
1. Jordan Lemma

Let R0 be a positive number and a a real number with |a| < R0. Let

S = {z ∈ C | |z| ≥ R0 and Im z ≥ a}

be the region sketched in the following picture:
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Let f be a continuous function on S such that limz→∞ f(z) = 0, i.e., for any ǫ > 0
there exists R ≥ R0 such that z ∈ S and |z| > R implies that |f(z)| < ǫ.

Let γR be the positively oriented arc determined as the intersection of the circle
of radius R centered at the origin with S.

1.1. Lemma (Jordan Lemma). For any m > 0 we have

lim
R→∞

∫

γR

eimzf(z)dz = 0.

Assume first that a is positive. Then γR is parameterized as γR(ϕ) = Reiϕ for
ϕ ∈ [α(R), π − α(R)]. Therefore, we have
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Now we use the following simple lemma.

1.2. Lemma. Let ϕ ∈ [0, π
2 ]. Then

sinϕ ≥
2

π
ϕ.

Proof. This is clear from the following picture representing the graphs of the func-
tions y = sinx and y = 2

π
x which intersect at the origin and the point (π2 , 1):
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To get an analytic proof, consider the function

F (x) =
sinx

x

on (0, π
2 ]. Clearly, the function is differentiable on (0,∞) and

F ′(x) =
x cosx− sinx

x2
.

Moreover, if G(x) = x cosx− sinx, we have

G′(x) = cosx− x sinx− cosx = −x sinx.

Hence, G′(x) ≤ 0 for x ∈ [0, π], and the function is decreasing there, i.e., G(x) ≤
G(0) = 0 for x ∈ [0, π]. This implies that F ′(x) ≤ 0 for x ∈ (0, π] and the function
is decreasing on this interval. In particular, for x ∈ (0, π2 ], we have F (x) ≥ F (π2 ) =
2
π
. �

Using this result, we see that
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Combining this with the above we get
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Therefore, the left side tends to 0 as R → ∞. This proves the lemma in this
case.

If a < 0, the path γR is parameterized as γR(ϕ) = Reiϕ where ϕ ∈ [−α(R), π +
α(R)]. Therefore, γR consists of three positively oriented arcs: the arc γ′′

R for
ϕ ∈ [−α(R), 0], followed by γ′

R for ϕ ∈ [0, π] and γ′′′
R for ϕ ∈ [π, π + α(R)]. It

follows that
∫
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eimzf(z)dz =

∫

γ′′

R

eimzf(z)dz +
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eimzf(z)dz.
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The second integral tends to zero as R → ∞ by the first part of the proof. As
before, the first integral satisfies
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From the geometry of our situation, we see that sinα(R) = |a|
R
. Since α(R) < π

2 ,
we see that

− sinϕ ≤ sinα(R) =
|a|

R
for ϕ ∈ [−α(R), 0]. It follows that
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.

Now, we have

lim
R→∞

R arcsin

(

|a|

R

)

= lim
s→0

arcsin(|a|s)

s
= |a| lim

s→0

arcsin s

s
= |a| lim

t→0

t

sin t
= |a|,

and this implies that the above integral tends to zero as R → ∞. The argument
for γ′′′

R is analogous.


