GENERALIZED ROBINSON-SCHENSTED ALGORITHMS FOR REAL
GROUPS

PETER E. TRAPA

ABSTRACT. In the context of GL(n, ), the classical Robinson-Schensted algorithm arises
in both the computation of Kazhdan-Lusztig cells and in the parametrization of the irre-
ducible components of the Steinberg variety of triples. Springer has shown how this latter
parametrization generalizes to give a generalized Robinson-Schensted algorithm for any real
linear reductive group. Here we compute the algorithm for U(p, q), SU*(2n), and GL(n, R).
We then relate the answer to the structure of Kazhdan-Lusztig-Vogan cells for these groups.

1. INTRODUCTION

Young’s parameterization of the irreducible representations of the symmetric group Sy,
together with the corresponding dimension formula and isotypic decomposition of C[S,],
implies that the cardinality of S,, coincides with the number of same-shape pairs of standard
Young tableaux of size n. The Robinson-Schensted algorithm is a constructive bijection
between the two sets which inexplicably turns up in a number of diverse applications. We
begin by recalling two of them.

Recall that each w € S, indexes a diagonal GL(n,C) orbit, say @Q(w), on the product
of two flag varieties for GL(n,C). Fix the standard basis e; of C*, and let b = fh @ u be
the upper triangular Borel in gl(n,C). Let F denote the flag whose jth subspace F} is the
span of the e;, ¢ < j, and let “F denote the flag with “F; spanned by e,-1(;), ¢ < J. (We
choose Q(w) so as to contain the pair (F,"F').) Now let N denote a generic (nilpotent) in
Ad(w)nNn. It is not difficult to see that N restricts to a nilpotent endomorphism of each
F; and “Fj, and we obtain two tableau (whose shape coincide with Jordan form of N) as
follows. We construct the first tableau by requiring its first j boxes coincide with the Jordan
form of the restriction of N to Fj, and obtain a second tableau by replacing F; with “Fj.
Steinberg ([St2]) showed that the resulting tableaux are precisely the pair associated to w
by the classical Robinson-Schensted algorithm.

On the other hand, the elements of S, (or, more suggestively, the orbits Q(w)) index
the irreducible Harish-Chandra modules of GL(n,C) with fixed regular integral infinitesi-
mal character. Because G is complex, we can speak of left and right annihilators (in the
enveloping algebra U(gl(n,C))) of the Harish-Chandra module associated to Q(w). Using
Joseph’s tableau classification of the primitive spectrum of U(gl(n, C)), we obtain two stan-
dard tableaux associated to w; Joseph proved that this construction again agrees with the
Robinson-Schensted algorithm. Said differently, the left and right fibers of the Robinson-
Schensted algorithm compute the left and right Kazhdan-Lusztig cells for gl(n, C).

One is led to ask if the above coincidence applies to other groups outside of GL(n,C).
So let G be a linear reductive group with maximal compact subgroup K, let G¢ and K¢
denote the corresponding complexifications, and write X for the flag variety of G¢. Using
the elementary geometry of the generalized Steinberg variety, Springer has shown how to
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parametrize Kc\X in terms of certain kinds of tableaux — see Section 3 for details. (The
parametrization extends the construction given above for GL(n, C), and because of Stein-
berg’s result, it is called a generalized Robinson-Schensted algorithm.) On the other hand,
one can attach representation theoretic invariants to the Harish-Chandra modules for G
parametrized by the trivial local systems on orbits in K¢\X. Here the relevant invariants
are annihilators and associated varieties, and they too can be recast in terms of tableaux.
Such data often carries information about the structure of Harish-Chandra cells for G, so
the initial question becomes: Does the generalized Robinson-Schensted algorithm have any-
thing to do with the representation theory and structure of Kazhdan-Lusztig-Vogan cells of
Harish-Chandra modules for G?

In general, the answer is a negative one. For the complex classical groups outside of type
A, it is easy to see that the generalized Robinson-Schensted algorithm will bear no simple
relationship to the structure of Kazhdan-Lusztig cells for these groups (see Remark 3.2). This
suggests a narrow window of possibilities for an affirmative answer to the above question,
namely the type A real groups. Our main result is Theorem 5.6; it gives a positive answer
for U(p, q), SU*(2n), and GL(n,R). Actually, the theorem relates the generalized Robinson-
Schensted algorithm to the representation theory of these groups, from which conclusions
about cell structure follow.

It is worth mentioning that the generalized Robinson-Schensted algorithms discussed here
have origins far deeper than the enumerative geometry of the generalized Steinberg variety.
The algorithms refine a notion of geometric cells for G, which are (conjecturally) exactly
analogous to Kazhdan-Lusztig cells except that one begins with a topological action of the
complex Weyl group, rather than the coherent continuation action. We take the opportunity
to give a brief exposition in Section 4.

The paper is organized as follows. We fix notation in Section 2, and recall some preliminary
facts about associated varieties and annihilators of Harish-Chandra modules. In Section 3,
we describe Springer’s parametrization of Kc\Gc/B, the generalized Robinson-Schensted
algorithm of the title. We relate the parametrization to the study of geometric cells, which
we explain in Section 4 by recalling how the elements of a geometric cell index a basis of
a representation of W. In Section 5, we restrict our attention to G = U(p, ¢), and state
our main result (Theorem 5.6) relating Springer’s parametrization to the the representation
theory of U(p, q); analogous results for SU*(2n) and GL(n,R) are also given. In particular,
this computes (real) Richardson orbits for these groups (Remark 5.8). We conclude Section 5
by giving a representation theoretic interpretation of a shape-preserving involution on the set
of standard Young tableaux first studied by Spaltenstein (Corollary 5.11). In Section 6, we
work out an explicit description of K¢\G¢/B for the relevant groups, and write down Vogan’s
duality on the level of orbits. We give explicit calculations (mostly due to Garfinkle [G]) of
annihilators of Harish-Chandra modules in Section 7. In Section 8, we assemble the results
of Sections 6 and 7 to prove Theorem 5.6. The proof is not very conceptual, and there
turn out to be rather subtle reasons why this is the case (see Remark 5.9). We conclude by
applying our results to give an elementary computation of some associated varieties for the
type A groups under consideration.

Acknowledgements. I would like to thank David Vogan for many useful conversations. I
was partially supported by NSF grant DMS 97-29995.
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2. NOTATION AND PRELIMINARIES

2.1. General Notation. Let G to be an arbitrary linear real reductive group, let § be the
Cartan involution, and write K for the maximal compact subgroup consisting of the fixed
points of §. We write K¢ and G for the corresponding complexifications. Let g = ¢ @ p
denote the complexified Cartan decomposition, and let B be a Borel subgroup of G¢ with
Lie algebra b = ) & n. Write A* for the roots of f) in n and let p = p(A™T). Let W be the
Weyl group of §j in g and write w, for the long element.

For v € h* define Verma modules by
My (wv) = indg((waol,_p),

and denote their unique irreducible quotients by Ly(wv). The definition is arranged so that
Ly(v) = Mg(v) and Ly(w,v) is finite-dimensional (if v is integral, dominant, and regular).

We let A denote the nilpotent cone in g and write A for N Np. Given N € N, we let
X" denote the fixed points of exp N on the complex flag variety X = G¢/B. If we identify
X with the set of Borel subalgebras of g (by mapping the identity coset eB to b), then xN
consists of those Borel subalgebras containing N.

Given v € Kc\X, and a K¢ equivariant local system ¢ on v, the Beilinson-Bernstein
theory produces an irreducible Harish-Chandra module for G (with infinitesimal character
p) which we denote Lg(v,¢). When ¢ is trivial, we write Lg(v) instead. Finally we let (A}p
denote the set of irreducible Harish-Chandra modules for G with infinitesimal character p.

Next we carefully define some real forms of interest. Let V ~ C™* be spanned by vectors

e1,...,en. For p+q =n, define a form (, ) on V via
n n
S ae Yt - Yan— ¥
=1 j=1 i<p 1>p+1

The group U(p, q) is defined to be the subset of GL(n,C) preserving this form. With this
definition K = U(p) x U(q) (embedded block diagonally) and K¢ = GL(p,C) x GL(gq,C).
Next, SU*(2n) is defined to be SL(n, H) viewed as 2n dimensional complex matrices via the
identification H = C @ kC. In this setting, K = U(n, H), and K¢ = Sp(2n, C) defined with
respect to the symplectic form
0 I,
(7 %)

Finally, if G = GL(n,R), then K = O(n) and K¢ = O(n,C).

