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Abstract Over four decades David Vogan’s groundbreaking work in representation
theory has changed the face of the subject. We give a brief summary here.
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It is difficult to give a complete overview in a few short pages of the impact of the
work of David Vogan, but it is easy to identify the starting point: his 1976 MIT Ph.D.
Thesis [V76], completed at the age of 21 under the direction of Bertram Kostant,
was a striking advance in the subject. It paved the way for an algebraic classification
of irreducible (not necessarilty unitary) representations for a reductive Lie group G
at a time when the existing approaches to such classification problems (in the work
of Harish-Chandra, Langlands, Knapp-Zuckerman, and others) were heavily ana-
lytic. David’s classification (published as an announcement in [V77] and partially
in [V79d]) was later streamlined and extended with Zuckerman using Zuckerman’s
new technology of cohomological induction, which complemented the Lie algebra
cohomology techniques developed in David’s thesis. A full exposition, including an
influential list of problems, appeared in [V81a], completed in 1980.
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Harish-Chandra developed the theory of non-unitary representations in large part
to study unitary representation, and indeed unitary representation theory emerged as
the central thread in virtually all of David’s work. Along the way, David naturally
proved many results about non-unitary representations, but rarely without consider-
ations of their relevance for unitarity. This is beautifully laid out in [V83a]; in [V87],
an exposition of David’s Weyl Lectures at the Institute in 1986; and in [V87], the
notes from David’s 1986 Plenary ICM address.

As he was completing his algebraic classification, David tackled a description
of irreducible characters, which he solved in [V83] and [LV83] with Lusztig be-
fore the completed manuscript [V81a] went to press. David’s approach to com-
puting irreducible characters involved expressing them as explicit linear combina-
tions of characters of certain standard parabolically induced representations. Since
the latter, in principle, can be computed from Harish-Chandra’s results on the dis-
crete series and the tractable effect of parabolic induction on characters, this gives
the irreducible characters. The problem is therefore parallel to expressing an irre-
ducible highest weight module as a virtual sum of Verma modules, the subject of the
Kazhdan-Lusztig conjectures, and so the irreducible character problem for Harish-
Chandra modules became informally known as the “Kazhdan-Lusztig algorithm for
real groups”. David constructed this algorithm, modulo a judicious technical conjec-
ture about the semisimplicity of certain modules arising from wall-crossing transla-
tion functors, in [V79c].

A substantial part of [V79a, V79c] (and its exposition in [V81a]) relied on un-
derstanding how irreducible characters behave under coherent continuation. This
was also the starting point for the earlier work with Speh [SV80] which addressed
fundamental problems of the reducibility of standard modules, clearly of impor-
tance to both the classification and irreducible character problem (and to unitar-
ity questions). The intricate arguments in [SV80] were simplified in [V79a] which
further made a key connection with dimensions of certain Ext groups in the cate-
gory of Harish-Chanda modules. This latter connection became an extremely pow-
erful tool in the computation of irreducible characters, culminating in the Kazhdan-
Lusztig algorithm for real groups in [V79c]. (When applied to the setting of highest
weight modules, the algorithm of [V79c] in fact reduced to the original algorithm
of Kazhdan-Lusztig.) The technical conjecture mentioned above, though entirely al-
gebraic in its formulation, was ultimately only surmounted by geometric methods
in positive characteristic [LV83] and partly based on the new localization theory
of Beilinson-Bernstein and its connection to the cohomological methods in David’s
classification [V83]. (Particular cases of the Lusztig-Vogan geometry and related
settings are considered in the contributions of Graham-Li and McGovern in this vol-
ume.) David gave a very accessible “roadmap” to the Kazhdan-Lusztig conjectures
for real groups in [V83b], including complete recursion formals for the polynomials
of [LV83] which came to be know as Kazhdan-Lusztig-Vogan, or KLV, polynomials.

Thus, in the span of just of a few spectacularly productive years, the irreducible
character problem was solved by a dazzling array of new techniques. There was
much more to be done with these powerful new ideas.
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Because one is often interested in extracting less complete (but more accessible)
information about irreducible representations than their characters, David was led to
consider various invariants of Harish-Chandra modules. His influential paper [V78a]
(see also [V80b]) lays the foundation of Gelfand-Kirillov dimension for Harish-
Chandra modules and classifies those representations which are generic in the sense
they admit Whitaker models. The contribution of Wallach to this volume discusses
GK dimension for smaller discrete series.

