
The Rigorous Rotational Approach

Even without calculus, treating the cosine and sine simultaneously has great
advantages in developing plane analytic geometry and the complex number
plane, emphasizing rotation, scaling, and reflection symmetries as a comple-
ment to horizontal and vertical shifts. Here, we show how the framework of
calculus makes it straightforward to make that ”precalculus” approach to the
rotation formula, trigonometric identities, Pythagorean relation, and geometric
interpretation of complex multiplication and the dot product rigorous.

We wish to understand the properties of the circular functions from the
starting point that cos s and sin s are defined to be the horizontal and vertical
components of a point to which the point (1, 0) has been rotated by a counter-
clockwise rigid rotation about the origin, so that the length of the circular arc
from (1, 0) to (cos s, sin s) is s. We do this in turn by defining a rigid rotation
of the vector v by the angle s radians in terms of proceeding for s units of time
along a circular path v(s) whose velocity vector is given by the position vector
rotated a quarter circle counterclockwise. By a congruent triangle argument,
related to the ”negative reciprocal rule” from elementary geometry (which also
motivates the ”dot product” condition for orthogonality) this velocity vector at
(

x

y

)

is given by

(

−y

x

)

.

This seems quite natural, and leads to fairly straightforward connections
with other properties of the circular functions (and other transcendental func-
tions, such as cosh s, sinh s, exp s, and log s.) The use of derivatives and differen-
tial equations (two coupled!) may be seen as a drawback, but we prefer to view
this approach as a demonstration of the power of this framework to simplify and
enlighten. One need only consider defining the cosine and sine rigorously and
usefully as real-valued functions ”without calculus”, in terms of the adjacent
and opposite sides and hypotenii of right triangles, and you will probably agree.

Define the rotation of a vector v by an angle of s radians, R(s)v, as the
solution at time s of the rotational differential equation

d

ds

(

x

y

)

=

(

−y

x

) (

x(0)
y(0)

)

= v

and define cos s and sin s by

(

cos s

sin s

)

= R(s)

(

1
0

)

by s radians. This

should make intuitive sense. We do not need to prove that the derivative of cos s

is − sin s and the derivative of sin s is cos s using this approach, they, along with
the values at s = 0 are the definitions.
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The Rotation and Addition Formulas

In this approach, the issue is to show that they correspond with other con-
cepts of cos and sin. We will justify the necessary technicalities, such as exis-
tence, uniqueness, and linearity of solutions of these particular linear, constant
coefficient differential equations with respect to initial conditions in an appendix.
These demonstrations give concrete examples of and motivation for the more
general theory.

First we show if R(s)

(

1
0

)

=

(

A

B

)

then R(s)

(

0
1

)

=

(

−B

A

)

. (Cap-

ital letters are used to identify the components of unit vectors.) To do this, we

only need to turn our head a quarter circle clockwise, so the rotation of

(

1
0

)

into

(

A

B

)

”looks like” the rotation of

(

0
1

)

into

(

−B

A

)

. Mathematically

then, we define u(t) = −y(t) and v(t) = x(t), so the u − v axes are a quarter
circle clockwise from the x − y axes. Then u′ = −v v′ = u u(0) = 0 v(0) = 1
leads to Then x′ = v′ = u = −y y′ = −u′ = v = x x(0) = 1 y(0) = 0, as
expected. Since we know x(s) = A y(s) = B, we also know that u(s) = −B

v(s) = A which we were trying to prove.

Then, to see that the rotation which takes

(

1
0

)

to

(

A

B

)

takes

(

x

y

)

=

x

(

1
0

)

+ y

(

0
1

)

= x

(

A

B

)

+ y

(

−B

A

)

=

(

Ax − By

Bx + Ay

)

we check that
(

u

v

)

= x

(

cos s

sin s

)

+ y

(

− sin s

cos s

)

is a solution of d
ds

(

u

v

)

=

(

−v

u

)

,

since d
ds

u = x(− sin s) + y(− cos s) = −v and d
ds

v = x(cos s) + y(− sin s) =

u. Also,

(

u(0)
v(0)

)

= x

(

1
0

)

+ y

(

0
1

)

=

(

x

y

)

This proves the rotation

formula. (This is a concrete demonstration of the linearity of solutions of linear
differential equations with respect to their initial conditions.)

We set

(

x

y

)

=

(

cos t

sin t

)

= R(t)

(

1
0

)

and see that R(s)R(t)

(

1
0

)

=
(

cos s cos t − sin s sin t

cos s sin t + sin s cos t

)

.

Finally, we check that that R(t)R(s)v = R(s+t)v = R(s)R(t)v, i.e., rotation
by s then by t is the same as rotation by s+ t, which is the same as rotation by t

then by s. (This is another property of solutions of differential equations, based
in turn upon uniqueness of solutions with the value prescribed at one point.)