2.2. Notation for S,. Write ¥(n) for the set of involutions in S,, and define
Yo(n) ={o € ¥ | o(i) # i for all i}
to be the set of involutions without fixed points. Let
Yi(n)={(o,e) e Ex{+,-}"|& =+ if o(¢) > i and
e = — if o(7) < i}
We view ¥4(n) as the set of involution in S, with signed fixed points. (The definition
arranges a convenient normalization of the signs for the non-fixed points.) Finally we write

Y1 (p, q) for the subset of ¥4 (p+q) whose elements have exactly p of the ¢;’s labeled + (and
g labeled —). The reader may find the pictures in Example 6.8 useful.
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2.3. Tableau notation. Given a partition n = n; + --- + ng with the n; decreasing, we
may attach a left justified arrangement of n boxes with n; boxes in the ith row. Such an
arrangement is called a Young diagram of size n, and the set of all such is denoted D(n). We
write De(n) for those diagrams whose rows are all even. Given D € D.(n), the transpose
D is a diagram in which each row length occurs an even number of times. We denote this
set D" (n). A Young tableau of size n is an arrangement of 1,...,n in a Young diagram of
size n, so that the number increase across rows and down columns. We write 7 (n) for the
set of Young tableaux of size n, and correspondingly 7.(n) and 7" (n) for those tableaux of
the indicated shape.

A signed Young tableau of signature (p, ¢) is an equivalence class of Young diagrams whose
boxes are filled with p pluses and ¢ minuses so that the signs alternate across rows; two signed
Young diagrams are equivalent if they can be made to coincide by interchanging rows of equal
length. (Note that the equivalence relation preserves shapes.) We write 74 (p, q) for the set
of signature (p, ¢) signed Young tableaux.

Given w € S,, we let RS(w) denote the ‘counting’ (or ‘right’ or ‘Q-’) tableau described
by the Robinson-Schensted algorithm (as in [Sag]).

2.4. Primitive ideals. A two-sided ideal in the enveloping algebra U(g) is called primitive
if it is the annihilator of a simple U(g) module. A primitive ideal is said to have infinitesimal
character v € h* if it contains the maximal ideal in the center of U(g) corresponding to v.
We write Prim(U(g)), for the set of primitive ideals in U(g) with infinitesimal character v.
The following results are well-known and can be found, for instance, in Sections 7.4 and 5.23

of [Jal.
Theorem 2.1 (Duflo). The map
W — Prim(U(g)),

sending w to the primitive ideal Ann(Ly(wp)) is a surjection of W (in fact, the involutions
of W) onto the set of primitive ideals with infinitesimal character p.

Theorem 2.2 (Joseph). Assume g = gl(n,C). Then the set Prim(U(g)), ts in bijection
with the set T(n), the set of Young tableauz of size n. The bijection sends Ann(Ly(wp)) to
the ‘counting’ tableau RS(w) obtained from the Robinson-Schensted algorithm applied to w.

(Equivalently, Ann(Ly(wp)) = Ann(Ly(w'p)) if and only if RS(w) = RS(w'). )

2.5. Associated Varieties. We briefly recall Vogan’s construction of the associated va-
riety of a Harish-Chandra module; more details can be found in [V4]. Given a finitely
generated (g, K) module L, one can always consider a K-invariant good filtration, and form
the associated graded object gr(L). Using the identification of g/t with p, gr(L) becomes an
(S(p), Kc) module, i.e. a K¢ equivariant coherent sheaf on p* (or p). The support of gr(L)
is called the associated variety of X, and is denoted AV(L). If in addition to being finitely
generated, L has finite length (for instance, if L is an irreducible Harish-Chandra module),
then AV(L) is contained in the nullcone ANy, and hence is a union of closures of elements in
Kc\Ng.

As the definition might suggest, the associated variety is difficult to compute in general.
We mention one important class of examples for which the computation is known. Fix
v € Kc\X, and suppose that there is a parabolic subgroup @ containing B so that the
image of v under the projection Go/B = G¢/Q is closed. Assume further that v is dense
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in 771(n(v)) and that 7(v) admits a G invariant volume form. (The latter condition is
automatic in the case that rank(G) = rank(K) — see [Zi, Lecture 2], for instance). Then
L (v) (Notation 2.1) is a derived functor module induced from a one dimensional character
(see [VZ, Section 6]). The following theorem, which is well-known to experts, can be found
in [Tr]. In its statement, Tr ) (G¢/P) denotes the conormal bundle to the orbit 7(v), and

@ denotes the G¢ moment map for T*(Gc/Q).

Theorem 2.3. Assume v is of the form described above and retain the notations of the
previous paragraph. Then

AV(Le(v)) = m(Tr(,)(Ge/Q))-

In particular, note that AV (Lg(v)) is the closure of a single K¢ orbit; see the second para-
graph following Proposition 3.1 for more details. This orbit is the K¢ orbit corresponding
(under the Kostant-Sekiguchi bijection) to a real Richardson orbit as defined, for example,
in Section 4 of [Tr].

3. SPRINGER’S PARAMETRIZATION OF Kc\Gc/B

The purpose of this section is to prove an unpublished result of Springer’s (Proposition 3.1
below).
Begin by considering the generalized Steinberg variety

M ={(N,gB) € Ns x Gc/B | N € Ad(g)u}.

(When G is itself a complex Lie group, G¢ is diffeomorphic to G x G, K¢ is the diagonal
copy of G, and M is the familiar Steinberg variety of triples [St1].) Write Irr(M) for the
irreducible components of M. Once we use an invariant bilinear form to identify § and p*,
it is easy to see that M is the union of the conormal bundles of K¢ orbits on X = G¢/B.
Given v € K¢\ X, the conormal bundle T;(X) need not be irreducible (since K¢ need not
be connected), but this is not serious: the irreducible components of T (X) form a single
orbit under the component group of Kc. Hence it is clear that 7,7 (X) is pure of dimension
equal to the dimension of X. It is also clear that K¢ acts on Irr(M), and that each T} (X)
is a single orbit in Kc\Irr(M). Hence we conclude that M has pure dimension dim(X) and
that Kc\Irr(M) is parametrized by Kc\X.

On the other hand, we can consider the subset My c of M consisting of the closure of
the K¢ saturation of N X C C M; here C is an irreducible component of the Springer fiber
XY, Now all such C have dimension equal to }[dim(Zg.(N)) — rank(Gc)], and hence we
conclude that closure of the K¢ orbit My ¢ is a single K¢ orbit on Irr(M) of pure dimension

dim(Kc) — dim(Zg.(N)) + %[dim(ZGC(N)) — rank(Gc)].

A result of Kostant-Rallis ([KoR, Proposition 5]) insures that 1dim(Zg,.(N))—dim(Zx.(N))
is equal, independent of N, to %dim(G@) — dim(Kc). Applying this to the formula for
dim(Mpy c) we see that the My ¢ each have dimension dim(X'), and hence exhaust K¢\Irr(M).

A final point to consider is that the closures My ¢ need not be distinct. To take this into
account we need to consider the component group Ag.(N) of the centralizer Zg.(N). We
then obtain the following result.
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Proposition 3.1 (Springer). The set of K¢ orbits on Irr(M) is parametrized by Kc\X
and by pairs consisting of a Kc-orbit K¢ - N in Ny and an orbit of Ag.(N) on the set of
irreducible components of X V.

Hence we conclude that there is a bijection between K¢\ X and pairs consisting of a K-
orbit K¢+ N in Ng and an orbit of Ak .(N) on the set of irreducible components of X%.
Write porb, for the map which takes Ko\ X to K¢\ANp; the notation is meant to suggest a
moment map image, which we now describe.

From the discussion preceding the proposition, we can define pp as follows. Recall the
moment map p : T*(X) — g*. Given an orbit v € Kc\X, we can consider its conormal
bundle T;(X) inside T*(X), and from the definition of x it is not difficult to see that the
moment map image p(Ty (X)) actually lives in Ny. Since p is proper and T (X) is irreducible
up to the action of the component group of K¢, pu(Ty(X)) is a K¢ equivariant subvariety
of Ny whose irreducible components form a single orbit under the action of the component
group of K¢. Since the number of K¢ orbits on Ay is finite, u(T;(X)) is the closure of a
single K¢ orbit. In this way we obtain the element uom(v) € Kc\Ng.

The fibers of porp thus give an interesting partition of K¢\ X into disjoint subsets. For a
fixed O € K¢\Ng, we call ,u;&)(@) a geometric cell of K¢ orbits for G. The terminology is
suggestive, and will be explained in the next section.

Remark 3.2. In the complex case, X is a product of two flag varieties for G, and there is
a natural refinement of geometric cells into left and right cells. McGovern [Mc2] (following
van Leeuwen [vL]) has given a complete description of left and right geometric cells in the
complex classical case. Note that it is clear that geometric cells will look quite different from
Kazhdan-Lusztig cells: the image of u,, may be a non-special nilpotent orbit, while it is
only the special ones which are relevant to the structure of Kazhdan-Lusztig cells.

4. (GZEOMETRIC CELLS AND WEYL GROUP REPRESENTATIONS

In this section, we take the opportunity to recall a few of the remarkable properties of
geometric cells and, in particular, describe their relation with Weyl group representations.
(The only potential novelty of this section is the conjectural part of Theorem/Conjecture 4.2
below.) Though not absolutely essential, in this section we assume that G is connected.

