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what's the big picture?

� An algorithm (due to Lusztig in Vogan in 1983) for
computing local intersection cohomology groups of certain
singular varieties was implemented in a software package
(atlas) written by Fokko du Cloux.

� atlas works in a very general setting. In particular, it
computes the \classical" Kazhdan-Lusztig polynomials pyw
very e�ciently.

� It transpired that running the algorithm for the \largest"
simple exceptional real group was barely possible. (This
was done on the UW's machine sage wih the help of
William Stein.)

� The information encoded in the output lies at the heart of
many problems in representation theory and suggests new
lines of inquiry.
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representations

Let G be a group.

A representation of G is a (complex) vector
space V and a homomorphism

G �! GL(V )

where GL(V ) denotes the group of invertible transformations of
V . The representation is unitary if its image lands in unitary
matrices. There is an obvious notion of equivalence and of
irreducibility.



representations

Let G be a group. A representation of G is a (complex) vector
space V and a homomorphism

G �! GL(V )

where GL(V ) denotes the group of invertible transformations of
V .

The representation is unitary if its image lands in unitary
matrices. There is an obvious notion of equivalence and of
irreducibility.



representations

Let G be a group. A representation of G is a (complex) vector
space V and a homomorphism

G �! GL(V )

where GL(V ) denotes the group of invertible transformations of
V . The representation is unitary if its image lands in unitary
matrices.

There is an obvious notion of equivalence and of
irreducibility.



representations

Let G be a group. A representation of G is a (complex) vector
space V and a homomorphism

G �! GL(V )

where GL(V ) denotes the group of invertible transformations of
V . The representation is unitary if its image lands in unitary
matrices. There is an obvious notion of equivalence

and of
irreducibility.



representations

Let G be a group. A representation of G is a (complex) vector
space V and a homomorphism

G �! GL(V )

where GL(V ) denotes the group of invertible transformations of
V . The representation is unitary if its image lands in unitary
matrices. There is an obvious notion of equivalence and of
irreducibility.



typical source of representations

Suppose G acts on a �nite set X.

Consider

F(X) = ff : X �! Cg:

Then we obtain a representation

� : G �! GL(F(X))

g 7! �(g)

where
[�(g)f ](x) = f(g�1 � x):

For example, suppose G is �nite and we consider it acting on
itself on the left. Then

F(G) = C[G] =
M

(�;V ) irred

V �dim(V ):
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initial setting for today (refined later)

GR is a real Lie group.

For example:

� GL(n;R) (n = 1 : R�).

� GL(n;C) (n = 1 : C�).

� U(n) (n = 1 : S1), U(p; q).

� SO(n); SO(p; q); SO(n;C), SO�(2n).

� Sp(n);Sp(p; q);Sp(n;C);Sp(n;R).

� G2, F4, E6, E7, E8
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representations

A representation of GR is a continuous homomorphism

GR �! GL(H)

where GL(H) denotes the group of bounded linear invertible
operators on a Hilbert space H. The representation is unitary if
its image is in unitary operators.

There is an obvious notion of
equivalence and of irreducibility.
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representations: example

(a) If GR = R� the irreducible representations are all of the
form

R� �! GL(C) = C�

x 7! e�x

where � is a �xed complex number.

The representation is
unitary if and only if � is purely imaginary.

(b) If GR = S1 the irreducible representations are all of the
form

S1 �! GL(C) = C�

ei� 7! ein�

where n is a �xed integer. Each of these representations is
unitary.
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example (continued)

Notice that the irreducible unitary representations on the
previous slide are exactly the ones needed for Fourier analysis:

L2(R) =

Z ̂
�2iR

e�xd� L2(S1) =
[M
n2Z
Cein�:



abstract harmonic analysis

Problem. Understand the (equivalence classes of) irreducible
unitary representations of GR, the so called unitary dual bGuR.

Subproblem. Understand what \understand" should mean in
the previous problem.
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revised setting

Without additional hypothesis, this is hopeless.

Let G be a
connected complex algebraic group. Suppose � is an
antiholomorphic involution of G. (So if f is algebraic, then so is
g 7! f(�(g)).) Consider only groups of the form

GR = fg j �(g) = gg:

Duo showed that the problems on the previous page essentially
reduce to the case where GR is very close to being simple. (The
list of examples given above is close to being complete.)
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on the algebraic hypothesis

The algebraic setting is restrictive, but for deep reasons it is
often the \right" setting.

