence is given

by
(5'9) pl‘/:” A pp,,—l/-

We can use the induction principle to determine what happens to a theta lift under persistence.
This will reduce the proof of our theorem to the first occurrence, at least in most cases. But first we
single out a large number of cases where the notions of LKT (in the sense of Vogan) and K-type of
minimal degree (as in Theorem 3.1) coincide. This will help us pick out the correct constituent of
the induced representation that we obtain when applying the induction principle.

Lemma 5.10. Let 7 and 7 be genuine irreducible admissible representations of U (p,q) and U (r,5)
respectively, and suppose that 0, s(w) = n'. Let o’ be a LKT of n'. If r +s > p+ q then o’ is of
minimal degree in .

Proof. By persistence, there is k such that 0,14 q+x(7') #0and p+g+2k =r+sorr+s— 1.
By Theorem 6.1 of [P1] and Proposition 3.12 of [P2], ¢’ is of minimal degree in 7’ for the dual pair
(U(p +k,q+k),U(r, s)) But the degrees of any K-type for [7(1‘, s) for this dual pair and the dual
pair (U(p,q),U(r,s)) coincide, so the lemma follows. O

Theorem 5.11. Let w be a genuine irreducible admissible representation of U (p,q)- Supposer+s >
p+q and b, 5(m) #0. Set d =r+s—p—q, and let ] be a positive integer. Then

Ors(m) = 7w(m,\, ¥, u,v) if and only if Oy sr1(m) = T(m 41, A, ¥, ul, b,
where p' = (1, 2, -+ -y P, 0,...,0) and v = (v1,...,Um,d+1,d+3,...,d+ 20 - 1).

Proof. We first prove that 0, ((7) = m(m, A\, ¥, u,v) implies 0,4, s1i(7) = T(m + 1, A\, ¥, ut, V). Use
Theorem 5.2 with py =p, g1 =q,p2 =71, ¢2 = s, k1 =0, and k2 =1 to get a nonzero map

(5.12) w—71QI

where I is an induced representation of U (r+1,s +1) which has m = w(m, A\, ¥, !, ') as its unique
LKT constituent, i. e., the LKT’s of m; and those of I coincide and occur with multiplicity one in I.
The theta lift 6, s4i(m) is a constituent of I. To show that 6,; ¢1:(m) = m we only need to show
that 6,4 s4+i(m) contains a LKT of 7.

Let o’ be a LKT of 7. Then by Lemma 5.10, ¢’ is of minimal degree for the dual pair (U(p,q),U(r, s))
in 7’. By Theorem 3.1, ¢’ corresponds in H to a K-type o of minimal degree in w. Since o is also
of minimal degree for the dual pair (U(p,q),U(r +1,s + 1)), it corresponds in the space of joint
harmonics for this dual pair to a K-type o; of 6,4 s1i1(m). We will show that o; is a LKT of ;. We



ONE-DIMENSIONAL REPRESENTATIONS OF U(p,q) AND THE HOWE CORRESPONDENCE 13

compute LKT’s from Langlands parameters using the techniques described in [P1], §3. If ty is the
diagonal Cartan subalgebra of u(r, s), denote the restriction of dx, , to t by x. Then we can consider
A+ p € itg. Write

(5.13) A+p=(a1,..-,81,---,8zy..-,085,0,...,0,b1,...,b1,...,by,...,by;
—— ———— —— — — —_———
a1 (&2 z B1 By
al,...,al,...,az,...,az,O,...,O,bl,...,bl,...,by,...,by),
—— ——— e —— ————’
7 Va w 31 8y

with a; > as > --->a; > 0> by > --- > by. Recall that a;,b; € %Z for all 4,7 and |z — w| < 1. Let
a= Z;”:l a;, and define 3, v, and ¢ analogously. As in the proof of Lemma 5.10 let £ be such that
p+q+2k=r+sorr+s—1and recall that 6, % ¢+x(7') # 0. From [P1], §5, and [P2] we see that
p+k=a+d+min{z,w} and ¢ + k = 8 + v + min{z, w}.

Let q(A+ p) = (A + p) ® u(A+ p) be the 7 stable parabolic subalgebra of u(r, s)c determined by
A+ p. Then the LKT’s of I, are of the form A = A+ p+ p(uNp) — p(uN€) + 81, where p(uNp) and
p(uN€) are one half the sums of the noncompact and compact roots in u = u(\ + ) respectively,
and 4y, is a fine weight of L. n Any LKT of n’ will therefore be of the form

10 o' = (50 PRI 1)

2 2 2 2
+(Al,...,Al,...,Az,...,Az,o,...,O,Bl,...,Bl,...,By,...,By;
- - - N— ~ ~~
o Qg z B1 By
C1,..,C1,y..yCayeneyCay0,...,0,Ds,...,Ds,...,D,,...,Dy),
-~ ~ N—— ~ v
6! V= w 01 8y
where
i—1 T
Ai=ai+ 3 (aj—m)+ Y, (i—aj)—a+y—z+w]| +a,
j=1 j=i+1
1—1 Yy
Bi=bi+3|Y (Bi—6)+ > (0;—B))—06+B+z—w| +m,
j=1 j=i+1
(5.15)
i—1 T
Ci=ai+3 (—a)+ D (- +a—y+z-w]| -«
j=1 j=i+1
1—1 Yy
Di=bi+5 > (6;—8)+ > (Bi—-6)+6—B—z+w]| —mn,
j=1 j=i+1

and the ¢; and 7; are either 0 or :I:%, chosen so that A;, B;, C;, and D; are integers for all i. Using
Lemma 3.2, we get that

