
NOTES ON RIEMANN SURFACES

DRAGAN MILIČIĆ

1. Riemann surfaces

1.1. Riemann surfaces as complex manifolds. Let M be a topological space.
A chart on M is a triple c = (U,ϕ) consisting of an open subset U ⊂ M and a
homeomorphism ϕ of U onto an open set in the complex plane C. The open set U
is called the domain of the chart c.

The charts c = (U,ϕ) and c′ = (U ′, ϕ′) on M are compatible if either U ∩U ′ = ∅
or U ∩ U ′ 6= ∅ and ϕ′ ◦ ϕ−1 : ϕ(U ∩ U ′) −→ ϕ′(U ∩ U ′) is a bijective holomorphic
function (hence the inverse map is also holomorphic).

A family A of charts on M is an atlas of M if the domains of charts form a
covering of M and any two charts in A are compatible.

Atlases A and B of M are compatible if their union is an atlas on M . This is
obviously an equivalence relation on the set of all atlases on M . Each equivalence
class of atlases contains the largest element which is equal to the union of all atlases
in this class. Such atlas is called saturated.

An one-dimensional complex manifold M is a hausdorff topological space with
a saturated atlas. If M is connected we also call it a Riemann surface.

Let M be an Riemann surface. A chart c = (U,ϕ) is a chart around z ∈ M if
z ∈ U . We say that it is centered at z if ϕ(z) = 0.

Let M and N be two Riemann surfaces. A continuous map F : M −→ N is a
holomorphic map if for any two pairs of charts c = (U,ϕ) on M and d = (V, ψ) on
N such that F (U) ⊂ V , the mapping

ψ ◦ F ◦ ϕ−1 : ϕ(U) −→ ϕ(V )

is a holomorphic function. We denote by Mor(M,N) the set of all holomorphic
maps from M into N .

Any open subset Ω of a Riemann surface M inherits the structure of open sub-
manifold of M . If it is connected, it is also a Riemann surface.

The complex line C has an obvious structure of Riemann surface given by the
chart (C, idC). A holomorphic map f : M −→ C from a Riemann surface M into
C is called a holomorphic function on M .

If Ω is a domain in C, a holomorphic function f on Ω is a holomorphic function
in sense of our old definition.

Clearly, Riemann surfaces as objects and holomorphic maps as morphisms form
a category. Isomorphisms in this category are called holomorphic isomorphisms.

Let M be a Riemann surface. An holomorphic isomorphism of M with itself
is called a holomorphic automorphism of M . The set of all holomorphic auto-
morphisms, with composition of maps as an operation, forms a group Aut(M) of
holomorphic automorphisms of M .
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1.2. Zeros and isolated singularities of holomorphic functions. Let M be
a Riemann surface. Let f be a holomorphic function on M . Denote by Z(f) the
set of all zeros of f , i.e. Z(f) = {z ∈M | f(z) = 0}.
1.2.1. Proposition. Either f = 0 on M or the set Z(f) of zeros of f has no limit
points.

Proof. Let A be the set of all limit points of Z(f). Assume that A is nonempty,
and a is a point in A. By continuity, a is also a zero of f . Let (U, φ) be a chart of
M centered at a. Assume that U is connected. Then 0 is a zero of the holomorphic
function f = f ◦ φ−1 on φ(U). Since 0 is a limit point of zeros of f ◦ φ−1, by [2,
Theorem 10.18] it follows that f is zero on U . Therefore, any point of U is in A.
This implies that A is an open set. On the other hand, any limit point of A is a
limit point of zeros, i.e., it is in A. Hence, A is also closed. Since M is connected,
A has to be equal to M . �

Therefore, a zero a of a nontrivial holomorphic function on a Riemann surface is
isolated. Hence, there exists a chart (U,ϕ) centered at a such that f has no other
zeros on U . Therefore, the holomorphic function f ◦ϕ−1 on ϕ(U) has only one zero
at 0. Assume that 0 is a zero of order m of f ◦ ϕ−1. By [2, Theorem 10.32], there
is a (possibly smaller) neighborhood U ′ of a such that f ◦ ϕ−1 is a m-to-1 map on
ϕ(U ′)−{0}. Therefore, f is a m-to-1 map on the punctured neighborhood U ′−{a}
of a. Hence, m is independent of the choice of the chart (U,ϕ). We call it the order
of zero a of f .

