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The main result in [BaZ, Section 6] is an algorithm to compute the cohomology of a
certain class of irreducible components of the Springer fiber for sl(n, C). As explained,
for instance, in [J3, Corollary 6.7], this is related to the computation of the integrals over
such components of exponentiated Chern classes of homogeneous line bundles on the flag
variety. In turn, [Ch, Section 2] implies results about multiplicities in associated cycles of
irreducible discrete series representations of SU(p, q). The algorithm relies crucially on the
geometric description of the relevant class of components given in [BaZ, Section 4] (which
is of independent interest). The most computationally intensive portion of the algorithm
involves a classical branching problem from GL(n, C) to GL(m, C).

The purpose of this note is to describe an algorithm to compute the relevant integrals over
any component of the Springer fiber for sl(n, C). We do this in two steps. First we present
an algorithm to compute the multiplicity in the associated cycle of an arbitrary irreducible
Harish-Chandra module for SU(p, q) with regular integral infinitesimal character in the
block of a finite-dimensional representation1. (The argument does applies with superficial
changes to SL(n, C).) This algorithm has been known to a handful of experts for some time,
and relies on combining results of many people, most notably Barbasch, Joseph, King, and
Vogan. The next step is to use an observation about characteristic cycles for SU(p, q) to
translate effectively this calculation into a calculation of the relevant integrals. The main
subtlety is nailing down certain rational scale factors precisely.

In contrast to the results of [BaZ, Section 6], the algorithm given here depends on the
Kazhdan-Lusztig algorithm for sl(n, C) and SU(p, q), and thus is computationally much more
intensive. In particular, I know of no way to recover the simpler algorithm of [BaZ, Section
6] (which, recall, works only for special cases) from the general, more complicated one given
here.

We begin in the general setting of a connected reductive group GR and use standard
notation, as in [BaZ] (with one exception: the flag variety for g will now be denoted B,
not X). We need to define the multiplicity polynomial for an arbitrary irreducible Harish-
Chandra module X. Fix a fundamental Cartan HR in GR, write η ∈ h∗ for a representative
of the infinitesimal character of X. Assume that η is regular and integral. (Some parts of
the discussion below require nontrivial modification for nonintegral infinitesimal character.)

Choose a system of positive roots for h in g such that η is dominant. Let Λ ⊂ ĤR denote
the set of weights of finite-dimensional representation of GR (e.g. [V2, Section 0.4]). Since

This is a stand-alone version of an appendix I wrote for [BaZ]. I was partially supported by NSF grant
DMS-053239.

1If p 6= q, there is a unique block of representations with regular infinitesimal character, and so the the
hypothesis of being contained in the block of a finite-dimensional representation is empty. If p = q, however,
there is another such block (as can already be seen for SU(1, 1)). This block does not exist for U(p, p), and
the extra hypothesis about the block of a finite-dimensional is also empty in this setting.
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H is fundamental, it is connected, and hence we may naturally view Λ ⊂ h∗. Let Φ denote
a coherent family for GR such that Φ(η) = X as in [V2, Lemma 7.2.6] and [V2, Corollary
7.3.23], for instance. Write X(λ) = Φ(λ), λ ∈ η + Λ. Thus X(λ) is an irreducible Harish-
Chandra module if λ is dominant and regular.

It follows easily from the definitions that AV(X) = AV(X(λ)) for any dominant regular
element λ ∈ η + Λ (e.g. [BoBr1, Lemma 4.1]). Fix an irreducible component of AV(X) and
consider the function that assigns to each dominant λ the multiplicity, say pX(λ), of this
component in the associated cycle of X. Then pX extends to a harmonic polynomial on
h∗ (by the general criterion of [V1, Lemma 4.3], for instance). Although pX depends on a
choice of an irreducible component of AV(X), we suppress this choice from the notation.

Let q′Ann(X) ∈ S(h∗) denote the Goldie rank polynomial of the annihilator of X [J1]. The

arguments in [Ch, Section 1] (for instance) prove that pX = c′Xq′Ann(X) for some constant c′X .

Meanwhile [J2, Theorem 5.1] defines a polynomial qAnn(X) (which is explicitly computable
using the Kazhdan-Lusztig algorithm for g at infinitesimal character η) so that qAnn(X) is

proportional to q′Ann(X). Write pX = cXqAnn(X). The scale factor cX is rational, and there

is no known algorithm to compute it, except in favorable instances.

