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Goals

Goals
Provide theoretical background for Annegret’s next talk
(loosely “Borel-Weil-Bott as change of rings”), and some
groundwork for the ABV theory of special unipotent
packets.

Set up some interesting examples (possibly to be explored
in evening sessions).

Throughout, (G,K ) will be a reductive pair, K = Gθ, and G(R)
will be the corresponding real form.

Let h = t⊕ a be a θ-stable Cartan, and b = h⊕ n a Borel
subalgebra.



Cohomological Induction: heuristic construction

starting point
Let q = l⊕ u be a θ-stable parabolic of g containing b; set

Q = LU = StabG(q).

Fix a character Cλ of L with unique weight λ ∈ h∗.

Form the G-equivariant holomorphic line bundle

Lλ = G ×Q Cλy
G/Q.

This is the Borel-Weil-Bott setting for constructing
representations of G.



Cohomological Induction: heuristic construction

We want to construct irreducible representations of G(R).

So restrict Lλ to a G(R) orbit O ⊂ G/Q, and obtain a
G(R)-equivariant line bundle

Lλ|Oy
O.

Imitate Borel-Weil-Bott and consider H0,k (O,Lλ|O).

Senseless unless Lλ|O has a holomorphic structure.



Cohomological Induction: heuristic construction

If q is θ-stable, then

Oq := G(R).eQ ⊂ G/Q is open.

So
Lλ|Oy
O

inherits a holomorphic structure.

This leads us to a provisional definition:

Aq(λ) := H0,S(Oq,Lλ⊗ ∧top u)

with S = dim(u ∩ k); here Lλ ⊗ ∧topu = Lλ+2ρ(u).



Cohomological Induction: reality check

What does
Aq(λ) := H0,S(Oq,Lλ ⊗ ∧topu)

with S = dim(u ∩ k) look like when G(R) is compact (i.e. G = K
and θ ≡ 1)?

Take q = b, so Oq = G/B and dim(u ∩ k) = dim(G/B). Then
Serre + Dolbeault says

Ab(λ) := H0,dim(G/B)(G/B,Lλ ⊗ ∧topu) ' H0(G/B,L−λ)∗.

Borel-Weil tells us that this is either an irreducible
representation of G or zero.



Cohomological Induction: reality check

More precisely: if G(R) is compact (i.e. G = K ) and connected,

Ab(λ) ' H0(G/B,L−λ) =

{
Vλ if 〈λ, α〉 ≥ 0 ∀ α ∈ ∆(h, u);

0 else.

where Vλ is irreducible, highest weight λ.

For later use, rewrite nonvanishing condition:

〈λ+ ρ, α〉 > 0 ∀ α ∈ ∆(h, u).



Cohomological Induction: reality check

So
Aq(λ) := H0,S(Oq,Lλ ⊗ ∧topu)

is the simplest generalization of the Borel-Weil construction to
the case of noncompact groups (proposed by Kostant and
Langlands in the early 60’s).

But there are serious analytic complications in the noncompact
case. Some were surmounted in Schmid’s thesis (and the work
of many others), but others still remain. More on that in a
moment.



On the atlas perspective...

In the above, Oq = G(R).eQ ⊂ G/Q are living in different
places as q varies.

Better: fix (once and for all) a base point in the partial flag
variety Q of parabolics of a fixed type. (Special case: fixing a
base point in the flag variety, as discussed by Jeff.)

Vary the choice of open G(R) orbit Oq in Q.

Getting warmer, but G(R) orbits on Q are not something atlas
is designed to handle.



Interlude: Matsuki Duality

What’s the connection with Annegret’s parametrization of
θ-stable parabolics in terms of closed K orbits on G/Q (thinking
now as Q fixed)?

Matsuki Duality

There is an order-reversing bijection between the G(R) orbits
on G/Q and the K -orbits on G/Q.

Two corresponding orbits intersect in a G(R)θ orbit. In
particular, an open G(R) orbit consists of θ-stable parabolic
subalgebras iff the corresponding closed K orbits does.



Interlude: Matsuki Duality

Matsuki Duality

There is an order-reversing bijection between the G(R) orbits
on G/Q and the K -orbits on G/Q. (Two corresponding orbits
intersect in a G(R)θ orbit.)

Example: SL(2,R)

K ' C× orbits on G/B ' P1 consists of two closed orbits
(0 and∞) and their open complement.
SL(2,R) orbits on P1 consist of the two open hemispheres
and the closed equator.



Example: G(R) split F4, Sc middle long simple root.