Let M be a Riemann surface and a a point in M . If f is a function holomorphic
on M − {a} we say that a is an isolated singularity of f .

The isolated singularity a of f is removable, if we can define f(a) so that the
extended function f is holomorphic on M . By [2, Theorem 10.20], we have the
following result.

1.2.2. Proposition. Let a be an isolated singularity of a holomorphic function f
on a Riemann surface M . Assume that there exists a neighborhood U of a such
that f is bounded on U − {a}. Then a is a removable singularity.

Assume that a is an isolated singularity of f and limz→a |f(z)| = +∞. Then
we say that a is a pole of f . If (U,ϕ) is a chart of M centered at a, the function
f ◦ ϕ−1 has a pole at 0.

Clearly, if a is a pole of f , there is a neighborhood U of a such that f is different
from zero on U − {a}. Therefore, the function g = 1

f
is holomorphic on U − {a},

i.e., a is an isolated singularity of g. Moreover, limz→a |g(z)| = 0 and g is bounded
around a. Hence, by 1.2.2, a is a removable singularity of g. Moreover, if we extend
g to a holomorphic function on U , a is a zero of g. The order m of the pole of
f ◦ϕ−1 is equal to the order of zero g ◦ϕ−1 at 0. Therefore, it is equal to the order
of zero of g at a, and independent of the choice of the chart (U,ϕ). Therefore, we
say that m is the order of the pole a of f .

If the isolated singularity a is neither a removable singularity nor a pole of f , we
say that it is an essential singularity of f .

By [2, Theorem 10.21], we immediately see that the following result holds.

1.2.3. Proposition. Let a be an isolated singularity of a holomorphic function f
on a Riemann surface M . Then the following statements are equivalent

(i) a is an essential singularity of f ;
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(ii) For any neighborhood U of a the image f(U − {a} of the punctured neigh-
borhood U − {a} is dense in C.

1.3. Holomorphic functions on compact Riemann surfaces. Now we want
to prove the following simple consequence of the maximum principle.

1.3.1. Theorem. Let M be a compact Riemann surface. Then any holomorphic
function on f is constant.

Proof. Consider the real continuous function |f | on M defined by |f |(z) = |f(z)|
for any z ∈M . SinceM is compact this function has a maximum at a point a ∈M .
Let (U, φ) be a chart centered at a (with U connected). Then the function f ◦ φ−1

is a holomorphic function on φ(U) such that |f ◦ φ−1| has a maximum at 0. By
the maximum modulus principle [2, Theorem 10.24], f ◦ φ−1 is constant on φ(U).
Therefore, f is constant on U , i.e., f(z) = c for any z ∈ U and some c ∈ C. It
follows that f − c is zero on U . By 1.2.1, f − c is zero on M , i.e., f is constant. �

1.4. Riemann sphere. Now we are going to construct a compact Riemann surface.
Let X = C2 and X∗ = C2−{(0, 0)}. We define an equivalence relation on X∗ by

(z0, z1) ∼ (ζ0, ζ1) if there exists t ∈ C∗ such that ζi = tzi, i = 0, 1. The equivalence
class of (z0, z1) is denoted by [z0, z1]. Let Y be the set of all equivalence classes in
X∗ and denote by p : X∗ −→ Y the natural projection given by p(z0, z1) = [z0, z1]
for any (z0, z1) ∈ X∗. We equip Y with the quotient topology. Then p : X∗ −→ Y
is a continuous map.

Consider the map ϕ : X∗ −→ R3 given by

ϕ(z0, z1) =

(

2Re(z0z̄1)

|z0|2 + |z1|2
,
2 Im(z0z̄1)

|z0|2 + |z1|2
,
|z0|2 − |z1|2
|z0|2 + |z1|2

)

.