Connections to Kahzdan-Lustzig theory and Joseph’s theory of primitive ideal
cells, as well as weaker formulations of quantization, naturally led to fundamen-
tal questions in the theory of primitive ideals in enveloping algebras of complex
semisimple Lie algebras initiated by Dixmier, Duflo, Joseph, and others. In [V79b],
David studied primitive ideals directly by understanding their behavior under co-
herent continuation restricted to rank two root subsystems, generalizing the Borho-
Jantzen τ-invariant which considered rank one subsystems. (The paper of Bon-
nafé and Geck in this volume takes up many of these ideas.) Later, working with
Garfinkle, he proved analogous results for restricting to the root system of type
D4 [GaV92], necessary for any systematic analysis of branched Dynkin diagrams.
These turned out to be very powerful computational tools which were exploited
to great effect in the work of Garfinkle and others. In [V80a], David related the
ordering of primitive ideals to a preorder arising in the original paper of Kazhdan-
Lusztig. He and Barbasch carried out the classification of primitive ideals in com-
plex semisimple Lie algebras [BV82, BV83a]. Along the the way, they showed that
representations of the Weyl group that arise in Joseph’s Goldie rank construction
are exactly the special ones in the sense of Lusztig, and related them to Fourier
inversion of certain unipotent orbital integrals.

As he was developing his algebraic theory, David was naturally led to understand
its relation with Langlands’ original classification and the larger context of the Lo-
cal Langlands Conjectures. The dual group makes a fundamental appearance in the
technical tour de force [V82] where David uncovered an intricate symmetry in his
Kazhdan-Lusztig algorithm for real groups: he proved that computing irreducible
characters of real forms G of a complex connected reductive group GC is dual, in
a precise sense, to computing irreducible characters of real forms of the dual group
G∨
C. (When applied to the case of complex groups, it can be interpreted as the sym-

metry of the Kazhdan-Lusztig algorithm, noted in the original paper of Kazhdan-
Lusztig, corresponding to the order-reversing symmetry of the Bruhat order.) The
full significance of this deep and beautiful symmetry, now known as Vogan dual-
ity, was only fully realized later in [ABV92]. In order to get a perfectly symmetric
statement, one must consider multiple real forms at the same time. This immedi-
ately leads to the question of when two collections of representation of multiple real
forms should be considered equivalent, and eventually to the definition of strong real
forms [ABV92], differing in subtle and interesting ways from the classical notion of
real form. On the dual side, it led Adams, Barbasch, and Vogan (building on earlier
ideas of Adams and Vogan [AV92a, AV92b]) to reformulate the space of Langlands
parameters.
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Like the space of classical Langlands parameters, the reformulated space of ABV
parameters is a complex algebraic variety on which the complex dual groups acts.
Unlike the space of Langlands parameters in the real case, the dual group orbits
on the ABV space have closures with nontrivial singularities. The main result of
[ABV92] is a refinement of the representation theoretic part of Local Langlands
Conjecture for real groups where K-groups of representations of strong real forms
are dual to K-groups of appropriate categories of equivariant perverse sheaves on
the space of ABV parameters. This incredibly intricate correspondence is ultimately
deduced from [V82]. Using it, [ABV92] makes precise (for real groups) and estab-
lishes a series of conjectures of Arthur and provide a different perspective on the
Langlands-Shelstad theory of endoscopy. In the ABV theory, Arthur packets of rep-
resentations are defined in terms of characteristic cycles of perverse sheaves on the
space of ABV parameters. Such cycles are still mysterious and poorly understood.
(Some related complications are on display in the new examples of Williamson in
this volume.) For classical groups, Arthur has recently defined Arthur packets and
established his conjectures from a different point of view, and comparing his re-
sults in the real case to those of [ABV92] is still to be understood. Meanwhile,
Soergel (generalizing Beilinson-Ginzburg-Soergel) formulated a still-open conjec-
ture extending the main result of [ABV92] (established on the level of K-groups) to
a categorical statement. Using the real case as a model, David proposed refinements
of the local Langlands conjectures in the much more difficult p-adic case as well
([V93a]). This has played an increasingly important role in recent years.

The paper [V84] is most often remembered for its a long sought-after proof
that cohomological induction preserves unitarity under fairly general hypothesis.
As a consequence, certain representations (so-called Aq(λ ) modules) constructed
by Zuckerman from unitary characters are indeed unitary. Earlier, Vogan and Zuck-
erman [VZ84] had classified all unitary representations with nonzero relative Lie
algebra cohomology as Aq modules, except that it was still unproved that the mod-
ules they had classified were indeed unitary. For applications to the cohomology of
locally symmetric spaces discussed in [VZ84] (and [V97b]), this was not important,
but for unitary representation theory it was a central question at the time.

