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1. Introduction

In [Ar1]–[Ar2], Arthur outlined a set of conjectures describing the automorphic spectrum of
semisimple Lie group over a local field. He suggested that the set of automorphic representations is
arranged into (possibly overlapping) packets satisfying a number of properties. In particular, each
packet was predicted to give rise to a canonical linear combination of its elements whose character
was stable in the sense of Langlands and Shelstad [La], [LaSh].

In the real case, Arthur’s predictions are made precise, refined, and in many cases established in
[BV3] and, most completely, in [ABV]. Many of Arthur’s conjectures can be reduced to the case of
a certain (precisely defined) set of special unipotent representations. This set is a union of Arthur
packets, and since each Arthur packet gives rise to a stable virtual representation, one thus obtains
a collection of stable linear combinations of special unipotent representations. One is naturally led
to ask if their span exhausts the space of stable virtual special unipotent representations. Simple
examples show this is too naive. For example, in the complex case (where stability is empty) Arthur
packets are typically not singletons. So the question becomes: can one give a canonical basis of stable
virtual special unipotent representations which accounts for these “extra” stable sums?

Under certain natural hypotheses we give a positive answer in terms of the geometry of “special
pieces” of nilpotent cone of the Langlands dual Lie algebra. Recall (from [Sp]) that if O′ is a
nilpotent adjoint orbit for a complex reductive Lie algebra, there is a unique special orbit O of
smallest dimension which contains O′ in its closure. The collection of all O′ for which O is this
unique orbit is called the special piece of nilpotent cone parametrized by O. We denote it SP(O).
The special pieces form a partition of the set of nilpotent adjoint orbits indexed by the special orbits.

In order to formulate our main results, like Theorem 2.12 below, a number of technicalities must
be treated with care. A significant complication, as in [ABV], is that one cannot work with a single
real form individually, but instead must work with an inner class of them simultaneously. (We begin
recalling the relevant details in Section 2.) In spite of these technicalities, some consequences of
our results are easy to state and have nothing to do with real groups. For example, suppose g is a
complex semisimple Lie algebra with adjoint group G. Fix a Cartan subalgebra h and a system of
positive roots ∆+ = ∆+(h, g), and write n =

⊕
α∈∆+ gα. Write W for the Weyl group of h in g. For

w ∈ W , write nw =
⊕

α∈∆+ gwα. Then for each w ∈ W there is always a dense nilpotent adjoint
orbit O(w) contained in

G · (n ∩ nw).

Sometimes the map w 7→ O(w) is called the Springer-Steinberg map (since a closely related variant
was studied in [St]). A natural question is if there is a canonical section of this map. That is, given
a nilpotent adjoint orbit O, can one canonically define a Weyl group element w ∈ W such that O is
dense in G · (n ∩ nw)?

For example, suppose O is even in the sense all of the labels on the associated weighted Dynkin
diagram are even. Let l = l(O) denote the subalgebra of g corresponding to the roots labeled zero. If

The first author was partially supported by NSF grant DMS-0300172. The second author was partially supported
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wl denotes the long element of the Weyl group of l, W (l) ⊂ W , then indeed O is dense in G ·(n∩nwl).
As a consequence of Corollary 4.12 below (applied to the diagonal symmetric subgroup in G × G),
we have the following generalization.

Theorem 1.1. Suppose O is an adjoint orbit for g. Let W l denote the set of maximal length coset
representatives of W (l)\W/W (l) where l = l(O) corresponds to the nodes labeled zero in the weighted
Dynkin diagram for O. Let d(O) denote the Spaltenstein dual of O (e.g. [BV3, Appendix B] or [CM,
Section 6.3]). Assume that both O and d(O) are even, and fix an adjoint orbit O′ in SP(O).

(a) There exists a unique element w(O′) ∈ W l such that O′ is dense in G · (n ∩ nw(O′)). (For
example, if O′ = O, then w(O′) = wl, the longest element in the identity coset.)

(b) Let π′ denote the Springer representation associated to the trivial local system on O′, and let
sgn denote the sign representation of W (l). Then

dimHomW (l) (sgn, π′) = 1.

Under the conditions of the theorem, the map O′ 7→ w(O′) in part (a) is thus a natural section of the
Springer-Steinberg map. (The equivalence of statements (a) and (b) goes back to Borho-MacPherson.
A more general statement is given in Proposition 4.8 below.) It would be interesting to investigate
how to relax the evenness hypotheses in the theorem.

The paper is organized as follows. After recalling the machinery of [ABV] in Section 2, we state
our main result in Theorem 2.12. We prove it in the final two sections. Examples 2.14, 2.17, and
2.18 illustrate many of the main ideas.