This is clearly a continuous map. Let S2 be the sphere in R3 of radius 1 centered
at the origin. Then, we have

(2Re(z0z̄1))
2 + (2 Im(z0z̄1))

2 + (|z0|2 − |z1|2)2

= 4|z0z̄1|2 + |z0|4 − 2|z0|2|z1|2 + |z1|4 = (|z0|2 + |z1|2)2

and ϕ(z0, z1) is in S
2 for any (z0, z1) ∈ X∗. Therefore, we can view ϕ as a continuous

map of X∗ into S2.
Moreover, ϕ is constant on the equivalence classes in X∗ and defines a continuous

map Φ of Y into S2.

1.4.1. Lemma. The map Φ : Y −→ S2 is a homeomorphism.

Let U0 = {[z0, z1] ∈ Y | z1 6= 0} and U1 = {[z0, z1] ∈ Y | z0 6= 0}. Then
U0 and U1 are open subsets in Y and Y − U0 = {[1, 0]} and Y − U1 = {[0, 1]}.
Hence, {U0, U1} is an open cover of Y . Clearly, Φ([1, 0]) = (0, 0, 1). If z1 6= 0,
[z0, z1] = [z, 1] for z = z0

z1
, and

Φ([z, 1]) =

(

2Re z

|z|2 + 1
,
2 Im z

|z|2 + 1
,
|z|2 − 1

|z|2 + 1

)

.

Let (a, b, c) = Φ([z, 1]). Then, −1 ≤ c < 1, and U0 maps into S2 − {(0, 0, 1)}.
Moreover, the equality c = |z|2−1

|z|2+1 implies that |z|2 = 1+c
1−c . Hence, |z|2 + 1 = 2

1−c

and

a =
2Re z

|z|2 + 1
= (1− c)Re z and b =

2 Im z

|z|2 + 1
= (1− c) Im z.



4 D. MILIČIĆ

Hence,

z =
a+ ib

1− c

and Φ|U0
: U0 −→ S2 − {(0, 0, 1)} is a homeomorphism. Analogously, we can prove

that Φ|U1
: U1 −→ S2 − {(0, 0,−1)} is a homeomorphism. Therefore, Φ : Y −→ S2

is a homeomorphism. It follows that Y is homeomorphic to a two-dimensional
sphere, i.e., Y is connected, compact and hausdorff.

Let φ0 : U0 −→ C given by φ0([z0, z1]) = z0
z1
. Then φ0 is a continuous map.

Moreover, z 7−→ [z, 1] for z ∈ C, is its inverse map. Hence, φ0 : U0 −→ C is
a homeomorphism and we can view (U0, φ0) as a chart on Y . Analogously, φ1 :
U1 −→ C given by φ1([z0, z1]) = z1

z0
, is a homeomorphism of U1 onto C. Hence,

(U1, φ1) is another chart on Y .
Clearly, U0∩U1 = Y −{[0, 1], [1, 0]} and φi(U0∩U1) = C∗ = C−{0} for i = 0, 1.

Moreover,

(φ0 ◦ φ−1
1 )(z) = φ0([1, z]) =

1

z
for any z ∈ C

∗, i.e., this is a holomorphic isomorphism.
Therefore, our two charts are compatible and cover Y . Therefore, they define a

one-dimensional complex manifold structure on Y . Clearly, Y is a Riemann surface
which is diffeomorphic to a two-dimensional sphere. It called the one-dimensional
projective space or Riemann sphere and denoted by P1.

We denote the point [1, 0] by ∞. The complement of this point is the open
submanifold U0. The map φ0 : U0 −→ C is an isomorphism of Riemann surfaces.
Therefore, we can identify U0 with C in this way. Therefore, we can view the
complex plane C as this open submanifold of P1.

Also, we will call [1, 0] the north pole, and [0, 1] the south pole of the Riemman
sphere. These poles correspond to points (0, 0, 1) and (0, 0,−1) in S2. The circle
{(x, y, z) | z = 0} is the equator of the Riemann sphere. It corresponds to {[z, 1] |
|z| = 1}. Also we consider open upper hemisphere {(x, y, z) ∈ S2 | z > 0} and lower
hemisphere {(x, y, z) ∈ S2 | z < 0}.