In later work, David explicitly clarified the role of the Aq(λ ) in the discrete spec-
trum of symmetric spaces [V88b], as well as how they appear as isolated representa-
tions [V07a]. Basic questions about explicitly constructing the unitary inner product
geometrically on minimal globalizations are still open (as explained in [V08]). He
returned to the Dirac operator methods of [VZ84] in an influential series of lectures
[V97] that spawned an entire new area of investigation, still developing today (for
example in the contribution of Huang to this volume).

Striking examples of complete classifications of unitary representations include
David’s description of the the unitary dual of GL(n,R) (obtained in 1984 and ap-
pearing in [V86a]), and later the unitary dual of G2 [V94] (dedicated to Borel).The
description of the unitary duals given in these cases was organized in terms of sys-
tematic procedures (like cohomological induction and construction of complentary
series) applied to certain building blocks. The systematic role of cohomological in-
duction was clarified later in his deep work with Salamanca-Riba [SaV98], [SaV01];
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see also the exposition [V00b]. The groundwork for systematizing the construction
of complementary series is [BV84]. But abstracting a general definition of the mys-
terious building blocks, which came to be known (somewhat imprecisely) as unipo-
tent representations, proved to be more difficult and is a major theme in David’s
work. The overviews [V97a], [V00c], [V93b] contain many ideas. At the heart of
the notion of unipotent is the connection to nilpotent coadjoint orbits in semisimple
Lie algebras and modern approaches to geometric quantization pioneered by Kir-
illov and Kostant. The paper of Graham [GrV98] makes significant progress in the
setting of complex groups.

Early on, David proved that the annihilator of an irreducible unitary Harish-
Chandra module for a complex group was completely prime. He then formulated
a conjectural kind of Nullstellensatz for such ideals in [V86b] in which finite alge-
bra extensions of primitive quotients of the enveloping algebra play a crucial role.
Such algebra extensions, sometimes called Dixmier algebras, were further studied
in [V90] and the notion of induced ideal was extended to them. Many beautiful
facets of David’s conception of the orbit method are explained in [V88a].

One of the fundamental ways that nilpotent orbits appear in the representation
theory of real groups is through the asymptotics of the character expansion dis-
covered in [BV80]. In this construction, each Harish-Chandra module gives rise to
a real linear combination of real nilpotent coadjoint orbits. Nilpotent orbits also
arise through David’s construction of the associated cycle of a Harish-Chandra
module [V91], a positive integral combination of complex nilpotent coadjoint or-
bits for symmetric pairs (the setting originally investigated by Kostant-Rallis). The
Barbasch-Vogan conjecture, proved by Schmid and Vilonen, asserted that the two
kinds of linear combinations coincide perfectly under the Kostant-Sekiguchi bijec-
tion. David uses these invariants to define conditions on a class of unipotent repre-
sentation in [V91]. A beautiful example of the explicit desiderata in a case of great
interest is given in [AHV98].

A weaker version of the quantization of nilpotent orbits instead focuses on con-
structing Harish-Chandra modules with prescribed annihilator. Barbasch and Vo-
gan long ago identified a set of interesting infinitesimal characters and sought to
understand Harish-Chandra modules annihilated by maximal primitive ideals with
those infinitesimal characters, conjecturing that such Harish-Chandra modules were
unitary. (This generalizes the study of minimal representations [V81b], where the
maximal primitive ideals are the Joseph ideals.) In [BV85], Barbasch and Vogan
discovered that many of their interesting infinitesimal characters — conjecturally
those arising as the annihilators of unitary representations with automorphic appli-
cations — fit perfectly into the framework of the ideas proposed by Arthur. The
paper [BV85] gives strikingly simple character formulas for these so-called special
unipotent representation in the setting of complex groups (and the ideas make sense
for real groups too). An aspect of the proof of the character formulas relied on ways
to count special unipotent representations using the decomposition of the coher-
ent continuation representation into cells. The theory of Kazhdan-Lusztig cells for
complex groups was extended to real groups with Barbasch in [BV83b].
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The theory of [BV85] was generalized in the important closing chapter of
[ABV92], where it can be understood entirely in terms of the principle of Langlands
functoriality. A central theme in David’s work is the extent to which functoriality
extends to organize all unitary representations, not just automorphic ones. (A very
accessible introduction to this set of ideas is contained in [V01]). The Shimura-type
lifting in [ABPTV97] can also be understood in these terms as part of an aim to
extend functoriality to certain nonalgebraic groups.