Acknowledgements. We thank Jeffrey Adams for drawing our attention to the problem con-
sidered in this paper. In particular, using the software package atlas he computed a basis for
the space of stable virtual special unipotent representations in many exceptional examples; see
www.liegroups.org/tables/unipotent. These examples led us to the formulation of Theorem
2.12.

Finally, it is a pleasure to dedicate this paper to Gregg Zuckerman. His revolutionary ideas,
particularly the construction of cohomological induction and his approach to the character theory
of real reductive groups (and its relation with tensoring with finite-dimensional representations), are
the foundations on which the results in this paper are built.

2. Statement and examples of the main results

Let G be a connected reductive complex algebraic. We begin by fixing a weak extend group GΓ

for G as in [ABV, Definition 2.13]. This means that there is an exact sequence of real Lie groups

1 −→ G −→ GΓ −→ Γ := Gal(C/R) −→ 1

and each δ ∈ GΓ − G acts by conjugation as an antiholomorphic automorphism of G. If δ ∈ GΓ − G
is such that δ2 ∈ Z(G) — that is if δ is a strong real form for GΓ in the language of [ABV] — then
conjugation by δ defines an antiholomorphic involution of G. In this case, we write G(R, δ) for the
corresponding fixed points, a real form of G. It follows from [ABV, Proposition 2.14] that the set
of real forms which arise in this way constitute exactly one inner class of real forms, and moreover
every such inner class arises in this way. In particular, by fixing GΓ we have fixed an inner class of
real forms of G.

Recall (again from [ABV, Definition 2.13]) that a representation of a strong real form for GΓ is a
pair (π, δ) where δ is a strong real form of GΓ and π is an admissible representation of G(R, δ). Two
representations (π, δ) and (π′, δ′) are said to be equivalent if there is an element g ∈ G such that
δ′ = gδg−1 and π′ is infinitesimal equivalent to π◦Ad(g−1). Write Π(G/R) for the set of infinitesimal
equivalence classes of irreducible representations of strong real forms for GΓ.
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Fix a maximal ideal I in the center of the enveloping algebra U(g) of the Lie algebra g of G.
Choose a Cartan subalgebra h ∈ g and write W for the Weyl group of h in g. According to the
Harish-Chandra isomorphism we may attach an element λ ∈ h∗/W to I. Let Πλ(G/R) denote
the subset of Π(G/R) consisting of those representations whose associated Harish-Chandra modules
are annihilated by I. Write ZΠλ(G/R) for the (finite rank) free Z module with basis indexed by
Πλ(G/R).

We next introduce various objects on the dual side. Let G∨ denote the Langlands dual group

corresponding to G, and write g∨ for its Lie algebra. Let G̃∨
alg denote the algebraic universal cover

of G∨ (e.g. [ABV, Definition 1.18]). For later use, recall that the construction of the dual group
specifies a Cartan subalgebra h∨ of g∨ which is canonically isomorphic to h∗.

Definition 1.8 and Lemma 1.9 of [ABV] introduce a smooth complex algebraic variety X = X(GΓ)

attached to the extended group fixed above, and provide an action of G̃∨
alg on X which factors to an

action of G∨. (To be more precise, [ABV, Definition 1.8] explains how to define X from an L-group,
and the discussion around [ABV, Proposition 4.14] explains how to build an L-group from a fixed
inner class of real forms, in particular the class specified by our fixed weak extended group GΓ.) The
variety X is a disjoint union of smooth (possibly empty) finite-dimensional varieties Xλ indexed by

λ ∈ h∗/W . The action of G∨ (and G̃∨
alg) on X preserves each Xλ. The orbits for both actions on

Xλ are the same and are finite in number. We do not recall the general structure of Xλ here, but
instead describe certain special cases in detail below.

Let P(Xλ, G̃∨
alg) denote the category of G̃∨

alg-equivariant perverse sheaves on Xλ, and write

ZP(Xλ, G̃∨
alg) for its integral Grothendieck group. Let T ∗

G∨(Xλ) denote the conormal variety for

the action of G∨ on Xλ, namely the subvariety of T ∗(Xλ) consisting of the unions of the various

conormal bundles T ∗
Q(Xλ) to G∨ orbits Q on Xλ. (Recall that the orbits of G∨ and G̃∨

alg are the

same.) The characteristic cycle functor gives a map

CC : ZP(Xλ, G̃∨
alg) −→ Htop

(
T ∗

G∨(Xλ), Z
)
≃

⊕

Q∈G∨\Xλ

Z

[
T ∗

Q(Xλ)
]
.

The right-hand side is the top-dimensional integral Borel-Moore homology group of T ∗
G∨(Xλ) which,

as indicated, is isomorphic to the direct sum of the Z span of the fundamental classes of closures of
the individual conormal bundles.