The Riemann surface P1 is compact and simply connected. By 1.3.1, the only
holomorphic functions on P1 are constants.

Finally, we remark that this observation is closely related to the Liouville’s the-
orem [2, Theorem 10.23]. If f is a bounded entire function, f ◦ φ0 is a bounded
holomorphic function on U0 = P1 − {∞}. Therefore, it has an isolated singularity
at ∞. By 1.2.2, this singularity is removable. Hence, the function extends to a
holomorphic function on the Riemann sphere. as we remarked, this function must
be constant. Hence, it follows that f is also constant.

1.5. Linear fractional transformations. LetM2(C) be the algebra of all 2-by-2
complex matrices. Let GL(2,C) be the subset of all regular matrices in M2(C), i.e.,
the set of all matrices

γ =

(

a b
c d

)

with ad − bc 6= 0. This set with matrix multiplication as a binary operation is a
group which is called the general linear group. Elements of that group act on C

2

by
(

a b
c d

)(

z0
z1

)

=

(

az0 + bz1
cz0 + dz1

)

.
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Clearly, under this action the point (1, 0) maps into the point (a, c). Therefore,
we can find a matrix γ in GL(2,C) which maps (1, 0) into an arbitrary point in
C2 − {(0, 0)}. It follows that GL(2,C) acts on C2 with exactly two orbits: the
origin {(0, 0)} and its complement C2−{(0, 0)}. Clearly, by the above formula, the
action of an element γ in GL(2,C) carries an equivalence class with respect to ∼
into another equivalence class. Hence, γ induces a map ϕγ : P1 −→ P1 given by
the formula

ϕγ([z0, z1]) = [az0 + bz1, cz0 + dz1].

This defines an action of GL(2,C) on P
1 and this action is transitive.

1.5.1. Lemma. The action of GL(2,C) on P1 is transitive.

We claim that ϕγ : P1 −→ P1 are holomorphic isomorphisims. Let V =
{[z0, z1] ∈ P1 | cz0 + dz1 6= 0}. Then V = P1 − {[d,−c]} is an open set in P1.
Then we have ϕγ(V ) ⊂ U0 and

(φ0 ◦ ϕγ)([z0, z1]) =
az0 + bz1
cz0 + dz1

for any [z0, z1] in V .
If c = 0, V = U0 and

(φ0 ◦ ϕγ ◦ φ−1
0 )(z) = (φ0 ◦ ϕγ)([z, 1]) =

az + b

d

for any z ∈ ϕ−1
0 (U0) = C. Therefore, ϕγ : V −→ U0 is a holomorphic map.

If d = 0, V = U1 and

(φ0 ◦ ϕγ ◦ φ−1
1 )(z) = (φ0 ◦ ϕγ)([1, z]) =

a+ bz

c

for any z ∈ ϕ−1
1 (U1) = C. Therefore, ϕγ : V −→ U0 is a holomorphic map.

If neither c = 0 nor d = 0, we have

(φ0 ◦ ϕγ ◦ φ−1
0 )(z) = (φ0 ◦ ϕγ)([z, 1]) =

az + b

cz + d

for any z ∈ ϕ−1
0 (U0 ∩ V ) = C − {− d

c
}. Therefore, ϕγ : V ∩ U0 −→ U0 is a

holomorphic map.
Analogously, we have

(φ0 ◦ ϕγ ◦ φ−1
1 )(z) = (φ0 ◦ ϕγ)([1, z]) =

a+ bz

c+ dz

for any z ∈ ϕ−1
1 (U1 ∩ V ) = C− {− c

d
}. Hence, ϕγ : V ∩U1 −→ U0 is a holomorphic

map. Since U0 and U1 cover P1, it follows that φγ : V −→ U0 is a holomorphic
map.

