MATH 1010-2: QUIZ 9
Novembe 4, 2010
NO CALCULATORS ALLOWED.

1. (4 points) Simplify as much as possible:

$$
\sqrt[3]{5 x^{4}}+\sqrt[3]{40 x}
$$

Solution. We have

$$
\begin{aligned}
\sqrt[3]{5 x^{4}}+\sqrt[3]{40 x} & =\sqrt[3]{5 \cdot x \cdot x^{3}}+\sqrt[3]{2^{3} \cdot 5 \cdot x} \\
& =x \sqrt[3]{5 x}+2 \sqrt[3]{5 x} \\
& =(x+2) \sqrt[3]{5 x}
\end{aligned}
$$

2. (3 points) Evaluate the following expression (so that no exponents appear in your final answer):

$$
81^{-\frac{3}{4}} .
$$

Solution. We have

$$
\begin{aligned}
81^{-\frac{3}{4}} & =\frac{1}{81^{\frac{3}{4}}} \\
& =\frac{1}{\left(3^{4}\right)^{\frac{3}{4}}} \\
& =\frac{1}{3^{3}} \\
& =\frac{1}{27} .
\end{aligned}
$$

3. (3 points) Simplify:

$$
\sqrt{\frac{18 x^{3}}{z^{7}}}
$$

Solution. We have

$$
\begin{aligned}
\sqrt{\frac{18 x^{3}}{z^{7}}} & =\frac{\sqrt{18 x^{3}}}{\sqrt{z^{7}}} \\
& =\frac{\sqrt{2 \cdot 3 \cdot 3 \cdot x^{2} \cdot x}}{\sqrt{z^{3} \cdot z^{3} \cdot z}} \\
& =\frac{3 x \sqrt{2 x}}{z^{2} \sqrt{z}} .
\end{aligned}
$$

$\qquad$

MATH 1010-2: QUIZ 9
Novembe 4, 2010 NO CALCULATORS ALLOWED.

1. (4 points) Simplify as much as possible:

$$
\sqrt[3]{5 y^{4}}+\sqrt[3]{40 y}
$$

Solution. We have

$$
\begin{aligned}
\sqrt[3]{5 y^{4}}+\sqrt[3]{40 y} & =\sqrt[3]{5 \cdot y \cdot y^{3}}+\sqrt[3]{2^{3} \cdot 5 \cdot y} \\
& =y \sqrt[3]{5 y}+2 \sqrt[3]{5 y} \\
& =(y+2) \sqrt[3]{5 y}
\end{aligned}
$$

2. (3 points) Evaluate the following expression (so that no exponents appear in your final answer):

$$
16^{-\frac{3}{4}}
$$

Solution. We have

$$
\begin{aligned}
16^{-\frac{3}{4}} & =\frac{1}{16^{\frac{3}{4}}} \\
& =\frac{1}{\left(2^{4} \frac{3}{4}\right.} \\
& =\frac{1}{2^{3}} \\
& =\frac{1}{8} .
\end{aligned}
$$

3. (3 points) Simplify:

$$
\sqrt{\frac{18 z^{7}}{x^{3}}}
$$

Solution. We have

$$
\begin{aligned}
\sqrt{\frac{18 z^{7}}{x^{3}}} & =\frac{\sqrt{18 z^{7}}}{\sqrt{x^{3}}} \\
& =\frac{\sqrt{2 \cdot 3 \cdot 3 \cdot z^{3} \cdot z^{3} \cdot z}}{\sqrt{x^{2} \cdot x}} \\
& =\frac{3 z^{3} \sqrt{2 z}}{x \sqrt{x}} .
\end{aligned}
$$