In [Ro], Rossmann gives an action of the Weyl group on the top Borel-Moore homology
group H™P(M,C) of the Steinberg variety M. (When G is complex, Rossmann shows
that the construction coincides with an earlier one given by Kazhdan-Lusztig in [KazL].)
Now the fundamental classes of the conormal bundles 77(X), v € Kc\X, give a basis
for H*P(M, C). In analogy with the case of the coherent continuation representation, one
considers subquotients of the Rossmann action which are minimal with respect to being
spanned by fundamental classes of conormal bundles. In this way one obtains a partition
of Kc\X into disjoint subsets, which one would like to call some sort of cells. Joseph
conjectured that that the cells obtained in this way are precisely the geometric cells defined
at the end of the previous section?.

In any case, Tanasaki ([Ta, Lemma 2.10]) did show that the elements of a fixed geometric
cell index a basis of a representation of W. (The gap in that paper concerned the assertion

'Lemma 2.11 of [Ta] gives a proof, but Joseph has pointed out a gap in it.
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that this representation is the minimal subquotient described above.) Since the action is
not particularly easy to describe, we give a (partly conjectural) alternate description based
on ideas of Hotta [Ho], Joseph [Jo], and D. King.

To begin, fix OXc = K- N € Kc\MNp, and write OFc for the G¢ orbit through N. Now
the natural inclusion of centralizers

ZK(C(N) — ZG(C(N)
induces a map on the level of component groups
AKC(N) — AGC(N)-

Write A(N) for the image of this map; it corresponds to a subgroup H(N) C Zg.(N) which
contains the connected component of the identity Zg. (N). Hence we may consider the orbit
cover

OS¢ = G /H(N) =5 0S¢,

The next lemma identifies the elements of the geometric cell p_} (OX®) with the intrinsic

geometry of OC. To state the lemma, we need some notation. Recall the fixed Borel B
with nilradical n, write O%¢ N n for 7=1(O% Nn), and let Irr(O%C N n) denote the set of
its irreducible components. (More intrinsically, such irreducible components exhaust the

B-stable Lagrangian subvarieties of OSc — these have been studied recently in the context
of the orbit method (see [GrV], for instance) — but we will not need any of this here.) The
following lemma goes back to Spaltenstein [Spal].

Lemma 4.1. Fiz notation as in the previous two paragraphs. Then there is a natural bijec-
tion from the set Irr(O®C Nn) to the set of A(N) orbits on Irr(XN). (By Proposition 3.1,
this latter set is in natural correspondence with the elements of the geometric cell u} (OXc).)

Sketch. As indicated, the parenthetical assertion follows from Proposition 3.1, once we
observe that the A(N) and Ag.(N) orbits on Irr(X?) coincide. For the first assertion, let
n1 denote the projection G¢ — X, and write G¥ for 7! (X¥). Then OScnn~ H(N)\GY;
write 7, for the projection of Gg onto O% N n. If C is an irreducible component of XV,

then 79(ny *(C)) is an irreducible component of O%c M. Tt is straightforward to check that
this correspondence implements the bijection of the lemma. O

We are going to attach a polynomial on h to each element of Irr(@c;(C Nn). Through the
W action on h, W will act on the span of these polynomials; this will be the representation
of W indexed by the cell u7}(O¥c). The idea, due to Joseph [Jo] (who attributes the idea

to D. King), is to measure the growth of the fh-weight spaces of the ring of functions R(U)
on the closure an element of U € Irr(O%C N n). More precisely, since R(U) C S(n*), h acts
locally finitely on R(U) with weights of the form > ac_a+ No. For a fixed H € h and j € N,

write
R(U); ={f € R(U) | H - f = -jf}.
If H satisfies a(H) < 0 for all & € A, we can write

k
. 77 pu(H) dim(U :
dim(R(D)H) =+ (—) k4mU) 4 terms of lower order in k;
jz:; ! HaE—A+ O{(H)
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here py € S(b*) is a polynomial on fh. We then have the following theorem. When Ofc =
OCc, the following statement can be extracted from [Ho] and [Ro]; their methods probably
extend to handle the general case.

Theorem/Conjecture 4.2. Fiz OKc = Kc-N € Kc\Ng, and write 0Cc for the orbit cover
of Go- N defined above. Then the span of the polynomials py as U ranges over Irr((§G<C Nn)
is the W representation attached to the geometric cell ,u;rlb(OKC) by Rossmann’s action;
moreover, the basis element py corresponds to the fundamental class of the conormal bundle
to the orbit v € ,u,;rlb((?KC) associated to U by Lemma 4.1. Finally, the representation
coincides with the A(N) invariants in Springer’s W action (twisted, as usual, by the sign
character) on H'*P(XN C); the basis element py corresponds to the sum of the fundamental

classes of elements in the A(N) orbit on Irt(XY) attached to U by Lemma 4.1.

Finally, it is worth noting that in the complex case, Kashiwara and Tanisaki [KaT] have
shown that the characteristic cycle functor relates the Kazhdan-Lusztig basis of the coherent
continuation representation with the geometric cell basis of the topological W action. In this
way, Tanisaki [Ta] (in types B and C) and Kashiwara-Saito (in type A) gave examples of
highest weight modules with reducible characteristic cycles. Based on the results of Schmid
and Vilonen ([SV]), the same methods should be able to detect reducible characteristic cycles
of representations of real groups.

5. ROBINSON-SCHENSTED ALGORITHMS FOR TYPE A REAL GROUPS.

We are going to specialize the statement of Proposition 3.1 in the case of U(p, q), SU*(2n),
and GL(n, R) to obtain explicit maps from K¢\ X to certain kinds of tableaux. (The resulting
maps are called generalized Robinson-Schensted algorithms, as explained in Remark 5.4.) In
order to make everything explicit, we first have to parametrize Kc\\Ng and A, (N)\Irr(X¥)
by tableaux. The tableau parametrizations of K¢\Nj are well-known.

Lemma 5.1. We have the following parametrizations of Kc\Np:
(a) For G =U(p,q), Kc\Np is parametrized by T+ (p,q).
(b) For G = SU*(2n), Kc\Ns is parametrized by DI (2n).
(c) For G=GL(n,R), Kc\Ny is parametrized by D(n).

Sketch. If G = GL(n,R), then the Jordan form of N € AN is a complete invariant for
the action of K¢, and (c) follows. When G = SU*(2n) the Jordan form (over H) identifies
Kc\Ng with D(n). We prefer, however, to consider the Jordan form over C; this amounts
to duplicating each row to a get a tableau whose row lengths all occur an even number of
times, thus parametrizing Kc\Ng by DY (2n) as in (b). Finally if G = U(p, q), the set of
nilpotent elements with a fixed Jordan form breaks into smaller orbits under the action of
Kc = GL(p,C) x GL(q,C). This is reflected in the parametrization by signed tableaux;
see [CMc, Theorem 9.3.3], for instance. a

We turn to a tableau parametrization of Ag.(N)\Irr(X¥). In each of the above cases,
we claim that Ag (N) acts trivially on Irr(X¥). This is obvious if Gg = U(p, q) since
Ak (N) is trivial. For SU*(2n) or GL(n,R), the component groups need not be trivial, so
we argue as follows. Clearly the Ax () orbits on Irr(X ) coincide with those of the image
of Ag.(N)in Ag.(N). In fact, Ag.(N) acts trivially on Irr(X?). To see this, note that
the Ag.(N) orbits on Irr(X¥) coincide with the orbits of the component group Ag (N) for
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any connected G{, with Lie algebra g. If G{, is adjoint, the component group is trivial, so
the claim follows.

If X is the flag variety for GL(n,C), then Irr(X¥) is parametrized by standard Young
tableau of size n; we now describe the parametrization. Given N € A/, choose F = (0 =
FRCc---CF,=C")e¢ XN, We obtain a tableau T of size n whose shape is the Jordan
form of N by requiring that the first j boxes of T coincide with the Jordan form of N
restricted to Fj; we write T = (N, F'). The tableau v(N, F') (as a function of F') is constant
on an open subset of each irreducible component of X¥; moreover, it distinguishes such
components (see [St1]). Hence we obtain a map Irr(X ") — 7 (n), which we also denote by
7. (Actually, there is a twist of ¥ which gives an equally natural parametrization of Irr(X¥);
we return to this following Theorem 5.6.)

Proposition 3.1 then reduces to the following explicit statements.

Corollary 5.2. Recall Notations 2.1 and 2.3.

(a) If G = U(p, q), Proposition 3.1 gives a bijection (s ,, RSS ) between Kc\X and
the same-shape subset of T+ (p,q) X T (p+4q).

b) If G = SU*(2n), Proposition 3.1 gives a bijection (ub ,, RS® ) between Kc\X and

( ’ i3 g 7 Horp orbh
the same-shape subset of DI (2n) x T} (2n).

(¢) If G = GL(n,R), Proposition 3.1 gives a bijection (uS_,, RSS ;) between Kc\X
and the same-shape subset of D(n) x T (n).

(Clearly :“grb and pg, are redundant, but we choose to keep them to preserve the analogy.)

