1. Jordan Lemma

Let R_{0} be a positive number and a a real number with $|a|<R_{0}$. Let

$$
S=\left\{z \in \mathbb{C}| | z \mid \geq R_{0} \text { and } \operatorname{Im} z \geq a\right\}
$$

be the region sketched in the following picture:

Let f be a continuous function on S such that $\lim _{z \rightarrow \infty} f(z)=0$, i.e., for any $\epsilon>0$ there exists $R \geq R_{0}$ such that $z \in S$ and $|z|>R$ implies that $|f(z)|<\epsilon$.

Let γ_{R} be the positively oriented arc determined as the intersection of the circle of radius R centered at the origin with S.
1.1. Lemma (Jordan Lemma). For any $m>0$ we have

$$
\lim _{R \rightarrow \infty} \int_{\gamma_{R}} e^{i m z} f(z) d z=0
$$

Assume first that a is positive. Then γ_{R} is parameterized as $\gamma_{R}(\varphi)=R e^{i \varphi}$ for $\varphi \in[\alpha(R), \pi-\alpha(R)]$. Therefore, we have

$$
\begin{gathered}
\left|\int_{\gamma_{R}} e^{i m z} f(z) d z\right|=\left|i R \int_{\alpha(R)}^{\pi-\alpha(R)} e^{i m R e^{i \varphi}} f\left(R e^{i \varphi}\right) e^{i \varphi} d \varphi\right| \\
\leq R \int_{\alpha(R)}^{\pi-\alpha(R)}\left|e^{i m R(\cos \varphi+i \sin \varphi)}\right|\left|f\left(R e^{i \varphi}\right)\right| d \varphi \\
=R \int_{\alpha(R)}^{\pi-\alpha(R)} e^{-m R \sin \varphi}\left|f\left(R e^{i \varphi}\right)\right| d \varphi \\
\leq R \max _{z \in \gamma_{R}^{*}}|f(z)| \int_{\alpha(R)}^{\pi-\alpha(R)} e^{-m R \sin \varphi} d \varphi \\
\leq R \max _{z \in \gamma_{R}^{*}}|f(z)| \int_{0}^{\pi} e^{-m R \sin \varphi} d \varphi=2 R \max _{z \in \gamma_{R}^{*}}|f(z)| \int_{0}^{\frac{\pi}{2}} e^{-m R \sin \varphi} d \varphi
\end{gathered}
$$

Now we use the following simple lemma.
1.2. Lemma. Let $\varphi \in\left[0, \frac{\pi}{2}\right]$. Then

$$
\sin \varphi \geq \frac{2}{\pi} \varphi
$$

Proof. This is clear from the following picture representing the graphs of the functions $y=\sin x$ and $y=\frac{2}{\pi} x$ which intersect at the origin and the point $\left(\frac{\pi}{2}, 1\right)$:

To get an analytic proof, consider the function

$$
F(x)=\frac{\sin x}{x}
$$

on $\left(0, \frac{\pi}{2}\right]$. Clearly, the function is differentiable on $(0, \infty)$ and

$$
F^{\prime}(x)=\frac{x \cos x-\sin x}{x^{2}}
$$

Moreover, if $G(x)=x \cos x-\sin x$, we have

$$
G^{\prime}(x)=\cos x-x \sin x-\cos x=-x \sin x
$$

Hence, $G^{\prime}(x) \leq 0$ for $x \in[0, \pi]$, and the function is decreasing there, i.e., $G(x) \leq$ $G(0)=0$ for $x \in[0, \pi]$. This implies that $F^{\prime}(x) \leq 0$ for $x \in(0, \pi]$ and the function is decreasing on this interval. In particular, for $x \in\left(0, \frac{\pi}{2}\right]$, we have $F(x) \geq F\left(\frac{\pi}{2}\right)=$ $\frac{2}{\pi}$.