The ABV interpretation of the Local Langlands Conjecture, summarized in [ABV, Corollary 1.26],
provides a Z-module isomorphism

Φ : ZΠλ(G/R) ≃
(

ZP(Xλ, G̃∨
alg)
)⋆

for each λ ∈ h∗/W ; here and elsewhere ( · )⋆ applied to a Z-module denotes HomZ( · , Z). The
isomorphism Φ depends on more data than just the weak extended group GΓ fixed above. It requires
fixing a (strong) extended group (GΓ,W) as in [ABV, Definition 1.12] and a strong real form [ABV,
Definition 1.13]. We define

(2.1) ZstΠ
λ(G/R) := Φ−1

(
ZP(Xλ, G̃∨

alg)
/
ker(CC)

)⋆

.

This is a space of integral linear combinations of irreducible representations of GΓ, that is virtual
representations. (This space depends only on the weak extended group GΓ.)

For the purpose of this paper, we may take (2.1) as the definition of the subspace of stable virtual
characters in ZΠλ(G/R). The equivalence with Langlands’ original formulation of stability is given
in [ABV, Chapter 18].

The main aim of this paper is to define a canonical basis of ZstΠ
λ(G/R) (in certain special cases)

indexed by rational forms of special pieces of the nilpotent cone of g∨. We now specify the special
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cases of interest. Begin by fixing a nilpotent adjoint orbit O∨ for g∨. Choose a Jacobson-Morozov
triple {e∨, f∨, h∨} with h∨ ∈ h∨ (h∨ as defined above). Set

(2.2) λ(O∨) =
1

2
h∨ ∈ h∨ ≃ h∗.

Define

(2.3) l∨(O∨) = the centralizer in g∨ of λ(O∨);

equivalently l∨(O∨) is the sum of the zero eigenspaces of ad(h∨). Set

(2.4) p∨(O∨) = the sum of the non-negative eigenspaces of ad(h∨).

Let I(O∨) denote the maximal ideal in the center of U(g) corresponding to λ(O∨) under the Harish-
Chandra isomorphism. According to a result of Dixmier [Di], there is a unique maximal primitive
ideal J(O∨) in U(g) containing I(O∨). We say a representation (δ, π) of GΓ is special unipotent
attached to O∨ if the Harish-Chandra module of π is annihilated by J(O∨). We write

Π(O∨) ⊂ Πλ(O∨)(G/R)

for the subset of irreducible special unipotent representations of GΓ attached to O∨, write ZΠ(O∨)
for their span, and define

ZstΠ(O∨) := ZΠ(O∨) ∩ ZstΠ
λ(G/R).

It is this space for which we will find a canonical basis under certain natural hypotheses.

To state our main results, we need more detailed information about the structure of the G∨ action
on Xλ assuming λ is integral. Let

(2.5) Y ∨ = the variety of parabolic subalgebras of g∨ conjugate to p∨(O∨)

with notation as in (2.4). Proposition 6.16 of [ABV] provides a collection of symmetric subgroups
K∨

1 , . . . , K∨
k of G∨. Each K∨

i acts on Y ∨ with finitely many orbits. Furthermore, [ABV, Proposition
7.14] implies the existence of an isomorphism

(2.6) P(Xλ, G∨) ≃ P(Y ∨, K∨
1 ) ⊕ · · · ⊕ P(Y ∨, K∨

k ),

where P(Y ∨, K∨
i ) once again denote the category of K∨

i equivariant perverse sheaves on Y ∨. More-
over, if we let CCi denote the characteristic cycle functor for P(Y ∨, K∨

i ), then the isomorphism in
(2.6) descends to an isomorphism

(2.7) P(Xλ, G∨)
/
ker(CC) ≃ P(Y ∨, K∨

1 )
/
ker(CC1) ⊕ · · · ⊕ P(Y ∨, K∨

k )
/
ker(CCk).

General properties of the characteristic cycle construction imply that it is insensitive to central
extensions of the group acting in the sense that

P(Xλ, G̃∨
alg)
/
ker(CC) ≃ P(Xλ, G∨)

/
ker(CC);

see [Ch, Proposition 2.6.2], for example. Thus (2.7) in fact gives

(2.8) P(Xλ, G̃∨
alg)
/
ker(CC) ≃ P(Y ∨, K∨

1 )
/
ker(CC1) ⊕ · · · ⊕ P(Y ∨, K∨

k )
/
ker(CCk).

As a matter of notation, we let k∨i denote the Lie algebra of K∨
i and write

(2.9) g∨ = k∨i ⊕ s∨i

for the corresponding Cartan decomposition. According to [KR], if O∨ is any nilpotent adjoint orbit
in g∨, then each K∨

i acts with finitely many orbits on O∨ ∩ s∨i ,

# (K∨
i \(O

∨ ∩ s∨i )) < ∞.