T—S r—S8 §—7r S—7T
5.16) o= ;
610 o= ("5 e )
+(A1,..y A1y, Agy .o Ag,0,...,0,D1,...,Dy,...,Dy,...,Dy;
;; ;; p—a—34 81 g;
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and
P—q pP—q q—p q—p
(5.17) 0'[2( 9 T g H 5 T g >
+(A17 7A17 7Aza 7A.’I:10""70,Bla 7B17 1By1 7By7
e} ;; 2+l E: 674
Cla 761) agzv anJaOu "aov-Dla"'aDla 7Dy7 1D:l£)
71 Yz w1 E: E;
Now
(5.18) )\—i—pl:(al,...,al,...,am,...,am,O,...,O,bl,...,bl,...,by,...,by;
——r e N N — NN
a1 g z+l B1 By
(1,1,...,al,...,a¢,...,a¢,0,...,O,bl,...,bl,...,by,...,by),
———— —_———— —— —— ——
71 Yz w1 41 5y

so a straightforward computation yields that any LKT of m; differs from o; by at most the choices
for the €; and 7;. Since all such K-types have the same Vogan norm, and oy is a K-type occurring
in I, it must be a LKT of I, hence of m. So we conclude that 6, s(7) = 7(m, A\, ¥, 4, v) implies
0r+l,s+l(ﬂ-) = Tl'(m +LA Y, Pfla Vl)'

To prove the other direction in the theorem, suppose 0, s1i(7) = w(m + [, A, ¥, ul, ') and
Ors(m) # w(m,\, ¥, u,v). We can apply the above argument to 6, s(7) to compute 6,4 s4i(7) and
explicitly check that 0, s4i(7) # m(m + 1, A\, ¥, ul, V), a contradiction. O

Corollary 5.19. Retain the notation and hypothesis of Theorem 4.1, but further assume that 6, s(x) #
0. For a fized a positive integer [,

(1) If k>0, r > p, and s > q then

k
Or,s(x) = Aq(detgq ® Lr_ps—q)-
if and only if

k
Ort1,5+1(x) = Aq(detg,q ® Lpyipsti—q)-
(2) If k<0, r>gq, and s > p, then

k
Ors(X) = Aq(Lyp_g,s—p ® detgp).
if and only if
k
Ort1,541(X) = Aqg(Lppi—gsr1—p @ detyp).

Proof. To deduce the present statement from Theorem 5.11, one needs to compute the Langlands
parameters of the indicated derived functor modules and compare them with the ones appearing
in the theorem. The Langlands parameters of all weakly fair derived functor modules for U(p, q)
are known as a consequence of [T, Theorem 7.9] (see also Remark 7.11 of that paper), and so the
corollary amounts to a very complicated bookkeeping exercise. We omit the details. O

6. PROOF OF THEOREM 4.1: STABLE RANGE

Fix (U(p,q),U(r, s)) such that min{r, s} > p+g. Under this hypothesis we now prove Theorem 4.1.
The main idea is as follows. Let X denote one of the representations appearing in Theorem 4.1(1-
2) (assuming the strict inequality min{r,s} > p+gq). We first compute AV(X), and conclude X
is of low rank. Using Theorem 2.6, we conclude X = 6(Y) for some representation Y of some
U(p',q") with min{r, s} > p’+¢’. Now the associated variety calculation shows that X is very small,
and Theorem 2.5 (and the computation of Example 2.4) shows that Y must be very small — one
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dimensional in fact. A lowest K type argument shows p = p’ and q = ¢/, and infinitesimal character
considerations specify Y as the character x appearing in Theorem 4.1. Finally we deduce the case
min{r, s} = p+¢q from Corollary 5.19.

Lemma 6.1. Fiz (U(p,q),U(r,s)) such that min{r,s} > p+q. Let X be one of the derived functor

modules for U(r,s) appearing in Theorem 4.1(1-2). Then X is nonzero, and (in the notation of
Ezample 2.4), AV(X) is the closure of the orbit parameterized by

(1+)r7(p+q)(17)sf(p+q) (2+)p(27)q.

In particular, AV(Ann(X)) is the closure of the nilpotent orbit with p+q Jordan blocks of size 2 and
r+s—2(p+q) blocks of size 1. Moreover,

tk(X)=p+gq,
and hence X is of low rank if and only if min{r, s} > p+q.