Some very natural nonalgebraic examples:

(a) fGL(n;R), fSL(2;R), fSp(2n;R).
(b) SOe(p; q).
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applied abstract harmonic analysis

Suppose G acts on X.

Question. How can we use this \symmetry" to learn
something about X?

Answer (Gelfand). Decompose Hilbert spaces of functions on
X, and reassemble this information to make deductions about
X.

(Stupid example: S1 is compact, R� is noncompact.)

At least this gives a utilitarian interpretation of \understand"
on the previous slide: one needs to understand enough for the
application at hand.
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explicitly.

The representation he needed are called tempered:

bGtemp
R � bGuR:
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�N = fg 2 GR j g �= Id mod Ng:
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These are spaces of modular forms.
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of general groups GR
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These are spaces of automorphic forms.

De�ne the \automorphic dual" of GR to be those unitary
representations that appear in some L2(�nGR):

bGtemp
R � bGAR � bGuR:
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deep and vexing catch 22

� The full unitary dual bGuR appears more tractable than bGAR .

� For instance, if GR = SL(2;R) the full unitary dual is
known, but the autormorphic dual is the subject of the
(still open) Selberg 1/4 Conjecture.

� But, in general, bGuR is poorly organized, while deep
conjectures of Langlands and Arthur predict a

spectacularly well-organized structure on bGAR . Roughly:
�� The automorphic dual of SL(2;R) �ts inside bGA

R
in

comprehensible ways.
�� No comparable statement can be true for the full unitary

dual.
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Harish-Chandra's early work

Instead of considering only unitary representations,
Harish-Chandra discovered a larger, more tractable category (of
so-called Harish-Chandra modules).

Given an irreducible unitary representation of GR, one can
di�erentiate at the identity and complexify to obtain a
representation of the complex Lie algebra g. The category of
such representations are, in fact, equivalent to the category of
modules for the universal enveloping algebra U(g).

So from �, one obtains a U(g) module X�.

But some information is lost in this procedure.
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Harish-Chandra's early work (continued)

To keep track of the lost information, one must keep track of
the restriction of � to a maximal compact subgroup KR of GR,

�jKR =
dM
�

n�E�:

The structure of the resulting U(g) module and representation
of KR can be axiomatized. The relevant de�nition is that of a
Harish-Chandra module.
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Every irreducible unitary representation gives rise to an
irreducible Harish-Chandra module.

But the converse is not
true: bGuR � bGHCR :

The payo�, however, is that the larger set is more tractable.
The (still open) strategy then becomes to classify the larger set
and identify the smaller subset of unitary representations.
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the oracle in princeton

Langlands suggested the following classi�cation of bGHCR . To
each group GR, Langlands associated a complex algebraic group
LG (on the dual side). Langlands proved that to each (suitable
equivalence class of) homorphisms

� : WR �!LG : : :

one can attach a packet of representations L(�) so that

Theorem (Langlands)

bGHCR =
a
�

L(�):

Here WR = hC�; ji is the Weil group of R where

j2 = �1 and jzj�1 = �z:
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example of the langlands classsification

GR = GL(n;R).

Then LG = GL(n;C) and each L(�) is a single
representation.

So irreducible representations of GL(n;R) are parametrized by
equivalence classes of n-dimensional representations of

WR = hC; ji:

Such a representation is a direct sum of one and two
dimensional irreducible representations.

Other examples: GR = Sp(n;R), then LG = SO(2n+ 1;C);
GR = SO(n+ 1; n), then LG = Sp(2n;C).
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the oracle in toronto

Arthur re�ned the notation of Langlands parameter.

Roughly,
he considered homorphisms

 : WR � SL(2;C) �!LG : : :

so that the map

� (z) =  

�
z;

�
z 0
0 z�1

��
is a Langlands parameter. Then one one can attach a packet of
representations A( ) so that

L(� ) � A( )

and so that

Conjecture (Arthur)

bGAR =
[
 

A( ):
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the hidden structure

Notice that it is relationships on the L-group side that suggest
extra structure.