Remark 5.3. To be absolutely explicit, we summarize how to compute the bijections ap-
pearing in the corollary. Begin with a fixed v € K¢\ X, and choose a flag F' in v. Consider
the moment map image of the corresponding fiber of the conormal bundle to v in X,

#(T5(X)|r)-

Let N be a generic nilpotent in the image. (The sense in which generic is to be understood
is explained in the next paragraph.) The K¢ orbit through N is porb(v), and we define
RSorb(v) to be y(N, F) (in the notation introduced just before the corollary).

When we say that N is generic in (T, (X)|r), we mean that N is not contained in the
boundary of u(Ty(X)). (Recall that (T, (X) is the closure of the K¢ orbit pom(v), so
this condition makes sense.) Equivalently, the hypothesis that N is generic in u(7y(X)|F)
means that, for each ¢, the dimension of the nilpotent GL(F;) orbit through N|g, is as large
as possible.

Remark 5.4. If we take G = GL(n,C), then Proposition 3.1 reduces to a bijection from
S, to same-shape pairs of standard Young tableau of size n. As we mentioned in the intro-
duction, Steinberg ([St2]) discovered that the bijection is the Robinson-Schensted algorithm
and, motivated by this fact, Springer calls the bijections appearing in parts (a)—(c) (or, more
generally, in Proposition 3.1) generalized Robinson-Schensted algorithms.

Remark 5.5. To understand the ezistence of the bijections appearing in the corollary, one
need not make reference to Proposition 3.1. Consider part (b) for example. In Proposition 6.1
below, we will see that Kc\X is parametrized by £o(2n). Now S, acts on ¥o(2n) by
conjugation, and the isotropy group at a fixed ¢ € ¥(2n) is isomorphic to W(C,) ~
(Z/2)™ x Sp, the Weyl group of type C,. (To get the standard realization of W(C,,), let ¢
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interchange 1 with 2n, 2 with 2n—1, and so on.) The induced representation ind%’(‘cr)((]t,iv)
decomposes as

C[Som /W (Co)] = E,.
€D (2n)

(We are using Young’s parametrization of San in terms of D(2n).) Since ¥o(2n) parametrizes
Kc\X, we can conclude that Kc\X indexes a basis for C[Sa,/W(C,)]. Young’s dimension
formula for E, then gives the existence of the bijection appearing in part (b) of the corollary.
We leave it to the reader to use Proposition 6.1 to give similar abstract interpretations of
the bijections appearing in the corollary. (See [BV], for instance.)

Recall that the classical Robinson-Schensted algorithm computes left and right annihila-
tors of Harish-Chandra modules for GL(n, C). Here is the analog for type A real groups.

Theorem 5.6. For G = U(p, q), SU*(2n), or GL(n, R), the generalized Robinson-Schensted
algorithms (pors, RSor) (of Corollary 5.2 and Remark 5.3) compute annihilators and asso-
ctated varieties of Harish-Chandra modules for G. More precisely, we have:
(a) Let G = U(p,q), fizv € Kc\X, and let Lg(v) be the irreducible Harish-Chandra
module associated to the trivial local system on v. Recall the tableau parametriza-
tions of Theorem 2.2 and Lemma 5.1. We have

(Hors(v), BRSor(v)) = (AV(Lg(v)), Ann(Lg(v)))-
(b) Let G = SU*(2n), and consider v € Kc\X. Then

(Bors(v), RSS4(v)) = (AV(Lg(v)), Ann(Lg(v))).
c) For G = n,R), there are either one or two K¢ equivariant local systems ¢ on
For G = GL(n,R), th ith K vart local ¢
any given orbit v € Ko\ X such that

(Hors(v), BSG(v)) = (AV(Lg(v, 8)), Ann(La(v, ¢)))-

Remark 5.7. Explicit computations of (gorb, RSorb) (or, more precisely, the right-hand
sides of the above equalities) are given in Theorems 7.1, 7.2, and 8.7. In particular, it is
possible to describe the local system(s) ¢ appearing in part (c) very explicitly. (We give
enough details to do this in the comments following Theorem 8.7.)

Remark 5.8. If v is of the form described in Theorem 2.3, then porb(v) is (the K¢ orbit
corresponding to) a real Richardson orbit. To locate which v are of the required form, one
must refer to the the Langlands parameter computations in [VZ, Section 6]. This requires
some reasonably involved bookkeeping, but is quite tractable in practice.

Remark 5.9. The proof of Theorem 5.6, which we defer until Section 8, is entirely empirical:
we simply work out both sides of the equality in Theorem 5.6, and show they coincide. In
the course of the proof, we give an explicit identification of K¢\X, and work out Vogan’s
duality on the level of orbits (Section 6). (None of this is new, but none of it is written down
anywhere.) In Section 7, we also make some results of Garfinkle [G] a little more explicit.
It is natural to ask for a more conceptual proof than the computational one we give below.
Here is what one may hope to be true. By combining Proposition 3.1 and Lemma 4.1, we
can associate to each v € K\ X a component of otn n; here OC is the cover of the complex
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nilpotent orbit described in Section 4. By projection, we get a component of O N n, and
such components are all of the form B(Ad(w)nN n), for some (generally nonunique) w € W
(see [Spal]). From w, we can build the primitive ideal J(w) = Ann(Ly(wp)), and it is natural
to ask if this ideal is related to the annihilator of the irreducible Harish-Chandra module
parametrized by the trivial local system on wv.

The hope expressed in the previous paragraph is unreasonable because the primitive ideal
I(w) is not well defined — i.e. there can be two elements w; and wy such that

B(Ad(wi)nNn) = B(Ad(p)nNmn),

but for which Ann(Ly(w1p)) # Ann(Lp(wep)). This kind of complication does not arise
in our type A setting, but the existence of counterexamples in other types (the smallest of
which is in C4 — see [Mc2]) indicates that no easy conceptual principle is at work here.

To conclude this section we dispense with a slight ambiguity concerning the parametriza-
tion vy : Irr(X¥) — T(n). There is another equally natural choice of this parametrization
obtained as follows. Given N € N, consider a generic F = (0= F, C ---C F, = C*") €
U € Irr(XY). (By analogy with the discussion in the definition of 7, we leave it to the
reader to formulate the precise meaning of ‘generic’ here.) We can build a tableau 7' (whose
shape is the Jordan form of N) by requiring the first 5 boxes coincide with the Jordan
form of N viewed as a nilpotent endomorphism of F,/F,_;. Write v/ for the resulting map
Irr(X) — T (n).

Actually, it is better to think of 4’ as follows. Given a flag F = (F), define FY =
(Fn/Fn_i)*; here * denotes vector space dual. Clearly F;Y — F}',,, so we have constructed
a dual flag FV = (F)). (Despite the notation, this has nothing to do with Vogan’s duality
described below.) Now if exp N fixes F, and NV denotes the transpose endomorphism of
F*, then it is clear that exp NV fixes FV. From the definitions, it’s easy to verify that
v'(N,F)=~(NVY, FY).

In any case, it was Spaltenstein who apparently first noticed that the map y'y~! gives
an interesting shape-preserving involution on 7(n); Douglass has recently computed it [Do].
His computation reduces to the following result, which will be crucial in the course of our
proof of Theorem 5.6.

Proposition 5.10. For T € T (n) write T = RS(o) for a unique o € X(n). Then
'y HT) = RS (woow,).
In particular, both RS(c) and RS(w,0w,) have the same shape.

We can interpret Spaltenstein’s involution in a more representation theoretic setting as
follows. Write 7 for the type A diagram automorphism. It induces an involution, say
I —71, on the set of primitive ideals in the enveloping algebra of g. Explicitly we can write
"(Ann(L))) = Ann(’L); here L is an irreducible g module, ¥ is any automorphism coming
from the outer diagram automorphism, and 7L is the irreducible g obtained by composing
the action on L with 7.

Corollary 5.11. Let L be an irreducible g module with trivial infinitesimal character. Then,
in terms of Theorem 2.2,

"(Ann(L)) = vy~ (Ann(L)).



12 PETER E. TRAPA

Pf. Theorem 2.1 reduces the proof to the L = Ly(wp) case. Since Ann("Ly(wp)) =
Ann(Ly(wowwep)), the corollary now follows immediately from Proposition 5.10. a

Hence the ambiguity concerning v and 7’ amounts to a choice of orientation of the type
A Dynkin diagram.

6. Kc-ORBITS ON X, VOGAN DUALITY

In order to prove Theorem 5.6, we will need a precise description of the K¢-orbits on X
for certain type A real forms.

Proposition 6.1. Recall Notations 2.1 and 2.2, and fiz B to be the upper triangular Borel
in GL(n,C) (or GL(2n,C) in part (b) below).
(a) For G =U(p,q), Kc\X is parametrized by ¥4 (p, q). The correspondence takes an
involution with signed fized points (o,¢€) to the K¢ orbit V(o,c) through gB where
g € GL(n,C) is defined as follows.
(i) Ifo(l) =1 and ¢ = +, then

_{1 fhk=#{j|j<le=+}
gkl =

0 else.
(ii) Ifo(l) =1 and ¢ = —, then
_{ ifk=p+#{j|i<le=-}
9kl =
else.