Recall that an orbit O∨ for g∨ is said to be even, if the eigenvalues of ad(h∨) acting on g∨ are all
even integers; equivalently if λ(O∨) is integral. Assume this is the case and fix an orbit

O∨
K ∈

k⋃

i=1

K∨
i \(O

∨ ∩ s∨i ).
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Chapter 27 of [ABV] defines an Arthur packet parametrized by O∨
K ,

A(O∨
K) ⊂ Π(O∨).

The union of the various Arthur packets (over all possible orbits O∨
K) exhausts Π(O∨) (but the union

is not in general disjoint). Moreover, for each O∨
K , the discussion around [ABV, (1.34c)] defines a

stable integral linear combination of elements of Π(O∨
K),

(2.10) π(O∨
K) ∈ ZstΠ(O∨).

These virtual representations are all linearly independent, so in particular one has

(2.11) dimZ ZstΠ(O∨) ≥
∑

i

#(K∨
i \(O

∨ ∩ s∨i )) .

Our main result finds other interesting stable representations attached to K∨ orbits on the special
piece parametrized by O∨ and (in favorable instances) proves they are a basis of Zst(O∨).

Theorem 2.12. Let G be a connected reductive algebraic group with dual group G∨. Fix a weak
extended group GΓ for G (in particular, an inner class of real forms for G). Fix an even nilpotent
adjoint orbit O∨ for g∨. Assume further that the Spaltenstein dual O := d(O∨), a nilpotent adjoint
orbit for g (cf. [BV3, Appendix B]), is also even.

Recall the Cartan decompositions of (2.9) and the corresponding symmetric subgroups K∨
i intro-

duced above. Write SP(O∨) for the special piece of the nilpotent cone of g∨ containing O∨. Then

(2.13) dimZ ZstΠ(O∨) =
∑

i

#(K∨
i \(SP(O∨) ∩ s∨i )) ;

cf. (2.11). In fact, for each element O∨
K on the right-hand side, equation (4.13) below defines an

element π(O∨
K) ∈ ZstΠ(O∨) so that

{
π(O∨

K)
∣∣ O∨

K ∈
⋃

i

K∨
i \(SP(O∨) ∩ s∨i )

}

is a basis of ZstΠ(O∨). (When G∨ ·O∨
K = O∨, π(O∨

K) coincides with the stable virtual representation
in (2.10).)

Example 2.14. Suppose G = Sp(4, C) and GΓ gives rise to the inner class of G containing the split
form. There are four equivalence classes of strong real forms for GΓ, {δs, δ2,0, δ1,1, δ0,2}. The labeling
is arranged so that G(R, δs) = Sp(4, R) and G(R, δp,q) = Sp(p, q).

Let O∨ denote the (even) nilpotent orbit for G∨ = SO(5, C) whose Jordan type is given by the
partition 311. Then d(O∨) is the orbit for G with Jordan type corresponding to the partition 22,
which is also even, so Theorem 2.12 applies.

In [ABV, Example 27.14], the elements of Π(O∨) are enumerated. Among them are eight rep-
resentations of Sp(4, R) and one of Sp(1, 1). The representations of Sp(4, R) are the three irre-

ducible constituents of Ind
Sp(4,R)
GL(2,R)(det); the three irreducible constituents of Ind

Sp(4,R)
GL(2,R)(|det|); and

the two irreducible constituents of Ind
Sp(4,R)
GL(1,R)×Sp(2,R)(sgn(det) ⊗ 1). These eight representations are

distinguished by their lowest U(2) types which in the respective cases are (2, 0), (0, 2), and (0, 0);
(1, 1), (−1,−1), and (1,−1); and (1, 0) and (0,−1). Write πs(m, n) for the corresponding special
unipotent representation of Sp(4, R) with lowest U(2) type (m, n). Meanwhile the unique special
unipotent representation of Sp(1, 1) attached to O∨ is the irreducible spherical representation with
infinitesimal character λ(O∨) which we denote by π(1,1)(0).

The symmetric subgroups K∨
i above in this case are

K∨
i = S(O(5 − i) × O(i)) for i = 0, 1, 2.
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In terms of the signed tableau parametrization (e.g. [CM, Chapter 9]),
⋃

i K∨
i \(O

∨ ∩ s∨) consists of
three elements

+ − +
+
+

,
− + −
+
+

,
+ − +
+
−

;

the first arises for i = 1, the second and third for i = 2. This means there are three Arthur packets in
Π(O∨). They are listed in [ABV, (27.17)]. They give rise, respectively, to the following three stable
virtual representations in Zst(O∨),

πs(1, 0) + πs(0,−),

πs(0, 0) + πs(1,−1),

πs(1, 1) + πs(−1,−1) + πs(2, 2) + πs(−2,−2) + π(1,1)(0).