For instance suppose there is a map

� : LH �!LG;

(Such a map need not correspond to any map from HR to GR.)
Then we can compose any Langlands or Arthur parameter for
HR to get one for GR:

WR � SL(2;C) �!LH �!LG:

These relationships go very far toward \understanding" the
conjectural description of bGAR .
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a fly in the ointment

The sets L(�) are explicitly computible.

In fact, the
computation has been automated in a software package written
by Fokko du Cloux called atlas.

But there is not at present an algorithm to compute individual
Arthur packets. Nonetheless, their union is computable:

Theorem (Barbasch-Vogan)

There is a �nite algorithm (computible from the output of
atlas) to enumerate the set[

 

A( )

which, recall, conjecturally exhausts bGAR .
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which, recall, conjecturally exhausts bGAR .
The algorithm relies on a purely geometric computation
encoded in the computation of the KLV polynomials of the
title. (If one could make �ner geometric calculations, then one
could also enumerate the individual packets A( ). But this is
still open.)
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Progress:

� Low rank (\small") groups, spherical representations: lots
of partial progress (most notably by Barbasch (2001)).

� GL(n;R);GL(n;C);GL(n;H);U(p; q): Vogan (1984).
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introducing the geometry

Fix GR and write g for the complexi�ed Lie algebra of GR.

Let
KR denote a maximal compact subgroup and K its
complexi�cation. Examples:

� GR = GL(n;R). Then gR = gl(n;R) and g = gl(n;C).
Meanwhile KR ' O(n) and K = O(n;C).

� GR = GL(n;C). Then gR = gl(n;C) and
g = gl(n;C)� gl(n;C). Meanwhile KR ' U(n) and
K = GL(n;C). Explicitly the inclusion of k in g is given by
the diagonal map

k ' diag [gl(n;C)] � gl(n;C)� gl(n;C) ' g:

The same hold for any complex Lie group.

� GR is the split form of E8. Then KR ' Spin(16)=(Z=2)
(but not SO(16)) and and K = Spin(16;C)=�.
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In the setting above, let X denote the variety of maximal
solvable subalgebras of g. (This is the largest connected
compact K�ahler manifold on which K acts with an open orbit.)
Examples:
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Then
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n j dim(Vi) = ig

and K = O(n;C) acts in the obvious way.
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X ' pairs of ags as above

and K = GL(n;C) acts diagonally in the obvious way.

� GR is the split form of E8 and K = Spin(16;C)=�. Then
X is 120 dimensional.
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Theorem

K acts with �nitely many orbits on X.

Examples:

� GR = GL(n;R). The orbits of K = O(n;C) on the space of
complete ags are paremetrized by involutions in Sn.

� GR = GL(n;C). The diagonal GL(n;C) orbits on pairs of
ags are parametrized by elements of the symmetric group.

� GR is the split form of E8 and K = Spin(16;C)=�. There
are about 320,206 orbits (compared to 696729600 for
complex E8).
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measuring singularities of orbit closures

Basic parameter set: irreducible K-equivariant local systems

LocK(X)

consisting of a K orbit on X and an irreducible monodromy
representation (in this case, a representation of a product of
Z=2's). Examples:

� GL(n;R): an involution in Sn with signed �xed points.

� GL(n;C): still just an element of Sn.

� split E8: 453,060 such local systems.
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measuring singularities of orbit closures

LocK(X) parametrize both irreducible K-equivariant perverse
(complexes of) sheaves and irreducible K-equivariant
constructable sheaves.

The cohomology sheaves of a perverse sheaf are constructible.
So, given �;  2 LocK(X), it makes sense to consider the

multiplicity m
(j)
�; of the irreducible constructible sheave

parametrized by  in the jth cohomology of the irreducible
perverse sheaf parametrized by �.

p� (q) =
X
j

m
(j)
� q

j :

These are the KLV polnomials of the title. In the case of
complex groups, these polynomials are indexed by pairs of Weyl
group elements and the pyw were de�ned by Kazhdan-Lusztig.
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klv polynomials are computable

Theorem (Lusztig-Vogan)

There is an e�ective algorithm to compute KLV polynomials.

This algorithm is implemented in the atlas software.
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