(iii) If o(l) > I, then

1 fk=#{jli<le=+}
g=1 dfk=p+#{jlj<o(l),e=-}
0 else.

(iv) If o(l) < I, then

-1 fk=#{jlj<ao(l),=+}
gu=91 ifk=p+ #{jli<le=-}
0 else.
(b) For G = SU*(2n), Kc\X is parametrized by ¥o(2n). The correspondence takes a

fized-point free involution o to the K¢ orbit v, through gB where g € GL(2n,C)
is defined by

() Ifl < o(l),
_{1 ifk=4#{j17<ji<a(4)}
gkl =

0 else.
(ii) Ift>o(l)
_{1 ifk=n+#{j|j <o(l),j< ()}
9kl =
0 else.

(c) For G = GL(n,R), Kc\X is parametrized by X(n). The correspondence takes an
involution o to the orbit v, though gB with g defined by
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(i) Ifi=0o(1),

1 ifj=1
Ikt = {0 else.
(i) 711 £ o(1),
% ifk=1
g =iy/k k=0
0 else.

(The factor \/% is just a convenient normalization arranged so that for g as defined in part

(c), g2 is the permutation matrix corresponding to o.)

Sketch. Consider part (c). It is possible to give a very explicit discussion of the formu-
las appearing above, but in the proofs of Theorems 7.1-7.3, we will need to relate K¢\X
to Langlands parameters, and for this purpose it is useful to give a slightly more abstract
description of Kc\X. (In the proofs of Theorems 7.1-7.3 we omit the details of the corre-
spondence with Langlands parameters. We include the discussion below, so that the reader
may have an easier task of supplying the omitted details.) A convenient reference for the
argument below is [RSp, Section 10], but the main ideas go back much further, essentially
to Matsuki [Ma]. Write g ¢ (F, F') = (gF,0(g)F’) for the 6-twisted action of G on X x X.
The orbits consist of those flags in relative #-position w,

S8 = {(F,F")| (F,8(F")) are in position w}.

Write A for the diagonal in X x X. Now S N A is transparently a union of orbits for
the diagonal action of K¢ on A, which we will think of as K¢ orbits on X. In fact, simple
dimension considerations imply that each irreducible component of the intersection is a single
K¢ orbit. In the case of GL(n,R), the intersections are already irreducible, and they are
non-empty exactly when w € ¥(n). In this way, we obtain a bijection ¥(n) — Kc\X. In
terms of the parametrization above, the reader can check that w + v,,_,,, the orbit that the
formulas of part (c) attach to wow.

For parts (a) and (b), we give a concrete sketch of the formulas appearing in the propo-
sition. (The interested reader can adapt the above discussion for GL(n,R) to the cases
at hand.) Consider part (b). To each 2n dimensional flag F = (Fy C ---Fa,) € X, we
will attach an element o € ¥y(2n) that depends only on the K¢ orbit of F. Let k be the
unique index such that the dimension of Fj- in Fj_; is equal to the dimension of Fi- in Fj;
here | is taken with respect to the symplectic form defining K¢ = Sp(2n,C). (Generically
k = 2, so k is a measure of the degeneracy of the orbit through F.) We define o(1) = k.
Now take any vector v € Fp but not in Fi_;, and let U be the subspace spanned by Fj
and u. Then the symplectic form on Fj, descends to a nondegenerate one on Fj, /U, and
we can define 0(2) € {3,...,k—1,k+1,...,2n} by the analogous procedure applied to the
2n—2 dimensional flag (F;/(F; NU)) (whose nontrivial subspaces we think of as indexed by
{2,3,...,k—1,k+1,...,2n}). Inductively, we obtain o € ¥o(2n). This data characterizes
the K¢ orbit of (F;). The formulas that appear in part (b) are now clear from the above
discussion. (In fact, using this description, the closure ordering on the orbits follows easily.)

We argue similarly for part (a) by first attaching (o, €) € X1 (p, q) to a fixed flag (F;) € X.
Let VT be the span of the first p coordinates of C*, and V'~ the span of the last ¢q. If
dim(V* N F;) = dim(V* N Fj_1) then o(5) = 7 and ¢; = +. Similarly if dim(V~ N F}) =
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dim(V~ N F;_1) then o(j) = 7 and ¢; = —. One the other hand, let j be the smallest index
such that dim(V* N F;) = dim(V* N F,_;). We describe o(j) > j and then ¢; and ¢,(;) are
fixed by the convention in the definition of ¥4 (p, ¢). So take u; € F; — F;_1, and let k be the
smallest index (greater than j) so that there is a vector uy € Fy — Fi—1 with the property
that the form defining U(p, q) restricts to a signature (1,1) form on U, the span of u; and
ug. This defines o(j) = k, and we can proceed inductively to complete the description of
(0,€). By an argument along the lines of those given in [Ya], one can show that this data
characterizes the K¢ orbit of (F;). The explicit formulas of part (a) follow easily. a

Remark 6.2. The statement in part (a) remains valid if we replace G = U(p, q) by SU(p, q).
When = is odd, part (c) remains unchanged if GL(n, R) is replaced by SL(n,R). For n even,
the O(n, C) orbit parametrized by ¢ € Lg(n) C X(n) is a union of two SO(n, C) orbits, as
can be see already in the n = 2 case.

Next we describe the K¢ equivariant local systems on each v € K¢\ X, which amounts to
computing the centralizer component group A(v) = Zk.(v)/Zg_(v). This group identifies
with the component group of the Cartan subgroup of G corresponding to the Cartan sub-
algebra in a f-stable Borel contained in v (see [V2] for example). The Cartan subgroups in
our real forms of interest are well-known: for U(p, ¢) and SU*(2n), they are all connected;
and for GL(n,R), the number of their connected components is a power of 2. Parts (a) and
(b) of the next result are now clear; for part (c) one must do a little bookkeeping (which we
omit).

Proposition 6.3. Recall Proposition 6.1.
(a) For G=U(p,q), each A(v) is trivial.
(b) For G = SU*(2n), each A(v) is trivial.
(c) For G = GL(n,R) and v, € Kc\X parametrized by o € ¥(n), A(ve) ~ (Z/2)"
where r is the number of fized points of o.

Corollary 6.4. For G = GL(n,R), the set of K¢ equivariant local systems on v, € Kc\X
s in biyjection with the set

{(r,€) € Zx(n) | T=0}.

In particular, the set of pairs consisting of an orbit v € Kc\X and a K¢ equivariant local
system on v is in bijection with ¥ (n).

Remark 6.5. When G = SU(p, q), the groups A(v) are either trivial or isomorphic to Z /2.
The latter case happens precisely when p = ¢ and v corresponds to (o, €) with o € ¥o(2p)
being fixed-point free. Any orbit for SL(n,R) parametrized by o € ¥(n) with r fixed points
has A(v) equal to the subgroup of (Z/2)" consisting of those r tuples with an even number
of nontrivial elements.

We now turn to representation theory. In [V3], Vogan defines a duality on irreducible
Harish-Chandra modules of different real forms (of a complex group and its Langlands
dual) that behaves nicely with respect to composition series. The duality is not unique;
nonetheless, we will write LV for any choice of the dual of L. The key formal property that
we will need is that, up to tensoring with the sign representation, the duality intertwines the
coherent continuation representation. This may be found in [V3, Corollary 14.9¢] which, in
our context, simplifies to the following result.
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Proposition 6.6. Recall Theorem 2.2 and suppose G is a real form of GL(n,C). Then the
tableau parametrizing Ann(LV) is the transpose of the one parametrizing Ann(L).

We now write down (a choice of) the duality on the level of orbits. The next two propo-
sitions follow from carefully applying the recipes of [V3].

Proposition 6.7. Fiz o € ¥o(2n); then (by definition—see Notation 2.2) there is a unique €
with (0,€) € X4 (2n). Let v, and ¥ = v(, ) denote the corresponding orbits (Proposition 6.1).
We have

(LSU*(2TL)(U0'))V - LSU(n,n) (’i}: qu)a
where ¢ is the unique nontrivial local system on the indicated orbit (Remarks 6.2 and 6.5).
In order to describe the duality for GL(n,R) we need to give a combinatorial construction

of an involution with signed fixed points (&, €) € ¥4 (n) from an involution ¢ € ¥(n). So fix
o € ¥(n), take ¢ = o, and define

6 =+ if i < o(4),

6= —if 1> o(1);
these definition are required by the normalization in the definition of ¥4 (n). We assign the
first fixed point of ¢ a + sign, and then require the signs to alternate along the remaining
fixed points; more precisely, list the fixed points of ¢ in increasing order as rq, ..., r;, and set

€, = (—1)**1. (We could just as well have chosen ¢,, = (—1)?, reflecting the nonuniqueness
of the duality.)