We next recall (e.g. [BV2]) the definition of cells of Harish-Chandra modules. Suppose X ′

and X ′′ are irreducible Harish-Chandra modules with the same infinitesimal character. Write
X ′ > X ′′ if X ′′ is a subquotient of X ′ ⊗ F where F is a finite-dimensional representation
appearing in the tensor algebra of g. Write X ′ ∼ X ′′ if X ′ > X ′′ and X ′′ > X. Then ∼ is
an equivalence relation and its equivalence classes are called cells.

Let C denote the cell containing our fixed Harish-Chandra module X. The elements of C
index a basis of a subquotient of the full coherent continuation representation of the Weyl
group W = W (h, g). We write Coh(C) for this subquotient, and [Y ] ∈ Coh(C) for the basis
element indexed by Y ∈ C. Meanwhile, we can consider the span, say GR(C) of the various
Goldie rank polynomials qAnn(Y ) for Y ∈ C. Then GR(C), with the natural action extending
the W action h∗, is an irreducible (special) representation of W [J2].

If Y ∈ C, then AV(Y ) = AV(X) (once again by [BoBr1, Lemma 4.1], for instance). Recall
that we have fixed an irreducible component of AV(X). So we can consider the corresponding
multiplicity polynomial pY for Y .

Theorem A.1. Retain the setting above for a connected reductive real group GR. The map

Coh(C) −→ GR(C)
∑

Y ∈C

nY [Y ] −→
∑

Y ∈C

nY pY

is a W -equivariant surjection.

Sketch. The only account that appears in print is roundabout: the statement of the theorem
is the main result of [Ki] combined with [BV1] and the Barbach-Vogan conjecture [SV]. (A
direct proof can perhaps be deduced from the equivariance results of [KT] and [Ta], together
with the interpretation of multiplicities given in [Ch, Section 2].)

˜

Since the representation Coh(C) is explicitly computable using the Kazhdan-Lusztig-
Vogan algorithm for GR, and since (as we remarked above) GR(C) is computable using
the Kazhdan-Lusztig algorithm for g, Theorem A.1 provides explicitly computable restric-
tions on multiplicity polynomials. To get started, we need to be able to compute some
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multiplicities independently. Here is a special case where such a computation is easy (and
well-known).

Proposition A.2. Let GR be an arbitrary reductive group, and let Aq be a derived functor
module of the form considered in [VZu] for a θ-stable parabolic q = l ⊕ u. Then

AV(Aq) = K · (u ∩ p),

and hence is the closure of a single nilpotent K orbit OK on p. (Here we are using the
convention of [BaZ, Section 6] where associated varieties are subvarieties of the nilpotent
cone, rather than its dual.) If we further assume that

(A.1) G · AV(Aq) = G · u,

then the multiplicity of OK in the associated cycle of Aq(λ) is exactly one.

Sketch. Temporarily set X = Aq. Let D denote the sheaf of algebraic differential operators
on B, and X = D ⊗U(g) X. Let Z = supp(X) denote the dense K orbit in the support of
X. Consider the characteristic cycle of X (e.g. [BoBr3, Section 2] which states results in the
setting of complex groups, but whose proofs carry over without change to the real case).
The closure of T ∗

ZB always appears in the characteristic cycle of X with multiplicity one
(e.g. [BoBr3, Proposition 2.8(a)]). Since X is a derived functor module, its characteristic
variety is irreducible are no other components besides T ∗

ZB. Unwinding the definitions shows

µ
(
T ∗

ZB
)

= K · (u ∩ p).

Since the moment map image of the characteristic variety of X is the associated variety of
X (e.g. [BoBr3, Theorem 1.9(c)]), AV(X) = K · (u ∩ p), as claimed. Meanwhile if f denotes
a generic point of the moment map image, as in [BaZ, Section 2], then (A.1) implies that
the intersection of the µ−1(f) with T ∗

ZB identifies with the flag variety for l. Given the
characteristic cycle computation, the results of [Ch, Section 2] (recalled in more detail in
(A.2) below) show that the multiplicity in the associated cycle is the dimension of the space
of holomorphic functions on the flag variety for l. Hence it is one. ˜

Next we recall the relationship between integrals over the Springer fiber and multiplicities
in associated cycles. Let eλ denote the exponential of the first Chern class of the homoge-
neous line bundle on B parametrized by λ ∈ h∗ (and our fixed choice of positive roots). Let
C be an irreducible component of the Springer fiber. The discussion around [SV, Equation
5.6], for instance, carefully explains how to define the integral

∫
C

eλ of eλ over C.