Proof. As indicated in Remark 4.2, the nonvanishing follows from [T, Theorem 7.9]. The computa-
tion of AV (X)) is given in Proposition 5.4 and Lemma 5.6 of [T], and the assertion about AV(Ann(X))
then follows trivially. The final assertion follows from the definition of low rank and the hypothesis
that rk(G) = min{r, s} > p+q. g
Proof of Theorem 4.1 in the stable range. First assume that we have the strict inequality
min{r,s} > p+q. Since X has low rank (by Lemma 6.1), Theorem 2.6 implies that there exists
(U@,¢),U(r,s)) with min{r, s} > p’+¢’, a unitary representation ¥ of ﬁ(p', q'), and a character §
of U(r, s) such that 6(Y) = X ® 6. Theorem 2.1(1) explicitly computes the infinitesimal character of
X, and a simple argument with the infinitesimal character correspondence (see Proposition 9.1 below),
shows that in fact § must be trivial. So X = 8(Y). From Theorem 2.5 and Example 2.4, we conclude
that AV(Ann(Y")) is the zero orbit. (If Ann(Y') had a different associated variety, Theorem 2.5 would
imply that AV(Ann(X)) differed from the computation in Lemma 6.1, a contradiction.) Hence Y
is a one dimensional representation of U (9',q'). The infinitesimal character correspondence dictates
that Y = det"/2, and so Theorem 4.1 (for min{r, s} > p+q) is reduced to showing p = p’ and ¢ = ¢'.
Lemma 5.10 (together with Theorem 3.1 and Lemma 3.2) computes the LKT of X explicitly in terms
of p’ and ¢’. On the other hand, we can compute the LKT of X directly using [T]. A detailed (but
elementary) check shows that for these two computations to match, we must have p = p’ and ¢ = ¢'.
So the theorem is proved for min{r, s} > p+gq.

The case min{r,s} = p+ ¢ now follows from Corollary 5.19. (The crucial hypothesis that
Gr,s(detk/ %) # 0 is automatically satisfied since we are in the stable range.) O

As a consequence of Lemma 6.1 and Example 2.4, we deduce that the associated varieties of 8
lifts in the stable range behave nicely with respect to the orbit correspondence (as predicted by a
conjecture of Howe’s).

Corollary 6.2. Recall the notation of Section 2.4. Suppose min{r,s} > p+gq, and Y is a one
dimensional genuine representation of U(p,q). Then

AV(6(Y)) = 1" o (W)~ (AV(Y)).
We now strengthen the conclusion of Corollary 6.2 by considering multiplicities in the associated
cycle.

Proposition 6.3. Let X be one of the derived functor modules for U (r,s) appearing in Theo-
rem 4.1(1-2). Then AV(X) appears with multiplicity one in the associated cycle of X .

Proof. Write X = A4()), and assume first that the X is in the good range for ¢, so that the infinites-
imal character A 4 p([) is dominant. Then X is the space of global sections of a D_ (1)) module,



16 ANNEGRET PAUL AND PETER E. TRAPA

say X, on the partial flag variety G/Q, whose support is a closed K orbit Qy. The characteristic
cycle of X' consists of the single conormal bundle 7§, (G/Q) with multiplicity one. Observe that

(6.4) G-(unp)=G-u

To see this, note that Lemma 6.1 shows that G - (uNp) is the closure of the orbit with p+¢ Jordan
blocks of size 2 and the remaining blocks all of size 1; this agrees with the well-known recipe for G- u
(e.g- [CM, Chapter 6]). We thus conclude that the moment map u for Tg (G/Q) is birational onto
its image. Since p is birational, the multiplicity in the associated cycle coincides with that in the
characteristic cycle, and the proposition follows. (More details of this kind of argument can be found
in [Ch].)

Still assuming A is in the good range, place X in its coherent family ©. Let A\’ be any one
dimensional ([, L N K) module in the weakly fair range for q; so ©(N +p(l)) = A4(X\') (e.g. [KnV,
Lemma 8.29]). Let p(y) denote the multiplicity of AV(X) in the associated cycle of ©(y). Then p
extends to a harmonic polynomial ([V1]). Whenever X is in the good range, the preceding paragraph
implies p(A+p([)) = 1. But

{A+ p(l) | A is in the good range for q}
is Zariski dense in
S ={XA+p(l) | X is a one dimensional (I, L N K) module}.

Hence p is identically one on S. In particular p(X +p(l)) = 1, for any X’ in the weakly fair range for
q, and the proposition follows. O

Corollary 6.5. Suppose min{r,s} > p+gq, and 'Y is a one dimensional genuine representation of

U(p,q). Then the multiplicity of AV(Y) in the associated cycle of Y coincides with the multiplicity
of W’ o (1) 1(AV(Y)) in the associated cycle of O(Y). (This common value is one.)

Remark 6.6. The argument given in the proof of Proposition 6.3 is quite general, but it hinges on
the key assumption in Equation (6.4). In practice, this condition is satisfied when considering stable
range lifts. For instance consider the stable range lift of a representation, say F, of a compact group.
These lifts have been tabulated as derived functor modules in [A], and their associated varieties
are easily seen to be compatible with the orbit correspondence. On the other hand, the argument
in the proof of Proposition 6.3 applies (with a few straight-forward modifications) to compute the
multiplicity in the associated cycle of the lift, which turns out to be just the dimension of F'. This
provides a short proof of Theorem C in [NOT].