Analogously, let W = {[z0, z1] ∈ P1 | az0 + bz1 6= 0}. Then W = P1 − {[b,−a]}
is an open set in P1. Clearly, if [b,−a] = [d,−c], we would have a = tc and b = td
for some t ∈ C∗ and ad − bc = tcd − tdc = 0 contradicting the regularity of γ.
Therefore V and W form an open cover of P1. Moreover, φγ(W ) ⊂ U1 and

(φ1 ◦ ϕγ)([z0, z1]) =
cz0 + dz1
az0 + bz1

for any [z0, z1] in W .
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If a = 0, W = U0 and

(φ1 ◦ ϕγ ◦ φ−1
0 )(z) = (φ1 ◦ ϕγ)([z, 1]) =

cz + d

b

for any z ∈ ϕ−1
0 (U0) = C. Therefore, ϕγ :W −→ U1 is a holomorphic map.

If b = 0, W = U1 and

(φ1 ◦ ϕγ ◦ φ−1
1 )(z) = (φ0 ◦ ϕγ)([1, z]) =

c+ dz

a

for any z ∈ ϕ−1
1 (U1) = C. Therefore, ϕγ :W −→ U1 is a holomorphic map.

If neither a = 0 nor b = 0, we have

(φ1 ◦ ϕγ ◦ φ−1
0 )(z) = (φ0 ◦ ϕγ)([z, 1]) =

cz + d

az + b

for any z ∈ ϕ−1
0 (U0 ∩ W ) = C − {− b

a
}. Therefore, ϕγ : W ∩ U0 −→ U1 is a

holomorphic map.
Analogously, we have

(φ1 ◦ ϕγ ◦ φ−1
1 )(z) = (φ0 ◦ ϕγ)([1, z]) =

c+ dz

a+ bz

for any z ∈ ϕ−1
0 (U1 ∩V ) = C−{−a

b
}. Hence, ϕγ : W ∩U1 −→ U1 is a holomorphic

map. Since U0 and U1 cover P1, it follows that φγ : W −→ U1 is a holomorphic
map.

It follows that φγ : P1 −→ P1 is a holomorphic map. Clearly, its inverse is φγ−1 .
Therefore, ϕγ is a holomorphic automorphism of the Riemann sphere P1.

Holomorphic automorphisms ϕγ for γ ∈ GL(2,C), are called linear fractional
transformations. Clearly, γ 7−→ ϕγ is a group homomorphism of GL(2,C) into
Aut(P1).

Assume that φγ is identity on P1. Then [1, 0] = φγ([1, 0]) = [a, b] and [0, 1] =
φγ([0, 1]) = [c, d]. Hence, b = 0, c = 0 and γ has to be diagonal. On the other hand,
for any other point, we have [z0, z1] = φγ([z0, z1]) = [az0, dz1], i.e., a = d. Hence, γ
is a non-zero multiple of the identity matrix. These matrices form the center Z of
the group GL(2,C).

The subset SL(2,C) of GL(2,C) consisting of all matrices with determinant equal
to 1 is a subgroup of GL(2,C). This subgroup is called the special linear group.
The center of that subgroup is ±I where I is the identity matrix. The quotient of
SL(2,C)/{±I} is denoted by PSL(2,C).

Let γ ∈ GL(2,C). Then det γ ∈ C∗, Let z be a square root of det γ. Then
the product δ of γ with z−1I is an element of SL(2,C) and ϕδ = ϕγ . Therefore,
the image of GL(2,C) under the homomorphism γ 7−→ φγ is equal to the image
of its restriction to SL(2,C). It follows that the subgroup of all linear fractional
transformations in Aut(P1) is isomorphic to PSL(2,C).

Therefore, we established the monomorphism part of the following result. The
epimorphism part will be established in the next section.

