1. JORDAN LEMMA
Let Ry be a positive number and a a real number with |a| < Ry. Let
S={z€C|l|z]| > Rypand Imz > a}

be the region sketched in the following picture:

YR

Let f be a continuous function on S such that lim,_,» f(z) = 0, i.e., for any € > 0
there exists R > Ry such that z € S and |z| > R implies that |f(z)| < e.

Let vr be the positively oriented arc determined as the intersection of the circle
of radius R centered at the origin with S.

1.1. Lemma (Jordan Lemma). For any m > 0 we have

lim / e"™* f(2)dz = 0.
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Assume first that a is positive. Then g is parameterized as yr(p) = Re'# for
¢ € [a(R), ™ — a(R)]. Therefore, we have
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Now we use the following simple lemma.

1.2. Lemma. Let ¢ € [0,%]. Then

. 2
sinp > —.
™

Proof. This is clear from the following picture representing the graphs of the func-
tions y = sinz and y = %:1: which intersect at the origin and the point (F,1):
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To get an analytic proof, consider the function

F({I;) _ S x

x

on (0, §]. Clearly, the function is differentiable on (0, 00) and

rcosx —sinx

F'(z) = 5
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Moreover, if G(z) = z cosz — sinz, we have
G'(z) = cosx — rsinx — cosx = —xsinz.

Hence, G'(z) < 0 for = € [0, 7], and the function is decreasing there, i.e., G(x) <
G(0) =0 for x € [0, 7]. This implies that F'(z) < 0 for = € (0, 7] and the function
is decreasing on this interval. In particular, for x € (0, 5], we have F(z) > F(§) =
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Using this result, we see that
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Combining this with the above we get
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Therefore, the left side tends to 0 as R — oo. This proves the lemma in this
case.

If a < 0, the path g is parameterized as yr(p) = Re'? where ¢ € [—a(R),7 +
a(R)]. Therefore, yr consists of three positively oriented arcs: the arc v} for
¢ € [—a(R),0], followed by ~} for ¢ € [0,7] and 7% for ¢ € [m,7 + a(R)]. It
follows that

[m eimzf(z)dz = /W eime(z)dZ+ /7/ eimzf(z)dz—i— A,,, eimzf(z)dz
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f(2)].



3

The second integral tends to zero as R — oo by the first part of the proof. As
before, the first integral satisfies
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From the geometry of our situation, we see that sina(R) = %I. Since a(R) < 7§,
we see that
—sinyp <sina(R) =

for ¢ € [~a(R),0]. It follows that
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= ™ max |f(2)| Ro(R) = €™ max |f(z)| Rarcsin (M)
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Now, we have
arcsi arcsin s
lim R arcsin (M) = lim aresin(jals) = |a| lim
R—o00 R s—0 S s—0

and this implies that the above integral tends to zero as R — oo. The argument

for 47 is analogous.

. t
= |a| lim — = |a,
t—0sint