7. COMPACT DUAL PAIRS

We now consider the compact case of Theorem 4.1. In light of Theorem 5.1, we may restrict our
attention to the dual pairs of the form (U (,0),U(r, s)) Table 2 lists the Langlands parameters of

6. s(x) for x any one-dimensional representation of U(p,0). Write x = det? with k € Z, and let
w = r — s. Again by Theorem 5.1, it is sufficient to determine the 6-lift for £ > 0. For a given
choice of w, we list only the first occurrence if it is at rank p or higher. If x occurs at rank p — 1
or lower (this happens in cases 1 and 2a), we give all lifts with » + s < p + 1. The Langlands
parameters for lifts higher up in the Witt tower may then be obtained using Theorem 5.11. Suppose
Ors(x) = m(m, A\, ¥, u,v). Then p(, ¥) is always a holomorphic discrete series or limit of holomorphic
discrete series with Harish-Chandra parameter of the form

(7.1) A=(ya—1,...,a—r+m+1;8,—-1,...,86—s+m+1),

hence is determined by the values of @ and §. The parameter p is always of the form p =
(#1, 1, - -, p1), and v may be written v = (v1,v1+2,...,v1 +2m —2). Consequently, the Langlands
parameters of 6, s(x) are uniquely determined by the values of m, a, §, p1, and vy, which are given
in the table. If w < 0, we write d = —w.
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Case T, 8 m o B 1 %!
1k:0,w:0 'r:5<1i1 0 p—1 —pF2s—1 _
. = 2 2 2
2. k>0,w=k
a. w<p r=s+k0<s< I# 0 k+g—1 k—p-;%—l o o
b.w>p r=ks=0 0 % = _ L
3. k>0,-k<w<k
a. w>p r=w,s=0 0 % _ _
k k+p—1 —w-—1
b.0<w<p< &4 r=ps=p—w 0 ktp=l | ey — —
c.0§w<k+T“’+1§p r=p,s=p—w
(i) p— L% even Zpokow | htpol | ksw=2 | kew 1
(i) p — #5* odd R ul e el B w el B
d. w<0,k—d>2p r=p,s=p+d 0 + P2 _ _
e w<0,k—d<2 T:p,5:p+d
(i) p— #3¢ even 2ptdok | kipol | ktd-2 | kid 1
. k—d 2p+d—k—2 k+p—1 k+d k+d
(i) p— %5 odd 1 2 e o 2
4. k>0,|w| >k
k -1 k— k
a. w >k, “5 > p r=ptws=p P Pe—= — |5 Er-p+l
b.w>k,“’T+k§p r=p+4+w,s=p
() p— wtk oven 2ptwtk | prw-—1 k—w—2 k—w 1
2 4 2 4 2
(11) _ w;—k odd 2p+w4+k72 p+’;}—1 kzw k;w 2
c.w<—k,d—k§2p r:p,5:p+d
(i) p— 552 even 2ptd_k | htp-l | ktd=2 | kid 1
(i) p - #5¢ odd R ul e el B S B ol I
d w<—-kd—k>2p r=p,s=p+d p — p2 % %—p—i—l

TABLE 2. Theta lifts of characters of U(p,0) (Langlands parameters)

8. PROOF OF THEOREM 4.1 (OUTSIDE THE STABLE RANGE) AND LANGLANDS PARAMETERS

Now we are ready to tackle the proof of Theorem 4.1 outside the stable range. Let pg # 0, and

k
suppose that k, » and s are such that detg, occurs in 7. As before, because of Theorem 5.1, we
may assume that p > qgand k> 0. Writel=p—gsothat p=q+1,and w =7 —s. If w < 0, write

d = —w. Table 3 below gives the first occurrence.
Case First Occurrence
l.w=k=0 r=s=20
2. w=k>0 r=q+k, s=¢q

. 0<w<k,w<l

4. 0<w<k,w>lI

5. k>0, -k<w<0
6. lw| >k

r=q+1l,s=q+1l—w
r=qg+w,s=gq

r=q+Il,s=q+1+d
stable range

k
TABLE 3. First occurrence for detg q

For |w| > k the first occurrence is in the stable range, so we can now restrict our attention to

k

the cases —k < w < k. First we are going to determine the Langlands parameters of 0, ;(detg 4) for
k k

these cases. Notice that when k > 0, we have that 6, ;(detj ) # 0 if and only if 6,_, ,_q(det? ) # 0.
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For these cases, as well as for £ = 0 and r = s > ¢, we will in fact express the Langlands parameters
of the former in terms of the Langlands parameters of the latter, which are given by Table 2 and
Theorem 5.11. The remaining cases (k =0, r = s < q) are covered by the second part of the theorem.

k
Theorem 8.1. Let p > ¢, k > 0, and r, s be such that det?, occurs in H for the dual pair

(U(p,q),U(r,s)). Suppose |w| < k. Then the Langlands parameters of = = 0r,s(det§,q) are given as
follows.