Meanwhile there is another orbit O∨′

(besides O∨) in SP(O∨), namely the orbit with Jordan type

corresponding to the partition 221. This time
⋃

i K∨
i \(O

∨′

∩ s∨) consists of one element

(2.15)
+ −
− +
+

arising for K∨
2 . Theorem 2.12 thus implies dimZ Zst(O∨) = 3 + 1, and gives an additional stable

virtual representation parametrized by the orbit in (2.15). This extra stable sum is

(2.16) πs(1, 1) + πs(−1,−1)− πs(2, 2) − πs(−2,−2).

Example 2.17. Let G be of type F4, and let O∨ be the orbit labeled F4(a3) in the Bala-Carter
classification (e.g. [CM, Section 8.4]). If we orient the Dynkin diagram of F4 so that the first two
roots are long, the weighted Dynkin diagram for O∨ is 0200. In particular, the orbit is even. In fact
O∨ is equal to its own Spaltenstein dual, and thus Theorem 2.12 applies.

The special piece SP(O∨) consists of four other orbits besides F4(a3). In the Bala-Carter classifi-

cation, they are labeled C3(a1), Ã2+A1, B2, and A2+Ã1. The respective weighted Dynkin diagrams
are 1010, 0101, 2001, and 0010.

There is a unique inner class of real forms for G; it contains the split, rank one, and compact
forms. (In fact it is easy to see (from the singularity of the infinitesimal character λ(O∨) that Π(O∨)
can consist of representations only of the split form.) The only symmetric subgroup K∨ appearing
above in this case is the quotient of Sp(6, C)×SL(2, C) by the diagonal copy of a central Z/2. From
the tables in [CM, Section 9.5], we deduce that

#K∨\(F4(a3) ∩ s∨) = 3

and so there are three Arthur packets in Π(O∨). Meanwhile we have

#K∨\(C3(a1) ∩ s∨) = 2

#K∨\((Ã2 + A1) ∩ s∨) = 1

#K∨\(B2 ∩ s∨) = 2

#K∨\((A2 + Ã1) ∩ s∨) = 1.

Thus Theorem 2.12 says

dimZ ZstΠ(O∨) = 3 + 2 + 1 + 2 + 1.

The definition in (4.13) gives a canonical basis for the space. To write the basis down explicitly
requires computing characteristic cycles of irreducible objects in P(K∨, Y ∨). We have not performed
the calculations required to do this.
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Example 2.18. Let G be of type E8, and let O∨ denote the orbit labeled E8(a7) in the Bala-
Carter classification. It is even and self-dual, and thus Theorem 2.12 applies. The special piece it
parametrizes consists of the additional orbits E7(a5), E6(a3) + A1, D6(a2), D5(a1) + A2, A5 + A1,
and A4 + A3.

There is a unique inner class of real forms for G, and (arguing as in the previous example),
Π(O∨) can consist of representations only of the split form. The only symmetric subgroup K∨

appearing above in this case is a quotient of Spin(16, C) by a central Z/2 (but K∨ is not isomorphic
to SO(16, C)). Again using the tables in [CM, Section 9.5], we deduce that

#K∨\(E8(a7) ∩ s∨) = 3

and so there are three Arthur packets in Π(O∨). Meanwhile we have

#K∨\(E7(a5) ∩ s∨) = 2

#K∨\((E6(a3) + A1) ∩ s∨) = 2

#K∨\(D6(a2) ∩ s∨) = 2

#K∨\((A5 + A1) ∩ s∨) = 1

#K∨\((D5(a1) + A2) ∩ s∨) = 1

#K∨\((A4 + A3) ∩ s∨) = 1.

Thus Theorem 2.12 implies

dimZ ZstΠ(O∨) = 3 + 2 + 2 + 2 + 1 + 1 + 1.

3. proof of equality in (2.13)

Our main technique allows us to compute the numbers in (2.13) in terms of certain Weyl group
calculations. The full Weyl group does not act at singular infinitesimal character, and so we must
instead translate to regular infinitesimal character and work there.

Retain the setting of Theorem 2.12. Temporarily choose a system of simple roots for h in g and
a representative λ◦ of λ(O∨) which is dominant. Let µ be the highest weight of a finite-dimensional
representation of G such that ν◦ := λ◦ + µ ∈ h∗ is dominant and regular. Let ν denote the image
of ν◦ in h∗/W . As above, we can consider the set Πν(G/R) and its Z span ZΠν(G/R). This space
identifies with an appropriate Grothendieck group of representations at regular integral infinitesimal
character which admits a coherent continuation action of W .

Recall the symmetric subgroups K∨
1 , . . . , K∨

k of the previous section. Let X∨ denote the full flag
variety for g∨. There is an action of W on each Grothendieck group ZP(X∨, K∨

i ). (One way to
see this is to use the Riemann-Hilbert correspondence to identify P(X∨, K∨

i ) with a category of K∨
i

equivariant holonomic D modules on X∨. In turn, by localization, this category is a equivalent to a
category of g∨ modules which admits a coherent continuation action of W .)