Example 6.8. Given o = (36)(49) € £(9), we apply the algorithm as follows.

o€ 2(9) ° ° 3 4 ° 6 ° ° 9
.. e < T~
(6,€) € £1(5,4) + - 3T 4T+ T -+ o

The picture means that & = (36)(49) while
€= (—I_: _7+7 —I_: —I_: I _7+7 _)'

Proposition 6.9. Let 0 € X(n) and let (5,€) € X1(p,q) be as defined in the previous
paragraph, and let v and U denote the corresponding orbits under Proposition 6.1. Then

(Larmr)(v))Y = Ly (p,q)(9).
Remark 6.10. Using Corollary 6.4, we see that the full duality

GL(n,R), — [ Ulp.9),
pHg=n
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amounts to a bijection

Si(n) — ] Z:(p9).
pta=n
The algorithm given before the statement of the proposition can be naturally extended
to this larger domain giving an explicit formulation of the duality on all of GL(n, R)p —

we leave the precise formulation to the reader. Below, however, we will make use of one
qualitative feature of the answer, namely

(LGL(TL,R)(,U(Ti ¢))v — LU(p,q)(U(o-,e‘)):

for some € depending on ¢ and €. (In words: the full duality, like the algorithm given in
Proposition 6.9, doesn’t alter the underlying involution.)

7. ANNIHILATORS FOR U(p, q), GL(n,R), AND SU*(2n)

In this section we recall Garfinkle’s algorithms to compute Ann(L(v)) for v € Kc\X.
The first group we treat is U(p,q). (The following holds verbatim for SU(p,¢q).) Given
(0,€) € £1(p, q), form a sequence of pairs of the form

(i,€) if o(z) = 1; and
(i,0(7)) if i < o(1).

Arrange the pairs in order by their largest entry, with the convention that a sign has nu-
merical size zero. Write 7y, ..., 7, for the resulting ordered sequence. (For instance,

(1,4+):(2,-), (5,4), (3,6), (7,4), (8, —), (4,9)
is the sequence corresponding to (&, €) in Example 6.8).
We now give Garfinkle’s algorithm describing a same-shape pair of tableaux

(¥1(v), ¥5(v)) € Tx(p+9) X T(p+9)-

Each tableau is constructed by inductively adding the pairs 7;. So suppose that we have
added mq,...,mj_1 to get a (smaller) same-shape pair of tableau (T4,T). If m; = (k, &),
then we first add the sign € to the topmost row of (a signed tableau in the equivalence class
of) Ty so that the resulting tableau has signs alternating across rows. Then add the index
7 to T in the unique position so that the two new tableaux have the have the same shape.
If m; = (k,o0(k)) we first add k£ to T using the Robinson-Schensted bumping algorithm to
get a a new tableau 77, and then add a sign € (either + or — as needed) to T4 so that the
result is a signed tableau T} of the same shape as T'. We then add the pair (o(k), —€) (by
the recipe of the first case) to the first row strictly below the row to which € was added.
We continue inductively to get (¥$(v), ¥3(v)) € Tx(p+q) X T(p+¢q). (For a more formal
definition, the reader is referred to [G].)

Theorem 7.1. Let G = U(p, q), take (0,€) € £1(p, q), and letv € Kc\X be the correspond-
ing K¢ orbit of Proposition 6.1. Then, given the tableau parametrizations of Theorem 2.2
and Lemma 5.1, (¥1(v), ¥5(v)) is the associated variety and annihilator of Ly (p q)(v). The
subsets

{L(v) | ¥1(v) = O}
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—

of U(p, q), ezhaust the cells of Harish-Chandra modules as O ranges over the nilpotent K¢
orbits in p.

Pf. We have arranged our parametrization of Kc\X to coincide with the Z/2 data (or,
equivalently, Langlands parameters — see Corollary 2.2 of [V2] for the details of the cor-
respondence) that Garfinkle uses in [G]. So the annihilator part follows. The associated
variety statement was observed independently by a number of people; see [Tr, Section 4],
for example. Barbasch and Vogan [BV] give a counting argument to show how the assertion
about cell structure follows from the associated variety statement. O

Next we turn to SU*(2n). Given o € ¥(2n), or the corresponding orbit v € K¢\ X, we
describe an element ¥5(v) € 72" (n). As above o gives rise to an ordered sequence of pairs
of integers 4, ..., m,, by ordering the pairs

(,0(2)) for i < o (%)

by their maximal entry. We construct the transpose of \Ilg (v) inductively by adding the pairs
m;. So suppose the pairs mq,...,7;_1 have been added to produce a tableau 7. To add
the jth pair (k, o(k)), we first add & to T using the Robinson-Schensted procedure to get a
tableau 7", and then add o(k) to the end of the (unique) row of 7' which is longer than the
corresponding row of T'. Inductively we obtain an element of 7.(2n) whose transpose (which
lives in 77 (2n)) we define to be ¥4(v). We then define ¥8(v) € D! (2n) to be the shape of
U5 (v). (Again this is redundant, but we elect to preserve the analogy.)

Theorem 7.2. Let G = SU*(2n), take 0 € ¥o(2n), and let v denote the corresponding
Kc-orbit (Proposition 6.1(b)). Then the pair (¥4 (v), ¥5(v)) is the the associated variety
and annihilator of Lgy+(an)(v). The fibers

{L(v) | ¥} (v) = O}

ezhaust the cells of Harish-Chandra modules for SU*(2n) as O ranges over the nilpotent K¢
orbits on p.

Pf. Again, we have arranged our parametrization of K¢\X to coincide with the Z/2 data
Garfinkle uses in [G]. So the annihilator part follows. The associated variety part is trivial,
since W8 (v) is the unique nilpotent orbit whose shape coincides with the shape of ¥4(v). In
the same way as U(p, q), the cell structure follows from the associated variety statement. O

Finally we treat GL(n,R). Given v € Kc\X, let © denote the orbit for U(p, q) described
in Proposition 6.9. We define ¥§(v) € T(n) denote to be the transpose of ¥§(?), and let
¥$(v) € D(n) (redundantly) denote its shape.

Theorem 7.3. Let G = GL(n,R), take 0 € 3(n), and let v denote the corresponding Kc
orbit (Proposition 6.1(c)). The pair (¥5(v), ¥5(v)) is the associated variety and annihilator

of Lgr(nr)(v)-
Pf. The annihilator statement follows from definition of ¥, together with Proposition 6.6

and the corresponding computation of annihilators for U(p, ¢) (Theorem 7.1). The associated
variety statement follows from same-shape considerations. O

Remark 7.4. Except in special cases, the fibers of ¥§ do not parametrize cells of Harish-
Chandra modules for GL(n,R). (The fibers of ¥§ will be subsets of orbits, while cells of
Harish-Chandra modules will correspond to subsets of local systems on orbits.)
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We now note a mildy interesting combinatorial consequence of Corollary 5.11. If ¢ is an
element of ¥(n), write "o for w,ow,. Similarly if (o, €) is in ¥4 (p, q) write ("0,7¢) € £1(p, q)
for the pair

o = WowW,;
Te; = €wgiw, if T0(1) =1
Te; = —€wgiw, 1 T0(1) # 1.
(The different condition on the signs arises from the normalizations in the definition of
Y1(p,q).) Write v and ™ for the corresponding orbits in the case of G = U(p, q), SU*(2n),
or GL(n,R). One can check that (in the notation around Corollary 5.11) we have

"Le(v) 2 Lg(™).

Using this isomorphism, we can thus compute the annihilator of "Lg(v) by applying the
appropriate ¥, to ™. On the other hand, Corollary 5.11 and Proposition 5.10 give another
means to compute the annihilator by applying the tableau involution 'y~! to the tableau
obtained by applying the appropriate ¥, to v. Note that it is not at all clear from the
definitions of the various ¥, (especially ¥$) that we get the same answer; that we do is to
be interpreted as a latent symmetry of their definitions.

8. PrRooFr OoF THEOREM 5.6

In this section we prove Theorem 5.6. We first treat the case of U(p, q). In terms of the
notation established in Corollary 5.2, we are to prove

(Ko (v), BSGrp(v)) = (AV(Lu(p,g)(v)), Ann(Ly (p,g)(v)))-
Half of this is straightforward.

Lemma 8.1. pf ,(v) = AV(Ly(p,q)(v))-

Remark 8.2. Because it is clear from the context, we will abbreviate AV (Ly, q)(v)) by
AV (v); similar notation will apply to Ann(v). When it is also clear from the context we will
drop the superscripts in our notation, abreviating u2, by just ye, for instance. As usual,
we will not distinguish between a tableau and the orbit (or primitive ideal) it parametrizes.

Pf. Yamamoto [Ya] has given an algorithm to compute gorb(v); so to prove the lemma, we
have only to compare her algorithm with Garfinkle’s. This is possible, but very complicated
(mainly because Yamamoto’s algorithm itself is complicated), so we give an alternate argu-
ment based on the counting considerations of [BV]. From general principles, one knows that
Porb(v) is contained in the associated variety AV (v) (see [BoBr, Propositions 2.6,2.8]). Thus
the statement of the lemma is equivalent to the equality of the dimensions of pom(v) and
AV (v). We prove the equality of dimensions (and hence the lemma) by an induction on the
dimension porh(v). The lemma is clearly true when v is open (i.e. when pop(v) and AV (v)
are zero). Suppose we can find v such that

dim (forb(v)) < dim(AV (v)).