(1) If k > 0 let mop = w(m, \, U, u,v) be the theta lift of det%0 for the dual pair (U(l,O),U(r —
4,5 —q)). Then ™ = n(m + ¢, A\, ¥, p/,v'), where g’ = (p1,...,fim,k,...,k) and v/ =
(V1) ooy Umy L+ 1,143, .., 14+ 2¢—1).

(2) Ifw=k =0 andr < q then 7 = 7(r, Asgn, Yogn, 1, v), where p = (0,...,0) and v =
(p+qg—2r+1,p+q—2r+3,...,p+q—1).

Proof. Part (2) follows from Proposition 5.4(i) of [LZ]. So we only need to prove Part (1). As
before, because of Theorem 5.11 we may restrict our attention to the first occurrence if it is at rank
> p+gq, and to the cases 7+ s < p+ g+ 1 otherwise. In this second situation, we may further restrict
to the cases r + s < p+ q — 1 since the complete correspondence for the cases p+q = r + s and
p+gq=r+s=x1arein [P1] and [P2].
k i k

Recall that det,q is the unique LKT-constituent of I; = Indp "% (det?(®p¢,¢), where P = M Ny
is a maximal parabolic subgroup of U(p, q) with Levi factor My = U(1,0) x GL(q,C), ¢ = (k, ..., k),
and £ = (I+1,l+3,...,14+2g—1). Using Theorem 5.2 with p; =1, ¢ =0, p2=r—¢q, g2 =5— ¢,

k

ki = kg =¢q, m = detEO, Ty = To, X1 = |det|"t* P79 and 01 = p¢¢ ® X7, We get a nonzero

(ﬁ(p, q) X (7(7“, s))—map

(82) @!W—)Il ®I2

Here I, = 1 ndgy’s) (mo ® p¢,—¢), where P» = M5 N> is a maximal parabolic subgroup of U(r, s) with

Levi factor My 2 U(r — q,s — q) X GL(g,C). Notice that 7 is the unique LKT-constituent of I5. By
k

replacing some of the entries of £ by their negatives we can arrange for detg , to be a quotient of I;
k

(see §6 of [P1]). Let n be the K-type for U(r,s) which corresponds to detZ, in the space of joint
harmonics.

k
Claim 1. detg 4 ® n is in the image of the map @ in 8.2.

k
This will imply that the theta lift of detj} , is a constituent of I which contains the K-type 7.

Consider the generalized principal series representation (in the sense of [SV]) I; = Ind PS(T’S) P\, T)®
X), where P; = M,N; is a cuspidal parabolic subgroup of U (r,s) with Levi factor M, U (r—q-—
m,s —q—m) x (CX)™%4 and x is the character of (C*)™*4 associated to ' and v’ as in Section
2.7. By induction in stages, every constituent of Iy is a constituent of I;. Consequently, if X is a
constituent of Iy which occurs in I; as a LKT-constituent, then X must be a LKT-constituent of I,
ie, X 7. It is easy to see that I; has a unique LKT-constituent. So we are done if we prove the
following

Claim 2. Only the LKT-constituent of I contains the K-type 7.

Notice that this is immediate if 1 is a LKT of I,.
We start with the proof of Claim 2. First consider the following case: Assume 0 < k = w < [ so that

k ~ ~
we are looking at the theta lift of det?, , , to U(r,s) =U(g+k +t,q+1) for some 0 <t < EE=L (see
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Table 2, Case 2a.). This is the case of early occurrence; the first occurrence is at rank 2¢+k < p+gq.
In this case, Ps = M N with M, 2 U(k +t,t) x (C*)9,

l L. l l l l
(8.3) 7]:(5,...,5,]{7—5,...,]{3—5,—5,...,—5) (SeeLemma3.2),
N—— ~~ - ~~
q+k+t q t
_ (k+l-1 k+1-3 l—k—2t+1, k—142t—1 k—142t—3 k—I1+1
(8'4) A_( 2 ) 2 )ty 2 ) 2 ) 2 P ] 2 ),

p = (k,...,k),and v/ = (I+1,1+3,...,01+2g—1). One can check that if k + ¢ < %— 1 then 7 is
not a LKT of I;. However, I; has nonsingular infinitesimal character, so Theorem 4.23 of [SV] allows
us to determine the Langlands parameters of all the constituents of I;. We will show that if X is
a constituent of Iy which is not the LKT-constituent, then X does not contain the K-type n. Such
an X is associated to a more compact Cartan subgroup, i.e., X = 7(mn, AU, i, 7) with m < ¢q. The
parameters (], fi, 7) are obtained from (), ', ") as follows: Remove g — 77 pairs of coordinates (u}, /)
from (u',v"), and for each such pair, add a pair of coordinates with entries (1 (u} + v}); 1(u] — v}))
to the discrete series parameter A, one coordinate on each side of the semicolon. Since p} = k and

v} > 1+ 1 for all 4, the resulting discrete series parameter

(85) A= (al’a27"')a’l‘fﬁ;ﬂ].?""ﬂSf’fﬁ)

will have the property that maz{ai, 1} > ’“"'2& Soif A+ fi = (a1,...,a.;by,...,bs) then a; # by
and maz{a1, b1} > B Let A = (Ay,..., A,; By,..., B) be the highest weight of a LKT of X.