Meanwhile Corollary 1.26 and Proposition 7.14 of [ABV] give an isomorphism (depending on the
extended group (GΓ,W))

Ψ : ZΠν(G/R) −→
⊕

i

ZP(X∨, K∨
i )⋆

which intertwines the W action on both sides. Once again we have characteristic cycle functors

CCi : ZP(X∨, K∨
i ) −→ Htop

(
T ∗

K∨

i

(X∨), Z

)
≃

⊕

Q∈K∨

i
\X∨

[
T ∗

K∨

i

(X∨)
]
.

We have remarked that the domain of CCi carries an action of W . The range does as well, and
according to results of Tanisaki [Ta], each CCi is W -equivariant. Thus

ZP(X∨, K∨
i )
/
ker(CCi) ≃ Htop

(
T ∗

K∨

i

(X∨), Z

)
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as representations of W . Once again we define

ZstΠ
ν(G/R) := Ψ−1

(
⊕

i

ZP(X∨, K∨
i )
/
ker(CCi)

)⋆

.

and we have an isomorphism

(3.1) ZstΠ
ν(G/R) ≃

⊕

i

Htop

(
T ∗

K∨

i

(X∨), Z

)⋆

of representations of W .

For our counting argument, we need to specify a particular left cell representation. Let l∨(O∨)
denote the centralizer in g∨ of λ(O∨) ∈ h∨, and let w(O∨) denote the long element of the Weyl group
of l∨(O∨) viewed as an element of W (h∨, g∨) = W . Let V (O∨) denote the representation of W
afforded by the integral linear combinations of elements of the Kazhdan-Lusztig left cell containing
w(O∨).

Proposition 3.2 ([BV3, Section 5]). Retain the setting above. In particular, assume O∨ is even.
We have

dimZ ZΠ(O∨) = dimHomW (V (O∨) ⊗ sgn, ZΠν(G/R)).

and

dimZ ZstΠ(O∨) = dimHomW (V (O∨) ⊗ sgn, ZΠν
st(G/R)).

The following result brings the role of special pieces into play. To state it, we need to introduce
some notation for the Springer correspondence. Fix any nilpotent adjoint orbit O for g and a
representative x of O. Let AG(ξ) denote the component group of the centralizer of x in G. We let
Sp(x) denote the Springer representation of W × AG(x) on the top homology of the Springer fiber
over x (normalized so that Sp(x) is the sign representation of W if x is zero). As usual, we set

Sp(x)AG(x) = HomAG(x) (11, Sp(ξ)) .

This is a a representation of W .

Proposition 3.3. Suppose O∨ is a an even nilpotent adjoint orbit for g∨. Let O denote special
nilpotent orbit for g obtained as the Spaltenstein dual of O∨. Enumerate representative for the
adjoint orbits in the special piece parametrized by O as x1, · · · , xl. Then

V (O∨) ⊗ sgn ≃
⊕

i

Sp(xi)
AG(xi).

Proof. This follows by combining [BV3, Proposition 5.28] and [Lu2, Theorem 0.4]. ˜

The proposition involves special pieces on the group side, while the statement of Theorem 2.12
involves special pieces on the dual side. If we make the additional hypothesis that O is even, then
we can match up the two sides.

Proposition 3.4. Suppose O∨ is a an even nilpotent adjoint orbit for g∨. Let O denote its Spal-
tenstein dual, and further assume that O is even. Enumerate representative in the special piece
parametrized by O∨ as x∨

1 , · · · , x∨
l . Then

V (O∨) ≃
⊕

i

Sp(x∨
i )AG∨ (x∨

i
).

That is, V (O∨) is the sum over the orbits in SP(O∨) of the Weyl group representations attached to
the trivial local system on them.

Proof. This follows from the previous proposition and Lusztig’s classification of cells [Lu1] (the rele-
vant details of which are recalled in [BV3, Theorem 4.7d]). ˜
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Proposition 3.2 gives a way to compute the dimension of the left-hand side of (2.13) in terms of
Weyl group representations. We need a way to do the same for the right-hand side.

Proposition 3.5. Suppose K∨ is a symmetric subgroup of G∨ and write g∨ = k∨ ⊕ s∨ for the
corresponding Cartan decomposition. Let x∨

1 , x∨
2 , . . . , denote representatives of the nilpotent K∨

orbits on s∨. Let AK∨(x∨
i ) denote the component group of the centralizer in K∨ of x∨

i . (Since this

group maps to AG∨(x∨
i ), it makes sense to consider invariants Sp(x∨

i )AK∨ (x∨

i
) in Sp(x∨

i ) of the image
of AK∨(x∨

i ) in AG∨(x∨
i ).) As W representations, we have

Htop(T ∗
K∨(X∨), Z) ≃

∑

i

Sp(x∨
i )A

K∨ (x∨

i
).