Then, R(s + t)

(

1
0

)

=

(

cos(s + t)
sin(s + t)

)

=

(

cos s cos t − sin s sin t

cos s sin t + sin s cos t

)

. These

are the trigonometric addition formulas.
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The Pythagorean Relation

We begin with a proof corresponding to the ”precalculus” demonstration
based upon the rotation formula and reflection.

By the rotation formula, if R(s)

(

1
0

)

=

(

A

B

)

then R(s)

(

A

−B

)

=
(

A2 + B2

0

)

.

By time reversal, If R(s)

(

1
0

)

=

(

A

B

)

then R(−s)

(

A

−B

)

=

(

1
0

)

.

Proof: R((−s) + s)v = R(0)v. So R(−s)R(s)

(

1
0

)

= R(0)

(

1
0

)

=
(

1
0

)

.

Finally, if R(s)

(

1
0

)

=

(

A

B

)

, then R(s)

(

A

−B

)

=

(

1
0

)

.

We use a reflection change of variables similar to the quarter circle rotation
change of variables used to prove the rotation formula. Assume u′ = −v v′ = u

u(0) = A v(0) = −B Let x(t) = u(−t) and y(t) = −v(−t). Then x′(t) =
−u′(−t) = v(−t) = −y(t) and y′(t) = v′(−t) = u(−t) = x(t). Also x(0) = A

y(0) = B, so by the time reversal step, x(−s) = 1 y(−s) = 0, which says So
u(s) = 1 v(s) = 0.

Taken together, these say if a rotation takes

(

1
0

)

to

(

A

B

)

, then it

takes

(

A

−B

)

to

(

A2 + B2

0

)

=

(

1
0

)

. The first component gives the

Pythagorean relation in the form cos(s−s) = 1. It gives the relationship between
the horizontal and vertical coordinates of a point to which the point (1, 0) may
be rotated by a rigid rotation about the origin. This implicit form of the unit
circle is useful for testing whether a point is on the unit circle, while the explicit

form,

(

cos s

sin s

)

, is useful for generating points on the unit circle.

Another more direct demonstration that (cos s)2 + (sin s)2 = 1 does not
appear to have a precalculus analogue.

d

ds

1

2
((cos s)2 + (sin s)2) = cos s

d

ds
cos s + sin s

d

ds
sin s

= cos s(− sin s) + sin s cos s = 0.

Since the derivative is 0, the quantity is constant. Since cos(0)2 + sin(0)2 =
12 + 02 = 1, then (cos s)2 + (sin s)2 = 1 for all s. In vector terms, this says that
the velocity is orthogonal to the position (by definition) and thus the length
squared, the dot product of the position with itself, is constant.
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Corollary: The components of the velocity vector

(

− sin s

cos s

)

also satify the

Pythagorean relation, since

(− sin s)2 + (cos s)2 = 1.

These identities confirm our intuition that the point (cos s, sin s) travels
counterclockwise on the conventionally defined unit circle

x2 + y2 = 1

with unit speed, starting from (1, 0) at s = 0.

By incorporating scaling, S(r), into the discussion, such that S(r)

(

1
0

)

=
(

r

0

)

, and showing that R(s)S(r) = S(r)R(s), we may extend these results to

show x2 + y2 = r2 and the rotation formula to a ”rotation-scaling” formula for

the complex number plane: If a rotation and scaling takes

(

1
0

)

to

(

A

B

)

,

then it takes

(

x

y

)

to

(

Ax − By

Bx + Ay

)

. This will be done elsewhere.

More significant than the tendency to use the opposite letters from those rep-
resenting rotation and scaling for the independent variables of their respective
transformations, s and r (for arclength and radial distance), is the distinction
in their origin. The arclength is based upon the independent variable for the
differential equation defining rotation (although unit speed makes it the same as
the distance travelled by the dependent variable.) To treat the radial distance
analogously, we would define S(r) ”logarithmically” so that S(r)v is the solu-
tion at r of the corresponding ”scaling differential equation” with intial value
v, so that again S(0) is the identity. But there are limits to the challenges even
we are prepared to make to convention!
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The Geometric Interpretation of the Dot Product

The dot product of two vectors may be motivated as a generalization of the
”negative reciprocal rule” for the slopes of perpendicular lines. The rule is based
upon a similar triangle argument. If we apply the rule to the slopes of the lines

determined by the components of perpendicular vectors

(

v1

v2

)

and

(

w1

w2

)

,

v2
v1

w2
w1 = −1 When one slope is zero and the other is infinite, the rule fails, but

if we clear the denominators we obtain v ·w ≡ v1w1 + v2w2 = 0 which holds for
any two perpendicular vectors. This expression is called the dot product of the
vectors v and w.