Then if a; > b; we have that A; = al—l—qT"'t—q"'k;rt_l > k"‘é“ —% = %—}—1 > % Similarly, if b, > a4

then B; > k+ % +1>k— % Recall that if  is a K-type of X then its highest weight must be of the
form A+Y; a;, where the ; are roots with the property that (a;, A+f) > 0. (Here (,) is the dualized
trace form as in Section 2.2.) But if A; > £ then this sum will have to contain at least one root of the

form —e; + e; for some i > 1, and if a; > by then (—e; + ¢, X+ i) =—a1+a; (or —a;+b—,)<0.
Similarly if a; < b; and B; > k — % Therefore, n is not a K-type of X, so it must be a K-type

which occurs in the LKT-constituent only.

In all other cases, it will turn out that n is a LKT of I;. The calculation is straightforward,
but we have to consider a number of different cases, depending on the relative sizes of I, k, and
w, and the parity of I (as in Table 2). We demonstrate the calculation for one of the cases, the

others will be similar. Assume that 0 < w < k, [ > ’H'T“’ + 1, and that [ — ’“"’T“’ is even. (This

L3
corresponds to Case 3c(i) of Table 2.) Notice that in this case, the first occurrence of detz, is with

U(r,s)=U(p,p—w)=U(¢g+1,g+1—w), and

— I+k— Hk—w. k+w—1 k+w—l l l
(86) 7]—( 2w7"'7 ng ;U IRRRS] ;U 7_57"'a_§>a

_ [ E+l=1 Ek+I-3 k—w42, k—w—2 k—w—6 —i4+1
(8.7) )\_( Ll kbl kowd?ohows? kowe§ | wol )
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Now assume in addition that [ is even (the case [ odd being similar). As in Section 5, we compute
the LKT’s of I, using the techniques described in §3 of [P1]. We have

I k+1—1 k+4+1-3 k+1 k k k—1 k-3 kE—w+2 k—w k—w k—w
(88) )\+M—< +2 ’ +2 PR —2’—557--'755 2 29 1ttt 4+a A 2 4 oty 4
~~ N—— ~~ d ~~
L q k+w m
2 4
k k kE k—w k—w k—w k—w—-2 k—w-6 w—I+1 >
29929 9929 4 1 4 y T 4 4 ) 4 ) ) 2
q m l—w—m
Then
_ gtHl—w qg+l-w gtl—w l—w I—w l—w l—w—q l—w—gq l—w—q
(89) P(ump)—< 2 ’ 2 IR 2 YT 9 9T 9 9ty 9 2 ’ 2 IR 2 ’
% q k-L—w
2l+k—3w—4q 2l+k—3w—4q 2l+k—3w—4q.
8 ) 8 DR 8 )
m
0.0 0 —2l—-4q—k—w —2l-4q—k—w —2l-4q—k—w -—-l—q -—-l—gq —l—q >
gy Uyeeey Uy 8 ) 8 PR} 8 sy T 9T g 9ttt )
q m l—w—m
_ [ gti-1 g+i-3 g+1 —q—1 —q-3 —2gq+2—k-—w
(8.10) p(uﬁ?)—(T,T,...,T,U,O,...,O, 2 PR 1 s
N v ~—— ~
L q ktw
2 4
—2l—4q—k—w —2l—4q—k—w —2l—4q—k—w
8 ) 8 PERERN] 8 )
m
l—w l—w l—w —4q+2l+k—-3w —4q+2l+k—3w —4q+2l+k—3w
2 9 9 sttty g 8 ’ 8 [ 8 )
q m
—2¢—2+k—w —2¢—2+k—w 1 —q—l+w+1
4 ) 4 T ohyeeey 2 )

l—m—w
so that A+ 4’ + p(unyp) — p(uNt) = 7. By integrality considerations, 1, = 0, so the unique LKT of
I, is n, and we are done.

To prove Claim 1, we use the following extended induction principle which is due to Adams and
Barbasch ([AB1],[P1]).

Theorem 8.11. In the setting of Theorem 5.2, let K1 and Ky be mazimal compact subgroups of Gy
and Gy respectively. Let wys be the oscillator representation for the dual pair My x Ms.

Suppose 0y is a K -type, 61 is a (K1 N M;y)-type, and that m1 and §; satisfy the following properties:

(1) &7 is of minimal degree in m ® o71.

(2) m1 is of minimal degree and of multiplicity one in IndIG,l1 (M ®01®x1)-

(3) deg(m) = deg(é1), and the restriction of m1 to (K1 N My) contains d1.

(4) There ezist characters a; and as of My and My which are trivial on (K1NM;7) and (K2NMs),

and such that (11 ®01®a1) (T2 ® 0@ are) 1s a quotient of wyr, and Indgll (M ®c1®x1®a1)
is irreducible.