1.5.2. Theorem. The homomorphism γ 7−→ ϕγ of PSL(2,C) into the group of all
holomorphic automorphisms Aut(P1) of the Riemann sphere is an isomorphism.
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1.6. Automorphisms of the complex plane. Let ψ be a holomorphic auto-
morphism of C. Then we can view ψ as a entire function. Consider the function
f : z 7−→ ψ

(

1
z

)

. Then this function has a an isolated singularity at 0. Assume that
this singularity is essential. Then, for any R > 0, the image under f of the punc-
tured disk D′(0, 1

R
) would be dense in C. This would imply that the image under

ψ of the complement of the disk D(0, R) is dense in C. Since ψ is a homeomor-
phism of the complex plane, this image would also be closed. Therefore, it would
be equal to the whole plane, what is impossible. Therefore, the isolated singularity
is either removable or a pole. This implies that there exists p ∈ Z+ such that the
function z 7−→ zpf(z) has a removable singularity at 0. This in turn implies that

the function z 7−→ ψ(z)
zp

is bounded on the complement of D(0, R).
Consider now the Taylor series

ψ(z) =

∞
∑

n=0

cnz
n

of ψ. Since ψ is entire it converges in the whole complex plane. Moreover, if γ is a
positively oriented circle of radius R centered at 0, we have that

cn =
1

2πi

∫

γ

ψ(z)

zn+1
dz

satisfies

|cn| ≤
max|z|=R |ψ(z)|

Rn
=

max|z|≥R
∣

∣

ψ(z)
zp

∣

∣

Rn−p
.

Hence, by taking the limit as R → ∞, we get that cn = 0 for n > p. It follows that
ψ is a polynomial.

This immediately implies that ψ′ is also a polynomial. Since ψ is a holomorphic
automorphism of C, we have, by the chain rule, that (ψ−1)′(ψ(z))ψ′(z) = 1. Hence,
ψ′(z) 6= 0 for any z ∈ C. This implies that ψ′ must be a constant polynomial. Hence
ψ is linear function. It follows that ψ(z) = az + b with a 6= 0.

Therefore, we proved the following result.

1.6.1. Lemma. Any holomorphic automorphism of the complex plane C is given by
a nonconstant linear function.

As before, we identify C with the subset U0 = P1 − {∞} of the Riemann sphere
via the map φ0 : U0 −→ C.

Consider the fractional linear transformation ϕγ corresponding to the matrix

γ =

(

a b
0 a−1

)

with a 6= 0. Then, φγ fixes the point ∞. Therefore, it maps U0 into U0. Under our
identification, we have

(φ0 ◦ ϕγ ◦ φ−1
0 )(z) = φ0(ϕγ([z, 1])) = φ0([az + b, a−1]) = a2z + ab

for all z ∈ C. It follows that the subgroup of the group SL(2,C) consisting of
all matrices fixing the point ∞ is equal to the subgroup B of all upper triangular
matrices

{(

a b
0 a−1

) ∣

∣

∣

∣

a 6= 0

}

in SL(2,C). Moreover, every such matrix defines a fractional linear transformation
which induces a holomorphic automorphism of C.
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1.6.2. Theorem. The homomorphism γ 7−→ ϕγ |C is a surjective homomorphism
of the subgroup of all upper triangular matrices B in SL(2,C) onto the group of all
holomorphic automorphisms Aut(C) of C.

The kernel of this homomorphism is {±I}.
Now we can complete the proof of 1.5.2. Let ψ be an holomorphic automorphism

of P1. By 1.5.1, the action of SL(2,C) on P1 is transitive, and there exists γ ∈
SL(2,C) such that ϕγ−1 ◦ ψ fixes ∞. By the above discussion, ϕγ−1 ◦ ψ is ϕδ
for some upper triangular matrix δ ∈ SL(2,C). Hence, we have ψ = ϕγδ. This
completes the proof of 1.5.2.