To see the significance of the dot product when it is not necessarily zero, we
observe that if two vectors v and w are rotated by the same rotation, R(s) then
the dot product of the resulting vectors, R(s)v · R(s)w, is the same as the dot
product of the original vectors, v · w. We compute:

R(s)v · R(s)w =

(

v1 cos s − v2 sin s

v1 sin s + v2 cos s

)

·

(

w1 cos s − w2 sin s

w1 sin s + w2 cos s

)

·

= v1v2((cos s)2 + (sin s)2) + w1w2((cos s)2 + (sin s)2)

= v1v2 + w1w2 = v · w

using the Pythagorean relation.
If we perform a rotation on both v and w which makes the first component

of v positive and the second component equal to zero, i.e., rotates it to the
positive horizontal axis, then the components of v may be written

(

r1

0

)

and the components of w may be written

(

r2 cos s

r2 sin s

)

for some nonnegative numbers r1, r2, and s, the angle between v and w.
The dot product r1r2 cos s of these vectors is the same as the dot product of

the original v and w and represents the product of their magnitudes times the
cosine of the angle between them. This expression and its interpretation have
far reaching consequences and generalizations which we will explore in more
depth elsewhere.

The method we have used to give the geometric interpretation of the dot
product can also be applied to give the geometric intepretation of the cross
product in two and three dimensions, and the dot product v · w =

∑n

1 vjwj in
any number of dimensions as follows. In three dimensions, we first perform a
y−z rotation to move the first vector to the x−y plane by making the resulting
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z = 0. Next we perform an x − y rotation to make y = 0 (while z remains
zero.) Finally, we perform another y − z rotation (which leaves y = z = 0 of
our first vector undisturbed) to make the z component of the second vector
(which has already undergone the same rotations as the first) equal to zero.
We may take any k ≤ n vectors in Rn and perform a sequence of coordinate
plane rotations upon all of them (preserving all pairs of dot products, since it
preserves the contribution from each pair of components) so that the image of
the first vector has all but its first component zero, the image of the second has
all but its first two components equal to zero, and so on. This shows that our
method generalizes to the QR decomposition of a matrix by Givens’ rotations,
a computationally important method for orthogonalizing vectors.
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Series Expansion

The series representations for the natural cosine and sine functions follow
immediately from differentiating the defining derivative relationships:

The jth derivative of cos s, is

cos(j)(s) =









cos s j = 0 mod 4
− sin s j = 1 mod 4
− cos s j = 2 mod 4

sin s j = 3 mod 4

and the jth derivative of sin s, is

sin(j)(s) =









sin s j = 0 mod 4
cos s j = 1 mod 4

− sin s j = 2 mod 4
− cos s j = 3 mod 4

Using the initial conditions, also from the definition, at s = 0 the jth deriva-
tive of cos s is

cos(j)(0) =









1 j = 0 mod 4
0 j = 1 mod 4

−1 j = 2 mod 4
0 j = 3 mod 4

and the jth derivative of sin s is

sin(j)(0) =









0 j = 0 mod 4
1 j = 1 mod 4
0 j = 2 mod 4

−1 j = 3 mod 4

By considering the preferable ”shift” form of the differentiation rule for poly-

nomials, a d
dx

xj

j! = axj−1

j−1! . in which taking derivatives simply shifts the coeffi-

cients to of a polynomial to the left, it is easy to see that the polynomial p(x)
of smallest degree having prescribed derivatives p(j)(c) = aj , j = 0, . . . , k is

p(x) =

k
∑

j=0

aj

xj

j!

.
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Putting these pieces together, we confirm that the polynomial p(x) of degree
k having the same jth derivatives as cosx p(j)(0) = cos(j)(0), j = 0, . . . , k is

p(x) =

2j≤k
∑

j=0

−1j x2j

(2j)!

or, written out other form:

p(x) = 1 −
x2

2!
+

x4

4!
−

x6

6!
+ . . . +

x2l

(2l)!

where 2l is the largest even number less than or equal to k.

The polynomial p(x) of degree k having the same jth derivatives as sin x

p(j)(0) = sin(j)(0), j = 0, . . . , k is

p(x) =

2j+1≤k
∑

j=0

−1j x2j+1

(2j + 1)!

or, written out other form:

p(x) = x −
x3

3!
+

x5

5!
−

x7

7!
+ . . . +

x2l + 1

(2l + 1)!

where 2l + 1 is the largest odd number less than or equal to k.

These formulas are the essence of the Taylor-Maclaurin series representations
of the natural cosine and sine functions.

To demonstrate convergence of these polynomial approximations, as well as
the existence and uniqueness of solutions of the rotational differential equation,
we use the estimate for the remainder (difference) between an infinitely differ-
entiable function f and its kth degree polynomial approximation given above,

Rk+1(s) = f (k+1)(ξ) sk+1

(k+1)! for some ξ ∈ [0, s]. Since | cos(k+1)(s)| ≤ 1 and

| sin(k+1)(s)| ≤ 1 by applying the Pythagorean relation to the higher derivative

formulas, and sk+1

(k+1)! as k → ∞ for all s ∈ [−∞,∞], the series is convergent.

We will show elsewhere that the convergence of this series, which is also arises
in the ”Picard fixed point iteration” for the rotational differential equation also
demonstrates the existence and uniqueness of its solutions.

This approach highlights the power of the fundamental framework of dif-
ferential equations, such as existence, uniqueness, linear dependence on initial
conditions, etc.
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