Let 12 be the Ka-type which corresponds to n;, in the space of joint harmonics, and let ® be the map
in (5.5). Then 1 @ 12 is in the image of P.
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k
To show that detj ; ® n is in the image of ®, we apply Theorem 8.11 to our situation. We choose

G:1 and G, depending on the relative sizes of p+gand r+s. If p+q > r + s, let G; = U(p,q),

~ E i

M; =U(p—g,0)xGL(g,C), m1 = det?;, x1 = |det|"+*~P~9, and 01 = p¢ ¢ @x] . We take n; = det2q
E ~

and 6, = det/; ® det®, an irreducible representation of K3 N M; = U(1,0) x U(g) and the unique

LKT of m1 ® o1. The computations verifying conditions (1) through (3) were done in [P1] and [P2].

Ifp+q<r+s, welet Gy =U(r,s), My = U(r —q,5— q) X GL(g, C), m = mo, x1 = |det|[PTa— 7,
and 01 = p¢,—¢ ® xfl. Then we take 17; = i which we now know is a LKT of IndIGgl1 (m ®01®x1), as
well as of the generalized principal series I, and §; will be the (K; N M;)-type obtained from 7 by
restricting the highest weight. The second parts of conditions (2) and (3) are then immediate, and
it is straightforward to check that ¢; is a LKT of 7 ® o1. Condition (1) follows using Lemma 5.10,
and Lemma 4.1 of [AB1]. The computation verifying that 7 is of minimal degree in I, (and hence in
I ndlc;vl1 (m ®01®x1)) is in [P1] and [P2], and checking that deg(n) = deg(d1) is again straightforward
(see Lemmas 5.2.8 and 5.3.3 of [P1] for similar calculations).

For condition (4), let z € C, and let ; and a9 be the characters of GL(g, C) given by a; = |det|?
and a; = |det| *; then extend «; (for ¢ = 1,2) to M; so that they are trivial on the first factors.
Then «; is trivial on K; N M;, and 01 ® a1 corresponds to 02 ® a2 in the correspondence for the dual
pair (GL(g,C), GL(q,C)), so that (71 ® 01 ® a1) ® (T2 ® 02 ® a2) is a quotient of wys. Now choose
z so that I ndgll (m ® 01 ® x1 ® o) is irreducible; that this can be done is well-known, and follows
from an argument similar to one used in [SV]. Now all four conditions of Theorem 8.11 are verified,
and Claim 1 follows.

This completes the proof of Theorem 8.1. |

Remark 8.12. Notice that for the first occurrence in the good tower, the theta lift of detiq is the
LKT-constituent of a generalized principal series representation of U(q + k, q). Lee and Loke [LLo]
have determined the composition structure, K-structure, and unitarity of all constituents of these
representations. Using this information, one can easily check that the theta lift of a one-dimensional
representation of U (p,q) at first occurrence in the good tower is always finite dimensional, with
highest weight 7 (the highest weight of the K-type which corresponds to det? in the space of joint
harmonics).

For the sake of completeness, we list in Table 4 the Langlands parameters for the remaining
cases, i. e., for Case 7 of Table 3. In this situation, the first occurrence is in the stable range, so
that (r,s) = (p+g¢+w,p+¢q)if w > 0, and (r,s) = (p+¢p+qg+d) if w= —d < 0. The
Langlands parameters of the theta lifts are of the following form: If Gr,s(det%) = m(m, A\, ¥, u,v),
then m = 2q + m' > 2q, the representation p(A, ¥) of (7(7‘ —m,s —m) is a holomorphic discrete
series or limit of a holomorphic discrete series with A of the form (7.1), u1 = p2 = -+ = pq,
MHq+1 = Mg42 = - = Um, V = (Vlayl +2,...,n +2q—2,1/q+1,l/q+1 +27"'ayq+1 +2(q+ml) _2)
Therefore, we only need to list the data m’, o, B, p1, pg+1, v1, and vgyq.

9. NONUNITARY LIFTS

It only remains to prove Part (3) of Theorem 4.1. We will need the correspondence of infinitesimal
characters, as well as Parthasarathy’s Dirac operator inequality. If 7 € Tj'(p, g) and 0, s(7) = 7', let v
and v’ be the infinitesimal characters of m and 7’ respectively. We refer to the correspondence v <> v/
as the correspondence of infinitesimal characters for the dual pair (U (p,9),U(r, s)) . We represent the
infinitesimal character of 7 by an element of t* =2 CP*9. Choose coordinates so that the infinitesimal
character of the trivial representation of U(p, ) is given by (EX4=1 2ta=3  —p=atl)  Gimjlarly
for U(r, s).

g oo
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Case m’ @ B K1 | Hq+1 V1 Vg+1
Lw>k Mol kw [ =kw 741
a. ke > ! =l | B —1+1
b k-IrTw <l
. k+w k4+w+21 +w—1 k—w—2
(i) I = *T* even 0 5 7 1
(11) 1 — k:—|2—'w odd k+w1—2l—2 l+'u21—1 k:zw )
2. w< K L 2 A
a dgk >1 l _ —l+2d—1 dgk —l+1
b, k<1
()1 - dgk even d—lZ+2l l+l;—1 d+IZ—2 1
s\ d—k d—k+21—2 | I4+k—1 d+k
(i) I — 5% odd T 5 I

TABLE 4. Theta lifts of characters of U(p, ¢) in the stable range

Proposition 9.1 ([Pr2]). Assume thatp+q <r+s, and let m =1+ s—p—q. The correspondence
of infinitesimal characters for the dual pair (U(p,q),U(r,s)) is given by

(9.2) v (7, Pm),

where pn, = (mT_l,mT_?’,,%“) e Cm.