Now suppose X is an irreducible Harish-Chandra module with regular integral infinites-
imal character. Write the characteristic cycle of its localization, e.g. [BoBr3, Section 2],
as ∑

j

mj [T ∗
Zj

B].

Recall the fixed component OK of AV(X), and choose f ∈ OK . Let S = S(X,OK) denote
the subset of indices j such that

µ
(
T ∗

Zj
B
)

= OK .

Then [Ch, Proposition 2.5.6] shows that

(A.2) pX(λ) =
∑

j∈S

(
mj

∫

Cj

eλ

)
,



4 PETER E. TRAPA

where

Cj = T ∗
Zj

B ∩ µ−1(f);

see also the exposition around [SV, Equation 7.23].

We specialize to the setting of SU(p, q) and trivial infinitesimal character η = ρ. By
[BV2], each cell representation Coh(C) is irreducible. (Such cells are reducible for general
groups.) Hence the map in Theorem A.1 is an isomorphism, and the scale factors cY , Y ∈ C,
are determined by any one of them. Thus we are reduced to computing the associated cycle
of one representation in each cell at trivial infinitesimal character. But [BV2] shows that
each cell C of representations in the block of the trivial representation contains a derived
functor module of the form Aq satisfying the condition (A.1), and thus Proposition A.2
computes its associated cycle. This specifies all scale factors for representations in the block
of a finite-dimensional representation, and implies the existence of an effective algorithm to
compute associated cycles of such irreducible Harish-Chandra modules for SU(p, q)2. Note,
in particular, that associated varieties of such modules are irreducible.

(If one considers GR = SL(n, C) and left cells C, the results of the previous paragraph
carry over with only superficial modifications. The relevant cell calculations in this context
are due to Joseph.)

To conclude, we also give an effective means to compute
∫
C

eλ for any component of
the Springer fiber for sl(n, C). This relies on a key geometric fact for SU(p, q). (Again,
the results of this paragraph carry over with superficial modifications for SL(n, C).) Let
X be an irreducible Harish-Chandra module with infinitesimal character λ in the block of
a finite-dimensional representation. As we remarked above, AV(X) is irreducible, so write
AV(X) = OK and fix f ∈ OK . Write the characteristic variety of its appropriate localization
X as

T ∗
Z1

B ∪ · · · ∪ T ∗
Zk

B

for K orbits Zi on B. There may be multiple terms here. But we claim that the set
S = S(X,OK) entering (A.2) consists of a single element in our setting. (This certainly
fails in general.) First we locate one element of S, and then indicate that there can be no
others. Let supp(X) denote the dense K orbit in the support of X. As in the proof of
Proposition A.2, the closure of T ∗

supp(X)B always appears as an irreducible component of the

characteristic variety of X; moreover it appears with multiplicity one in the characteristic
cycle (e.g. [BoBr3, Proposition 2.8(a)]). In [Tr1, Theorem 5.6(a)], it is proved that

µ
(
T ∗

supp(X)B
)

= AV(X);

so indeed T ∗

supp(X)B belongs to S. Set

C(X) = T ∗

supp(X)B ∩ µ−1(f).

We remark that the map X 7→ (AV(X), C(X)) is explicitly computed in [Tr1, Theorem
5.6(a)]; in particular, each C(X) is a single irreducible component of the Springer fiber
µ−1(f), and every such component arises in this way for some X. We now argue that S can
contain no other elements besides the conormal bundle to supp(X). This can be deduced
from the characteristic cycle computation for derived functor modules recalled in the proof
of Proposition A.2, the fact that each cell contains such a derived functor module, and the

2I do not know how to compute the scale factors for the other block of SU(p, p)
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equivariance results of [KT] and [Ta]. (Alternatively, the introduction of [Tr2] explains how
the assertion is equivalent to the main result of [Me].) We conclude that (A.2) reduces to

(A.3) pX(λ) = 1 ·

∫

C(X)
eλ.

Since pX is know by the algorithm given above, since X 7→ C(X) is explicitly computable,
and since every component of the Springer fiber for sl(n, C) arises as some C(X), (A.3) gives
an algorithm to compute the integral over any such component.
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