Choose v so that dim(AV(v)) is minimal subject to this inequality. Consider the subsets
A,B C K\X,

A= {w € K\X | :u'orb('w) = )u'orb(v)};
B = {we K\X | AV(w) = ions(0)}.
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The induction hypothesis says that B C A, and the inclusion is proper since v is contained
in A but not B by hypothesis. But Corollary 5.2(a) and Theorem 7.1 imply (respectively)
that the cardinality of A and the cardinality of B are both equal to the number of standard
Young tableaux whose shape matches that of yorb(v). This contradicts the proper inclusion
A C B, and hence the dimension inequality above, so the proof is complete. O

The next lemma, which follows directly from [St2, Lemma 1.2], will be crucial for the
other half of the theorem.

Lemma 8.3. Let F = (0= Fy C ---F,, = C*) be an n dimensional flag fized by exp N. Let
U ~ C*? be an N-stable hyperplane in F,,_; and write F' = FNU for the flag

(FonU) C---C (FanU).
Then for some indez k we can write F' as
0=FyC- - -Fry C (Fk.HﬂU) c---C (Fn_lﬂU):U.

Let N' denote the restriction of N to U, so that F' is fized by exp N'. Assume that the
restriction N” = N|p,_, is a generic extension of N' to F,,_; in the sense that dim(Gc-N")
is mazimal subject to the condition that

(a) N"|y = N'; and

(b) expN" fizes Fo C F; C --- C Fp_1.
Let T' denote the tableau obtained from v(N, F') by switching the entries from 1,...,n—2
tol,...,k—1,k+1,...,n—1. Then the first n—1 bozes of y(N, F) are obtained by adding k
to T' using Robinson-Schensted insertion.

(Of course the statement is really about n—1 dimensional flags. We have phrased it in this
slightly confusing way in order to make the applications below a little more transparent.)

Before proceeding to the proof, we set aside several characteristics of Garfinkle’s algorithm;
the easy verification is left to the reader.

Lemma 8.4. Fiz 0 € ¥4 (p,q), write v for the corresponding orbit, and let 7y, ..., 7, be
the sequence of pairs as described above. Let T denote the tableau constructed from the first
r—1 pairs 7y, ..., 7. Then either m, = (n,€,) or m, = (k,n). If 7, = (k,n), then the first
n—1 bozes of Ann(Ly(pq)(v)) are obtained by adding k to T using the Robinson-Schensted
insertion procedure.

We now give a detailed argument that (in the simplified notation of Remark 8.2) RS, (v) =
Ann(v). Take o0 € ¥4 (p, q), write v for the corresponding orbit (Proposition 6.1), and write

F=(FhbCF C---CF,)
for the representative given in the proposition. Write mq,...m, for the sequence of pairs

attached to o by the procedure given before Theorem 7.1.

First assume that m, = (n,€,) and (without loss of generality) that ¢, = —. Let U
denote the n—1 dimensional subspace of V' (as in Notation 2.1) spanned by ey, ..., e,—1. Let
G' ~ U(p,q—1) denote the subgroup of GL(U) preserving the form (, ) (of Notation 2.1)
restricted to U. Then set

F'=(FbCFC-CF,).

From Proposition 6.1, one can check that F’ is the representative of the orbit v’ attached to
o' € £1(p,q—1) determined by the sequence of pairs 7y, ..., m—1 (with 7, omitted).
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Now let N be a generic nilpotent (in the sense of Remark 5.3) in the moment map image
p(Tx(X)|F). By definition,

Ny is generic in p(T(X')|F).

Hence, by Remark 5.3, the first n — 1 boxes of RS, (v) coincide with RSob(v') which, by
induction, we can assume coincides with the tableau 7" obtained by applying Garfinkle’s
algorithm to the pairs 7y, ..., 7. But (from the definition of Garfinkle’s algorithm) these
are the first n—1 boxes of Ann(v). The last two sentences imply that the first n—1 boxes of
RSorb(v) coincide with those of Ann(v). Lemma 8.1 finishes the proof in this case.

To complete the proof, we must treat the case when 7, = (k,0(k) = n). In this case, let
U be the subspace of V' (as in Notation 2.1) spanned by

€1,---,€k—1,€k41,---,€n-1,

and let G' ~ U(p—1,¢—1) denote the subgroup of GL(U) preserving ( , ) restricted to U.
Write

F'=(FonU)C---C(F,NnU).
Explicitly from Proposition 6.1, one sees that F’ equals
0=FyC - Fr 1 C(Fr1 NU)C -+ C (Fae1NU) =1,

and that F' is a representative that the proposition gives for the orbit v’ corresponding to
o' € ¥4(p—1,9—1) attached to my,...,m,—1 (with 7, omitted).

We will show that the first n—1 boxes of RSom(v) and Ann(v) coincide. Appealing to
Lemma 8.1 then shows that RSo(v) = Ann(v). Solet N be a generic nilpotent in p(Ty (X))
(in the sense of Remark 5.3). Appealing to the definitions, once again we find that

N' = N|y is generic in p(Ty(X")| ).

Hence, by induction, we may assume that the tableau 7", obtained by relabeling the boxes of
RSom(v') by 1,...,k—1,k+1,...,n—1 (instead of 1,...,n—2), is the tableau that Garfinkle’s
algorithm attaches to my,...,m,_;. Lemma 8.3 implies that the first n—1 boxes of RSob(v)
are obtained by inserting k into 7" using Robinson-Schensted. (Actually, there is something
subtle to check here; see the discussion in the next paragraph.) In any event, by Lemma 8.4,
we see that the first n—1 boxes of RS, b(v) and Ann(v) coincide. This completes the proof
for U(p, q).

As we mentioned above, we must be a little careful about applying Lemma 8.3. The
hypothesis of the lemma requires that N” = N|g,_, be a generic extension of N' = F|y.
This would seem to follow immediately from the generic assumption on N, but it is more
subtle than that. The generic extension hypothesis of the lemma requires the GL(F,_1)
orbit through N” to be maximal, but here we are dealing with K¢ orbits. More precisely,
the shape of a generic extension of N’ to F,_; is obtained by adding some specified corner to
the shape of N'; the point is that that the resulting shape may not, a priori, be a subshape
of the shape of N (since there are alternating sign conditions to worry about). This never
causes problems in our setting because we have two dimensions of freedom: the shape of N’
(which is the shape of a signature (p—1,¢—1) tableau) plus any corner is a subshape of the
shape of a signature (p, ¢) tableau. So Lemma 8.3 applies, and the argument is complete.

Next we consider the case of SU*(2n). First we need to record some results analogous to
those of Lemma 8.4 and Lemma 8.3.
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Lemma 8.5. Fiz 0 € ¥o(2n), write k = o(2n), and let v denote the corresponding K¢
orbit. Write o' € ¥o(2n—2) for the involution obtained by viewing o as a permutation of the
letters 1,...,k—1,k+1,...,2n—1, and write v' for the corresponding orbit. Let T' denote
the tableau obtained by switching the entries of Ann(Lgsy«(an-1)(v')) from 1,...,2n-2 to
L...;k=1,k+1,...,2n—1. Then the first 2n—1 bozes of Ann(Lgy«(2n)(v)) are obtained
by adding k to the transpose of T' using Robinson-Schensted insertion, and then taking the
transpose of the resulting diagram.

The next lemma (especially its proof) explains why the transpose of Robinson-Schensted
insertion is appearing.

Lemma 8.6. Let F = (0= Fy C ---F,, = C*) be an n dimensional flag fized by exp N. Let
U ~ C? be an N-stable plane in F,, not contained in F,_1, and write F' = F/U for the flag

0=Fy/(FonU)C---C F,/(F,NU).
Then for some indez k we can write F' as
0=FyC---CFpa C
Fop/(Fen NU) C -+ C Fpy /(Fpa NU).

Let N' denote map induced by N on F,,_1/(Fpa NU) so that F' is fized by exp N'. Assume
that N|g,_, is a generic lift of N' (in the sense analogous to the condition in Lemma 8.3).
Write T' for the tableau obtained from (N, F') by changing the entries from 1,...,n—2 to
1,...,k=1,k+1,...,n—1. Then the first n—1 bozes of y(N, F') are obtained by first adding
k to the transpose of T' using Robinson-Schensted insertion, and then taking the transpose
of the resulting tableau.

