\qquad

November 8, 2007
no calculators allowed!
(Leave your solution in the form which could be entered into your calculator to obtain a numerical answer.)

1. Solve for x.

$$
500=600-600 e^{-0.4 x}
$$

Solution. We isolate the exponential factor to find

$$
e^{-0.4 x}=\frac{1}{6}
$$

and taking \ln of both sides gives

$$
-0.4 x=\ln (1 / 6) .
$$

So

$$
x=-\frac{\ln (1 / 6)}{0.4} .
$$

2. The demand function for a particular product is given by

$$
p=\frac{200}{\log _{2}(q+3)}
$$

If the price is $\$ 50$, how many units will be demanded?
Solution. We are to solve

$$
50=\frac{200}{\log _{2}(q+3)}
$$

So

$$
\log _{2}(q+3)=4
$$

Raising both sides by 2 gives

$$
q+3=2^{4}=16
$$

and so $q=13$.
3. Assuming 5% annual inflation, after t year the purchasing power of an initial investment of $\$ 10,000$ is given by

$$
P=10000 e^{-0.5 t}
$$

In how many years will the purchasing power be reduced to $\$ 3,000$?
Solution. We are to solve

$$
3000=10000 e^{-0.5 t}
$$

So

$$
e^{-0.5 t}=0.3
$$

and taking \ln of both sides gives

$$
-0.5 t=\ln (0.3)
$$

Thus

$$
t=-\frac{\ln (0.3)}{0.5}
$$