In particular, each representation of W attached to the trivial local system on a complex nilpotent
orbit appears with multiplicity equal to the number of K∨ orbits on its intersection with s∨.

Proof. This follows from [Ro, Theorem 3.3]. (Rossmann works with the conormal variety of orbits
of real forms of G∨ on X∨. To translate to the conormal variety of orbits for a symmetric subgroup,
one can use [MUV], for example.) ˜

Proof of equality in (2.13). From Proposition 3.2 and (3.1), we have

dimZ ZstΠ(O∨) = dim HomW (V (O∨) ⊗ sgn, ZstΠ
ν(G/R))

= dim HomW

(
V (O∨) ⊗ sgn ,

⊕

i

Htop(T ∗
K∨

i

B, Z)∗

)

= dim HomW

(
V (O∨) ,

⊕

i

Htop(T ∗
K∨

i

B, Z)

)
.

The concluding sentences of Propositions 3.4 and 3.5 show that the right-hand side equals
∑

i

#(K∨
i \(SP(O∨) ∩ s∨i ))

as claimed. ˜

4. proof of theorem 2.12

In this section we prove the last assertion of Theorem 2.12. According to (2.1),

(4.1) ZstΠ(O∨) ⊂ ZstΠ
λ(O∨)(G/R) ≃

⊕

i

[
Htop(T ∗

K∨

i

(Y ∨), Z)
]⋆

.

Our main task is to determine which linear functionals on

(4.2) Htop(T ∗
K∨

i

(Y ∨), Z) =
⊕

Q∈K∨

i
\Y ∨

[
T ∗

Q(Y ∨)
]

correspond to elements of ZstΠ(O∨) in (4.1). This is the content of part (2) of the next proposition.
To formulate it, we recall the G∨ equivariant moment map µ from T ∗(Y ∨) to (g∨)∗. We use an
invariant form to identify g∨ and (g∨)∗, and view the image of the moment map in g∨ itself.

Proposition 4.3. Retain the setting of Theorem 2.12. For each orbit Q of some K∨
i on Y ∨, define

mQ ∈
[
Htop(T ∗

K∨

i

(Y ∨), Z)
]⋆

as the multiplicity of the fundamental class corresponding to the closure of the conormal bundle to Q
(c.f. (4.2)). Recall the isomorphism

(4.4) ZstΠ
λ(O∨)(G/R) ≃

⊕

i

[
Htop(T ∗

K∨

i

(Y ∨), Z)
]⋆

and write π(Q) for the element of ZstΠ
λ(O∨)(G/R) corresponding to mQ.
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(1) The set

(4.5) {π(Q) | Q ∈ K∨
i \Y

∨ for some i}

is a basis for

ZstΠ
λ(O∨)(G/R).

(2) The set

(4.6)
{
π(Q)

∣∣ µ
(
T ∗

Q(Y ∨)
)
∩ SP(O∨) is nonempty

}

is a basis for the subspace

ZstΠ(O∨) ⊂ ZstΠ
λ(O∨)(G/R).

Proof. Since ⋃

i

{mQ | Q ∈ K∨
i \Y

∨}

is obviously a basis for the left-hand side of (4.4) (in light of (4.2)), statement (1) of the proposition
is clear.

For the second statement, we begin by proving
{
π(Q)

∣∣ µ
(
T ∗

Q(Y ∨)
)
∩ SP(O∨) is nonempty

}

are linearly independent elements of ZstΠ(O∨). We need some additional notation. For an object S
in P(Y ∨, K∨

i ), write

CCi(S) = a1[T ∗
Q1

(Y ∨)] + · · · + ar[T ∗
Qr

(Y ∨)],

and define

AVC(S) = G∨ ·
⋃

i

µ
(
T ∗

Qi
(Y ∨)

)
⊂ O∨.

According to the irreducibility theorem of [BB1], if S is irreducible, then AVC(S) is the closure of a
single adjoint orbit. The results of [BV1, BV2] show that the orbit must be special.

Next recall the isomorphism

Φ : ZstΠ
λ(O∨)(G/R) −→

⊕

i

(ZP(Y ∨, K∨
i )/ker(CCi))

⋆

obtained from (2.1) and (2.8). It follows from [ABV, Theorem 27.12] that π ∈ ZstΠ
λ(O∨)(G/R)

belongs to the subspace ZstΠ(O∨) if and only if there is an irreducible object S in some P(Y ∨, K∨
i )

with AVC(S) = O∨ such that Φ(π)(S) 6= 0. As a consequence, suppose Q is an orbit of K∨
i on Y ∨

such that

µ
(
T ∗

Q(Y ∨)
)
∩ SP(O∨) 6= ∅.