Sketch. As in the discussion preceding Proposition 5.10, given any flag F' = (F;), we can
form a dual flag FV = (F}) defined by F,Y = (F,,/F,_;)*. Note that the dual of the flag F//U
is of the form FVNV™*, where V* is the vector space dual of an n—2 dimensional complement
to U. Using this observation, together with the explicit form of Proposition 5.10 and the
standard interpretation of transpose in terms of the Robinson-Schensted algorithm, one can
then deduce the present lemma from Lemma 8.3. We omit the details. O

Now we prove RS®, (v) = Ann(Lgsys(2n)(v)), thus completing the proof of Theorem 5.6(b)
for G = SU*(2n). (Since the context is clear, we write this equality as RSorn(v) = Ann(v),
as in Remark 8.2.) Fix ¢ € ¥y, and write £ = o(n). Consider the subspace U of C* spanned
by the 2n—2 vectors ey, ..., ex1, €k, .-, 2n1, and let G' = GL(U). As above, we can
form the flag F' = FNU. Then F' is the representative that Proposition 6.1 gives for the
orbit v’ attached to the involution ¢’ € ¥g(2n—2) obtained by viewing o as an involution of
the 2n—2 letters 1,...,k—1,k+1,...,2n—1. But now a problem arises: if N is generic in
p(Tx(X)), then (except in very special cases) N|y will not even fix the flag F”, let alone be
in the moment map image u(T),(X’)).

Instead we need to define U = Cex @ Ces,, and form the flag F' = F/U described in
Lemma 8.6. Define G' = GL(F,/U). Then one can check that for this G’, we have that
F' is again the representative that Proposition 6.1 gives for the orbit v’ attached to the
involution ¢’ € ¥g(2n —2) described in the previous paragraph. Moreover, one can check
directly that if N is generic in u(7;(X)), then the projection of N on the quotient F,/U
is indeed generic in p(T%(X’)). Now the proof proceeds exactly as in the second case of
the argument for U(p,q), except that we instead use Lemma 8.5 and Lemma 8.6. (The
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same parenthetical caveat applies to the application of Lemma 8.6.) We conclude that
the first 2n—1 boxes of RSop(v) and Ann(v) coincide. Since there is a unique shape in
D" (2n) containing the shape of the first 2n—1 boxes of these tableaux, we conclude that

RSorb(v) = Ann(v). The G = SU*(2n) case is complete.

Finally we consider G = GL(n,R). We will deduce Theorem 5.6(c) from the following
calculation. In its statement, we let RS(o) denote the standard Young tableau attached to
o € ¥(n) by the Robinson-Schensted algorithm.

Theorem 8.7. Let G = GL(n,R) and fizv € Kc\X corresponding (under Proposition 6.1)
to 0 € ¥(n). Then the generalized Robinson-Schensted algorithm for G coincides with the
transpose of RS,

RS,(v) = RS(0)™.

Theorem 5.6(c) now follows from explicit computation. In a little more detail, first fix
o € ¥(n), assume ¢ has no fixed points, and write (o, €) for the corresponding element of
Y1 (n). Write v, and V(o) for the orbits described in Proposition 6.1. By Proposition 6.3,
the only K¢ equivariant local system on v, is the trivial one. From Proposition 6.9 and
Proposition 6.6, we have

AHH(LGL(n,R)(Uo—))tT = Ann(Ly(p,q)(V(o,e)))-

Directly from the definitions (and Theorem 7.1), one can verify that the tableau appearing
on the right-hand side is RS (o). Hence we have deduced Theorem 5.6(c) from Theorem 8.7
in the fixed-point free case. On the other hand, assume ¢ has a least one fixed point.
Then in view of Remark 6.10 and the definition of ¥§, Theorem 5.6(c) now follows from
Theorem 8.7, Proposition 6.6, and the following observation: given o € ¥(n), there are
exactly two elements of the form (o, ¢€), (0, €) € L1 (n) with

Ann(Ly (p.q)(v(o,e))) = RS(0) = Ann(Ly(p,q)(V(0e1)))-
We leave the (easy) verification of these facts to the reader.

Now we turn to the proof of Theorem 8.7. We will begin by establishing that the first
n—1 boxes of RS’ (v,) and RS (o)™ coincide.

Solet G = GL(n,R) and take o € ¥(n). Write v for the corresponding orbit and F = (F;)
for the representative given in Proposition 6.1. There are again two cases to consider. First
assume that o(n) = n. Write ¢’ € ¥(n—1) for the involution obtained by viewing ¢ as a
permutation of n—1 letters 1,...,n—1. Let v’ denote the corresponding orbit for GL(n—1,R),
and let F' denote the representative given in Proposition 6.1. If N is a generic nilpotent
in u(Ty(X)|r) (in the sense of Remark 5.3), then it is immediate that N|f,_, is generic in
p(Tr(X')). Hence, by Remark 5.3, we see that the first n—1 boxes of RS¢, (v) coincide with
RSt (v'). By induction we can assume that RS¢,(v') = RS(0’)". From the definition
of the Robinson-Schensted algorithm (and the fact that o(n) = n), we see that the first
n—1 boxes of RS (o)™ coincide with RS(¢’)*". Putting the last three sentences together, we
conclude that the first n—1 boxes of RS¢ (v,) coincide with those of RS(o)™.

On the other hand, we can make the same conclusion in the case that o(n) = k # n. The
proof proceeds exactly as in the case of SU*(2n), once we notice that the obvious analog of
Lemma 8.5 clearly holds for RS*". We omit the details.

Hence we conclude that the first n—1 boxes of RSS, (v) and RS(0)™ agree. To finish
the proof of Theorem 8.7, it is enough to show that the shape of pf, (v,) matches the
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shape of RS(0). One can prove this by duplicating Yamamoto’s [Ya] moment map image
computations for GL(n,R) and then verifying (as we did in the U(p, q) case) that the shapes
coincide. This is elementary, but extremely complicated. With a little sleight of hand,
however, we can deduce it from Steinberg’s calculation, part of which appearsin the following
lemma. (See Remark 5.4 and the introduction for more details.)

Lemma 8.8. Fiz w € S, and let A(w) € GL(n,C) denote the corresponding permutation
matriz. Let n denote the upper-triangular nilradical of b, and suppose that N is generic in
Ad(A(w))nNn (in the sense of Remark 5.3). Then the shape of N coincides with the shape
of RS(w), where RS denotes the Robinson-Schensted algorithm.

Now we prove that pc,(v,) coincides with the shape of RS(c)". Let g, € GL(n,R)
denote the element attached to o by Proposition 6.1. Using an invariant bilinear form to
identify the fiber at eB of T™*(X) with n, we get

p(Ty (X)) = Ad(go)n N p.

Let N denote a generic element of the image (in the sense of Remark 5.3). Since p is the set
of symmetric complex matrices, we can find M € n so that

(+) N =g, Mg = (9o Mg;")".

Clearly N has the same shape as M, so we are to prove that the shape of M is the shape of
RS(o).

Now one may verify directly that g2 = A(c), the permutation matrix attached to o.
Combined with the fact that g, and g, ' are symmetric, (x) becomes

Ad(A(0))M = M™.
Conjugating by A(w,), we get
Ad(A(w,0))M = M,

where M%" denotes the anti-transpose of M, i.e. the reflection of M about its antidiagonal.
Since M € n, so is M®", and we can apply Lemma 8.8 to conclude that the shape of M
coincides with the shape of RS(w,0). By Proposition 5.10, this is the shape of RS(ocw,).
Of course it is well-known that RS(7w,) = RS(r)" for any 7 € S,. Hence we conclude

that the shape of M, and hence of N, coincides with the shape of RS(c)¥. The proof is
complete. O

Remark 8.9. We conclude by noting that, in some cases, we can give a completely self-
contained computation of associated varieties. For any type A group considered above,
let porb denote the map taking Kc\X to Kc\Ng. Of course we always have pom(v) C
AV(Lg(v, ¢)); see Propositions 2.6 and 2.8 in [BoBr|, for example. Now Proposition 6.6
implies

shape(AV(L)) = shape(AV(L"))"™,

and so we conclude

shape(fiorn(v)) < shape(AV(Lg (v, $))) = shape(AV (Lev (7, $))" < shape(porm(9)).

(The inequalities are with respect to the standard partial order on partitions.) We have given
explicit formulas for o, and ¥, and one can check that in some cases the left and right
ends of above chain of inequalities. In these cases, we deduce the shape of AV(Lg(v,¢));
if G = GL(n,R) or SU*(2n), this is of course AV(Lg(v,¢)). When G = U(p, q), we can
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immediately conclude that gorb(v) is an irreducible component of AV(Lg(v)). If there is
only one signature (p, q) tableau of the relevant shape, then we can conclude that indeed
Porb(v) = AV(Lg(v)). We can avoid the restrictions on the tableau if we are willing to admit
the relatively elementary Barbasch-Vogan [BV] result stating that AV(Lg(v)) is irreducible.

When the two sides of the above chain of inequalities do not coincide, the method gives
only partial information. For instance, it is already inconclusive for the trivial representation
of U(p,q) when |[p — ¢| > 2 and min(p,q) > 1. Even so, the method does lead to some
nontrivial computations. For instance, the method computes all associated varieties of the
four modules Lgr3r)(ve). (When o = (12) or (23), v, is not of the form required by
Theorem 2.3, and the proposition does does not apply.) For GL(4,R) it computes the
associated varieties of nine of the ten modules LGL(4,R)(’UO-), only three of which are handled
by Theorem 2.3; it is inconclusive when o = (23).
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