The interaction between the philosophy of the orbit method and the construction
of associated varieties was developed further in [V00a] culminating in a general
(still unrealized) approach toward proving the unitarity of the special unipotent rep-
resentations defined in [BV85] and [ABV92]. One facet of this involved relating
the KC eqivariant K-theory of nilpotent cone in the symmetric space setting to the
tempered dual of G. Vogan conjectured a precise relationship (independently and
earlier conjectured by Lusztig for complex groups) that was later proved in special
cases by Achar and by Bezrukavnikov. The article of Achar in this volume provides
an up-to-date look at this direction.

The unitarity of Aq(λ ) in [V84] is a deep and important result, but it is the theory
of signature characters of Harish-Chandra modules that David developed to tackle
the problem that has proved to be even more influential. It immediately led Wal-
lach to a shorter proof of the unitarity of the Aq(λ ) modules, for example, and was
adapted to unramified representation of split p-adic groups by Barbasch and Moy.
But for David it was part of an approach to determining the entire unitary dual of
a reductive group. The paper [V84] proposes an algorithm (heavily rooted in his
Kazhdan-Lusztig theory for real groups and the theory of the Jantzen conjecture) to
determine if an irreducible representation specified in the Langlands classification
is in fact unitarity. The algorithm was predicated on determining certain signs that,
at the time, were inaccessible. Determining the signs in the algorithm of [V84] was
finally surmounted in [ALTV12], giving a finite effective algorithm to locate the
unitary dual of a reductive Lie group in the Langlands classification.

The paper [ALTV12] relies on relating classical invariant Hermitian forms on
irreducible Harish-Chandra modules (the object of study in unitary representation
theory) to forms with a different, more canonical invariance property. Once this
latter invariance property was uncovered, its importance was immediately recog-
nized in other settings (for example in the geometric setting of Schmid and Vilonen
explained in their contribution to this volume and the analogous p-adic setting in
the contribution of Barbasch and Ciubotaru). Translating between the two kinds
of forms in [ALTV12] immediately leads one to certain extended groups which
are not the real points of a connected reductive algebraic group, and which are
outside the class of groups for which [V83] established a Kazhdan-Lusztig algo-
rithm. In recent work, Lusztig and Vogan [LV14] (generalizing their earlier work
[LV83, LV12]) provides the geometric foundations of Kazhdan-Lusztig theory for
such extended groups. In particular, they define a Hecke algebra action on an appro-
priate Grothendieck group. This action characterizes the “twisted” Kazhdan-Lusztig
polynomials in this setting. [LV14] gives explicit formulas for individual Hecke op-
erators, but they depended on certain choices. The effect of these choice is com-
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pletely understood in the contribution of Adams-Vogan in this volume. Meanwhile,
Lusztig and Vogan in this volume provide an extension of the results of [LV12] to the
setting of arbitrary Coxeter groups using the new theory of Elias and Williamson.

Over the last fifteen years, David has been deeply involved in the atlas project,
the goal of which is to translate much of the mathematics described above into the
computer software package atlas in the generality of the real points of any com-
plex connected reductive algebraic group. This has involved his close collaboration
with many people, but especially with Adams, du Cloux, and van Leeuwen. David’s
Conant Prize winning article [V07b] gives an overview into the first step, the imple-
mentation of the computation of irreducible characters and, in particular, the com-
putation of the KLV polynomials for the split real form of E8. His paper [V07c] is
devoted to algorithms at the heart of computing the K-spectrum of any irreducible
Harish-Chandra module. At present the software is able to test the unitarity of any
irreducible Harish-Chandra module specified in the Langlands classification. The
results of [V84] imply that testing a finite number of such representations suffices
to determine the entire unitary dual. The implementation of this will almost cer-
tainly be complete in the next year or two, a remarkable achievement that no one
could have predicted was possible even just a decade ago. In many ways, it is the
culmination of David’s seminal contributions to unitarity representation theory.

The above captures a sliver of the mathematics developed in David’s papers. It
says little of influential expositions that have, by now, educated generations. It also
says nothing of the immense amount of mathematical ideas David gave freely to
others, nor of his selfless devotion to the profession of mathematics. But, we hope,
it points to the breadth of his influence to date, as well as some of the exciting work
left to be done.
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