Set

m′
Q = mQ ◦ CCi ∈ (ZP(Y ∨, K∨

i )/ker(CCi))
⋆
.

There exists at least one irreducible object S in P(Y ∨, K∨
i ) whose support is the closure of Q. (For

example, let S be the DGM extension of the trivial local system on Q. The fundamental class of the

closure of T ∗
Q(Y ∨) appears with multiplicity one in CCi(S).) Since µ

(
T ∗

Q(Y ∨)
)
∩SP(O∨) is nonempty

by hypothesis, and since AVC(S) must be the closure of a special orbit, it follows that AVC(S) = O∨.

Therefore, by the discussion above, the element π(Q) ∈ ZstΠ
λ(O∨)(G/R) corresponding to mQ is

nonzero and belongs to ZstΠ(O∨). In other words,
{
π(Q)

∣∣ µ
(
T ∗

Q(Y ∨)
)
∩ SP(O∨) is nonempty

}
⊂ ZstΠ(O∨).

Because the mQ are clearly linearly independent, so are the elements π(Q) on the left-hand side
above.

10



It remains to show the elements in (4.6) are indeed a basis of ZstΠ(O∨). Because of the linear
independence just established, it suffices to check

(4.7)
∑

i

#
{
Q ∈ K∨

i \Y
∨
∣∣ µ
(
T ∗

Q(Y ∨)
)
∩ SP(O∨)

}
≥ dimZ ZstΠ(O∨).

The following general result will be the main tool we use for counting the left-hand side.

Proposition 4.8. As above, assume O∨ is even (but do not necessarily assume the Spaltenstein
dual of O∨ is even). With notation as in (2.2)–(2.5), fix a symmetric subgroup K∨ of G∨ and write
g∨ = k∨ ⊕ s∨ for the corresponding Cartan decomposition. Fix a nilpotent K∨ orbit O∨

K on s∨. Let
c(O∨

K) denote the number of K∨ orbits Q on Y ∨ such that µ(T ∗
QY ∨) meets O∨

K in a dense open set.

Then, for x∨ ∈ O∨
K ,

c(O∨
K) = dimHomW (l∨(O∨))

(
sgn, Sp(x)AK∨ (x∨)

)

with notation for the Springer correspondence in Proposition 3.5.

Proof. This is a general result (and doesn’t have anything to do with the dual group). It follows
from Rossmann’s theory applied to the partial flag setting. See [CNT, Section 2] for a proof. ˜

Proposition 4.9. In the setting of Proposition 4.8, assume further that the Spaltenstein dual of O∨

is even, and

G∨ · O∨
K ⊂ SP(O∨).

Then numbers c(O∨
K∨) appearing in Proposition 4.8 are all nonzero. More precisely,

dimHomW (l∨(O∨))

(
sgn, Sp(x∨)A

G∨ (x∨)
)

= 1,

and since AK∨(ξ) → A∨G(ξ),

(4.10) dimHomW (l∨(O∨))

(
sgn, Sp(x∨)AK∨ (x∨)

)
≥ 1.

Proof. Section 5 of [BV3] shows that

dimHomW (l∨(O∨)) (sgn, U) = 1

for an irreducible representation U in the left cell representation V (O∨). So the current proposition
follows from Proposition 3.4. ˜

We now return to (4.7). By Proposition 4.9,

(4.11)
∑

i

#
{
Q ∈ K∨

i \Y
∨
∣∣ µ
(
T ∗

Q(Y ∨)
)
∩ SP(O∨)

}
≥
∑

i

#(K∨
i \(SP(O∨) ∩ s∨i )) .

By (2.13) (proved in the previous section), the right hand side equals dimZ ZstΠ(O∨). This proves
(4.7), and hence completes the proof of Proposition 4.3. ˜

Corollary 4.12. In the setting of Proposition 4.9, there exists a unique orbit Q = Q(O∨
K) of K∨ on

Y ∨ such that

µ
(
T ∗

Q(Y ∨)
)

= O∨
K .

Proof. The proof of Proposition 4.3 shows that the inequality in (4.11) must be an equality. Hence
the inequality in (4.10) in an equality. Hence the number c(O∨

K) in Proposition 4.8 must be 1. This
proves the corollary. ˜
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Proof of Theorem 2.12. In the setting of Theorem 2.12, given O∨
K ∈ K∨

i \(SP(O∨) ∩ s∨i ) define
Q(O∨

K) as in Corollary 4.12. In the notation of Proposition 4.3 set

(4.13) π(O∨
K) := π(Q(O∨

K)).

Then by Proposition 4.3(2),
{

π(O∨
K)
∣∣ O∨

K ∈
⋃

i

K∨
i \(SP(O∨) ∩ s∨i )

}

is a basis for ZstΠ(O∨). ˜
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