Proposition 9.3 (Parthasarathy’s Dirac operator inequality, [Pal],[VZ]). Let w be a unitary repre-
sentation of a real reductive Lie group G. Let K be a maximal compact subgroup of G, t a Cartan
subalgebra of ¢, and h = t+ a a theta stable Cartan subalgebra of g. Fiz a K-type occurring in 7, of
highest weight o € t*, and a positive root system A%t (g,t). Let p. and p, denote one half the sums
of the positive compact and non-compact roots respectively, and fir an element w in the Weyl group
W (t: €) such that w(o — py) is dominant for AT (¢,t). Let v € h* denote the infinitesimal character
of m. Then

(94) (0 —pn+ W pe, 0 — pn + w_IPC) > (7,7)-

We now restate Part (3) of Theorem 4.1 in the form in which we are going to prove it.
k
Proposition 9.5. Letk > 0,p>q>1, andr < p. If 0, s(detg q) = m # 0 then w is non-unitary.

Proof. Suppose the conditions of the proposition hold. According to Table 1, we must have that
w = r—s = k. The Langlands parameters of these lifts are given by Theorem 8.1. If r+s < p+gq, then
the infinitesimal character of 7 is strongly regular in the sense of Salamanca-Riba, hence by Theorem
1.12 of [Sa],  is unitary only if 7 is of the form A4()\). For representations of U(r,s) with strongly
regular infinitesimal character, it is not difficult to check whether given Langlands parameters are
those of a representation of this form (see Corollary 11.219 of [KnV] and Proposition 7.4 of [P1]),
and we easily determine that in these cases, they are not.

So we may now assume that r +s > p+q. Write p = ¢+ 1. Let o be the K-type for [7(7‘, s) which

corresponds to det? in the space of joint harmonics. We will show that there is a choice of positive
roots such that equation 9.4 is violated.
Notice that s > ¢, so let s = ¢+ m. Since r < p and r + s > p + ¢, we have

(9.6) m+k<l<2m+k.
By Lemma 3.2 we know that
l L. l 1 _1 l
(0.) o= (b kb= bk Loh ),
N e
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Let At(g,t) ={e; —ej|1 <i< j<r-+s} Then

(9.8) o= (50 515 n—5) = (T2, Ty mampsh, | mesk)
and o — p,, is dominant for A*(g,t), so that we may choose w = 1 in equation 9.4. We have
o e
= (l"‘kT—l,l*’;_?’,...,l_kT“‘l —q—m; 7_“'2’“_1 +q—+—m—}—k,...,7_1"'2’“"’1 +m+k,
9.9 g+m+k ‘qr
(9-9) —l+2k—1 tm,..., l—l;—f—l —m, l—l;—l —m,..., —l+2k+1)
om—l+k I—k—m
= (al,ag,...,aq+m+k;b1,...,bq,cl,...,c2m_l+k,d1,...,dl_k_m).

The a;, bj, ¢j, and d; in (9.9) are each decreasing by steps of 1. Noting that r+s—p—qg=2m—I+k
and using Proposition 9.1 we get the infinitesimal character of 7

k k
Y= ((5,---,5) +p2q+lap2m—l+k)
_ (l+l;71 tq, l+l;73 taq,... l+l;+1, l+l;71,_”, lfl;+1 —_g-m,
b atmtk
(9.10) S _ L _
k=1 _ oy l+2k+1_q’ l+2k 1+m,._.,ll;+l_m)
lfl::m 2m—Il+k
= (ﬂlaﬂ?v s >ﬂq> A1y -« Cgtm+tks 617 B 6l7kfma’yla R '72m7l+k)'
Again, the o, §;, 7v;, and §; are each decreasing by steps of 1. To show that
g+m+k q 2m—Il+k l—k—m
O1) (o) = Y @Y S e Y &
j=1 j=1 j=1 j=1
g+m-+k q 2m—Il+k l—k—m

S SRSES SN DT o
j=1 j=1 j=1 j=1

recall (9.6) and our assumption that ¢ > 0. Notice also that a; = o and ¢; = «; for all j. Now
if1<j<gthenBj—bj=1l-m—k>0by (9.6)and b; > by, = "L 4t m+k>k+1 >0
by (9.6). Consequently, 37 > b? for all j. Since ¢ > 0, Z?Zl B3 > 22:1 b?. Similarly, we have for
1<j<l—k-m,d;j -6 =q>0and d; <dy =51 —m < 0by (9.6). So 6 > d? for all j, and
since (using (9.6) once again) [ — k —m > 0, we have Zz;ﬁ_m 63 > Zé;’i_m d?. This proves (9.11)
and thus the proposition. O
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