Example (Split F4)
atlas> set G=F4_s
Variable G: RealForm
atlas> simple_roots (G)
Value:
| 2, -1, 0, 0 |
| -1, 2, -1, 0 |
| 0, -2, 2, -1 |
| 0, 0, -1, 2 |

So the long middle simple root is 1; the complement is {0,2,3}.

Preview of coming attractions: S consists of the zero labels for
the weighted Dynkin diagram for the even nilpotent orbit F4(a3).



Example: G(R) split F4, Sc middle long simple root.

Example (Split F4)

The long middle simple root is 1; the complement is {0,2,3}.

atlas> set G=F4_s
Variable G: RealForm
atlas> #theta_stable_parabolics(G)
Value: 92
atlas> theta_stable_parabolics(G)
Value:...([0,2,3],KGB element #8),([0,2,3],KGB element #25),
([0,2,3],KGB element #31),([0,2,3],KGB element #47),...
atlas> #KGP(G,[0,2,3])
Value: 24

So there are four closed orbits among 24 K orbits on G/P.



Example continued: closure order on KGP
Labels are dimensions:

14

13

12

11′ 11′′

10′ 10′′

9

8′

77

8′′ 8′′′

7′ 7′′ 7′′′

6′ 6′′

5′ 5′′

4′ 4′′

3

2

1

0



Example continued: closed orbits on KGP

There are four closed orbits of course. But there is some extra
structure: the three boxed ones canonically match the three
real forms of the nilpotent orbit F4(a3).

5′ 5′′

4′ 4′′

3

2

1

0

How? I hope to return to this next week. (Jonathan Fernandes
has written some nice code for this.)



Back to Cohomological Induction

In the general case,

Aq(λ) := H0,S(Oq,Lλ ⊗ ∧topu).

is only a heuristic construction of a G(R) representation.

Zuckerman discovered an algebraic way to construct (what
should be) its underlying (g,K ) module.



Back to Cohomological Induction

Start with something like formal Taylor series at eQ of sections:

Homq(U(g),Cλ ⊗ ∧topu),

a U(g) module. Extract the formal Taylor series that “extend to
sections” by looking at the largest “K -finite subspace” to obtain
a (g,K ) module:

Γ(Homq(U(g),Cλ ⊗ ∧topu)).

Problem: this might be zero (just like sections of L need not
exist). So look for analogs of cohomology.



Back to Cohomological Induction

Seek functors

Rj
q : M(l,L ∩ K ) −→M(g,K ).

Zeroeth step: Twist Z by ∧topu and extend it trivially to a
(q,L ∩ K ) module Z#

q .

First step: form
Homq(U(g),Z#)L∩K .

Second step: The “maximal K -finite vector subspace” functor

Γ :M(g,L ∩ K ) −→M(g,K )

is covariant left exact, and has derived functors Γj .

Rj
q(Z ) := Γj(Homq(U(g),Z#)L∩K )



Better: change of rings

After the zeroth step Z 7→ Z#
q , we are seeking a functor

M(q,L ∩ K ) −→M(g,K ),

i.e.
R(q,L ∩ K )-mod −→ R(g,K )-mod.

There is an obvious change of rings functor:

I(X ) := HomR(q,L∩K )(R(g,K ),X )K .

And another one too:

P(X ) := R(g,K )⊗R(q,L∩K ) X .



Better: change of rings

Focus on I for now:

R(q,L ∩ K )-mod I−→ R(g,K )-mod.

I(X ) := HomR(l,L∩K )(R(g,K ),X )K

can be factored as a composite:

R(q,L ∩ K )-mod
I1−→ R(g,L ∩ K )-mod

I2−→ R(g,K )-mod.

with

I1(X ) := HomR(q,L∩K )(R(g,L ∩ K ),Z )L∩K ' Homq(U(g),X )L∩K

exact, and

I2(X ) := HomR(g,L∩K )(R(g,L ∩ K ),X )K ' Γ(X ).

left exact. This explains our old friend

Rj
q(Z ) = Γj(Homq(U(g),Z#

q )L∩K ).



Better: change of rings

So cohomological induction is the change of rings functors

R(q,L ∩ K )-mod −→ R(g,K )-mod.

with the mild complication that the functor is not exact.

What if you do the analogous change of rings when p is a real
with corresponding real parabolic subgroup P(R)? In this case

Z 7→ HomR(q,M∩K )(R(g,K ),Z#
p )K

is exact, and is the underlying (g,K ) module of a real
parabolically induced representation, roughly

IndG(R)
P(R)(Z#

P(R)).

So standard modules are all just change of rings!



Cohomological Induction Recap

Have functors

Rj
q : M(l,L ∩ K ) −→M(g,K )

Rj
q(Z ) := Γj(Homq(U(g),Z#)L∩K )

Special case:
Aq(λ) := RS

q (Cλ).