Using this result, we see that

$$
\begin{aligned}
& \int_{0}^{\frac{\pi}{2}} e^{-m R \sin \varphi} d \varphi \leq \int_{0}^{\frac{\pi}{2}} e^{-\frac{2 m R}{\pi} \varphi} d \varphi \\
&=-\frac{\pi}{2 m R}\left[e^{-\frac{2 m R}{\pi} \varphi}\right]_{0}^{\frac{\pi}{2}}=\frac{\pi}{2 m R}\left(1-e^{-m R}\right) \leq \frac{\pi}{2 m R}
\end{aligned}
$$

Combining this with the above we get

$$
\left|\int_{\gamma_{R}} e^{i m z} f(z) d z\right| \leq \frac{\pi}{m} \max _{z \in \gamma_{R}^{*}}|f(z)| .
$$

Therefore, the left side tends to 0 as $R \rightarrow \infty$. This proves the lemma in this case.

If $a<0$, the path γ_{R} is parameterized as $\gamma_{R}(\varphi)=R e^{i \varphi}$ where $\varphi \in[-\alpha(R), \pi+$ $\alpha(R)]$. Therefore, γ_{R} consists of three positively oriented arcs: the arc $\gamma_{R}^{\prime \prime}$ for $\varphi \in[-\alpha(R), 0]$, followed by γ_{R}^{\prime} for $\varphi \in[0, \pi]$ and $\gamma_{R}^{\prime \prime \prime}$ for $\varphi \in[\pi, \pi+\alpha(R)]$. It follows that

$$
\int_{\gamma_{R}} e^{i m z} f(z) d z=\int_{\gamma_{R}^{\prime \prime}} e^{i m z} f(z) d z+\int_{\gamma_{R}^{\prime}} e^{i m z} f(z) d z+\int_{\gamma_{R}^{\prime \prime \prime}} e^{i m z} f(z) d z
$$

The second integral tends to zero as $R \rightarrow \infty$ by the first part of the proof. As before, the first integral satisfies

$$
\begin{array}{r}
\left|\int_{\gamma_{R}^{\prime \prime}} e^{i m z} f(z) d z\right|=\left|i R \int_{-\alpha(R)}^{0} e^{i m R e^{i \varphi}} f\left(R e^{i \varphi}\right) e^{i \varphi} d \varphi\right| \\
\leq R \int_{-\alpha(R)}^{0} e^{-m R \sin \varphi}\left|f\left(R e^{i \varphi}\right)\right| d \varphi
\end{array}
$$

From the geometry of our situation, we see that $\sin \alpha(R)=\frac{|a|}{R}$. Since $\alpha(R)<\frac{\pi}{2}$, we see that

$$
-\sin \varphi \leq \sin \alpha(R)=\frac{|a|}{R}
$$

for $\varphi \in[-\alpha(R), 0]$. It follows that

$$
\begin{aligned}
\left|\int_{\gamma_{R}^{\prime \prime}} e^{i m z} f(z) d z\right| & \leq e^{m|a|} \max _{z \in \gamma_{R}^{*}}|f(z)| \ell\left(\gamma_{R}^{\prime \prime}\right) \\
& =e^{m|a|} \max _{z \in \gamma_{R}^{*}}|f(z)| R \alpha(R)=e^{m|a|} \max _{z \in \gamma_{R}^{*}}|f(z)| R \arcsin \left(\frac{|a|}{R}\right) .
\end{aligned}
$$

Now, we have

$$
\lim _{R \rightarrow \infty} R \arcsin \left(\frac{|a|}{R}\right)=\lim _{s \rightarrow 0} \frac{\arcsin (|a| s)}{s}=|a| \lim _{s \rightarrow 0} \frac{\arcsin s}{s}=|a| \lim _{t \rightarrow 0} \frac{t}{\sin t}=|a|,
$$

and this implies that the above integral tends to zero as $R \rightarrow \infty$. The argument for $\gamma_{R}^{\prime \prime \prime}$ is analogous.