Very special case (Borel-Weil-Bott): G(R) compact and q = b;
then

Ab(λ) =

{
Vλ if 〈λ+ ρ, α∨〉 > 0 ∀ α ∈ ∆(h, u);

0 else.



Cohomological Induction: Properties

Let q = l + u be a θ-stable, and let Z be an (l,L ∩ K )-module
with infinitesimal character γL. Then Rj

q(Z ) has infinitesimal
character γL + ρ(u).

Z is in the good range for q if for all α ∈ ∆(u),

Re〈γL + ρ(u), α∨〉 > 0.

Z is in the weakly good range if for all α ∈ ∆(u),

Re〈γL + ρ(u), α∨〉 ≥ 0.

If Z is in the good range RS
q (Z ) is irreducible (resp.

unitary) iff Z is. For j 6= S,Rj
q(Z ) 6= 0.

In the weakly good range, RS
q (Z ) could vanish.



Cohomological Induction: Properties

Specialize to Z = Cλ, a unitary character. So

γL + ρ(u) = λ+ ρ(l) + ρ(u) = λ+ ρ.

λ is in the good range for q if for all α ∈ ∆(u),

Re〈λ+ ρ, α∨〉 > 0.

λ is in the weakly good range if for all α ∈ ∆(u),

Re〈λ+ ρ, α∨〉 ≥ 0.

If λ is in the good range Aq(λ) is irreducible and unitary.
In the weakly good range, easy to tell if Aq(λ) 6= 0.



Example: Discrete Series

Suppose rank(g) = rank(k), and b is a θ-stable Borel
subalgebra. Suppose λ is in the good range. Then

Ab(λ) is a discrete series with infinitesimal character λ+ ρ;

all arise this way, and there are no coincidences.

Discrete series with a fixed infinitesimal character are
parametrized by closed K orbits on the flag variety.

(Weakly good range: get all limits of discrete series.)



Example: Discrete Series

Discrete Series of SL(2,R) at ρ.
atlas> set G=SL(2,R)
atlas> print_KGB(G)
0: 0 [n] 1 2 (0)#0 e
1: 0 [n] 0 2 (1)#0 e
2: 1 [r] 2 * (0)#1 1ˆe

So there are of course two closed orbits.

atlas> all_discrete_series (G,rho(G))
final parameter(x=0,lambda=[1]/1,nu=[0]/1)
final parameter(x=1,lambda=[1]/1,nu=[0]/1)

The two discrete series at ρ.



Example: Discrete Series

Discrete Series of Sp(4,R) at ρ.
atlas> set G=Sp(4,R)
atlas> print_KGB(G)
kgbsize: 11
0: 0 [n,n] 1 2 4 5 (0,0)#0 e
1: 0 [n,n] 0 3 4 6 (1,1)#0 e
2: 0 [c,n] 2 0 * 5 (0,1)#0 e
3: 0 [c,n] 3 1 * 6 (1,0)#0 e

....

atlas> all_discrete_series (G,rho(G))
final parameter(x=0,lambda=[2,1]/1,nu=[0,0]/1)
final parameter(x=1,lambda=[2,1]/1,nu=[0,0]/1)
final parameter(x=2,lambda=[2,1]/1,nu=[0,0]/1)
final parameter(x=3,lambda=[2,1]/1,nu=[0,0]/1)]

The four discrete series at ρ.



Role of Aq(λ)

Theorem (Salamanca-Riba)
If X has strongly regular infinitesimal character then X is
unitary if and only if it is a good Aq(λ) module.

Vogan showed that there a larger range of unitarity:
Aq(λ) = RS

q (Cλ) is in the weakly fair range if for all
α ∈ ∆(u),

Re〈λ+ ρ(u), α∨〉 ≥ 0.

A weakly fair Aq(λ) module is either 0 or unitary (but could
reduce).

Lots of interesting questions here: Determine nonvanishing,
reducibility, and coincidences among weakly fair Aq(λ). Extend
to larger ranges?



Preview of coming attractions

Annegret’s next lecture will explain the atlas functions to
address these interesting questions.

For example, Vogan/Borho-Brylinski showed that if the moment
map µ : T ∗Q → N is birational onto normal image, then Aq(λ)
is irreducible or zero.

Always true in type A. In that case, Vogan conjectured that any
irreducible unitary representation of U(p,q) with integral
infinitesimal is a weakly fair Aq(λ) module. (Can check any
particular infinitesimal character in atlas now.)

First place to look for reducibility: G = Sp(4,R) and Q
corresponding to Levi GL(1)× Sp(2). Then µ is not birational
(but the image is normal). Annegret will look closely at this.