1.7. Automorphisms of the unit disk. We consider the unit disk D(0, 1) as
imbedded into Riemann sphere by the inclusion ϕ0 : C −→ U0 ⊂ P1. In this way, it
corresponds to {[z, 1] | |z| < 1}. Under the map Φ : P1 −→ S2, this set is identified
with the open lower hemisphere {(x, y, z) ∈ S2 | z < 0} of S2. The equator of the
Riemann sphere P

1 corresponds under this map to {(x, y, z) ∈ S2 | z = 0}.
We consider the subset

SU(1, 1) =

{(

a b
b̄ ā

) ∣

∣

∣

∣

|a|2 − |b|2 = 1

}

of SL(2,C).
For any matrix

(

a b
b̄ ā

)

in SU(1, 1), its inverse is
(

ā −b
−b̄ a

)

,

hence it is again in SU(1, 1). Moreover, if
(

a b
b̄ ā

)

and

(

c d
d̄ c̄

)

are in SU(1, 1), then their product
(

ac+ bd̄ ad+ bc̄
ād̄+ b̄c āc̄+ b̄d

)

is also in SU(1, 1). Hence SU(1, 1) is a subgroup of SL(2,C).
Clearly, the group SU(1, 1) acts on the Riemann sphere by fractional linear

transformations.
Let γ ∈ SU(1, 1). First, if a point [z0, z1] is on the equator of the Riemann

sphere, we have |z0| = |z1|. Therefore, we have z0
z̄1

= z1
z̄0
. Moreover, it follows that

|az0 + bz1| = |āz̄0 + b̄z̄1| = | āz1z̄0 + b̄z1z̄1
z1

|

=
|āz1z̄0 + b̄|z1|2|

|z1|
=

|āz1z̄0 + b̄|z0|2|
|z0|

| = | āz1z̄0 + b̄z0z̄0
z̄0

| = |āz1 + b̄z0|.

Hence, we have that

ϕγ([z0, z1]) = [az0 + bz1, b̄z0 + āz1]



NOTES ON RIEMANN SURFACES 9

is also on the equator of P1. It follows that the equator is invariant for the action
of SU(1, 1). If b = 0 and |a| = 1, we see that

ϕγ([z0, z1]) = [az0, āz1] = [a2z0, z1].

Therefore, SU(1, 1) acts transitively on the equator, i.e., the equator is an orbit for
the action of SU(1, 1).

This implies that for any γ ∈ SU(1, 1), ϕγ maps the complement of the equator
onto itself. Moreover, ϕγ([1, 0]) = [a, b̄]. Since |a|2− |b|2 = 1, we see that this point
is in the open upper hemisphere. On the other hand, ϕγ([0, 1]) = [b, ā], i.e., this
point is in the open lower hemisphere. Since open hemispheres are connected, by
continuity we conclude that ϕγ leaves them invariant.

On the other hand, for |z| < 1, if we put

γ =





1√
1−|z|2

z√
1−|z|2

z̄√
1−|z|2

1√
1−|z|2



 ,

then γ ∈ SU(1, 1). Moreover, we have ϕγ([1, 0]) = [1, z̄] and ϕγ([0, 1]) = [z, 1].
Therefore, SU(1, 1) acts transitively on open upper and lower hemisphere. There-
fore, they are also orbits of SU(1, 1).

1.7.1. Lemma. The group SU(1, 1) acts on the Riemann sphere with three orbits:
the equator, open upper hemisphere and open lower hemisphere.

Since φ0 maps the open lower hemisphere in P1 onto the unit disk, we conclude
that for any γ in SU(1, 1), φ0 ◦ϕγ ◦φ−1

0 is a holomorphic automorphism of the unit
disk D(0, 1).

It follows that γ 7−→ φ0 ◦ϕγ ◦φ−1
0 is a group homomorphism of SU(1, 1) into the

group Aut(D(0, 1)).
If φ0 ◦ ϕγ ◦ φ−1

0 is the identity on the unit disk, we have

z = (φ0 ◦ ϕγ ◦ φ−1
0 )(z) = (φ0 ◦ ϕγ)(z, 1]) = φ0[az + b, b̄z + ā] =

az + b

b̄z + ā
.

Evaluating at z = 0 immediately implies that b = 0. Hence |a| = 1 and z = a2z
for any z ∈ D(0, 1). Hence, a = ±1. Hence the kernel of the homomorphism of
SU(1, 1) into Aut(D(0, 1)) is equal to {±I}.

Let ψ be an element of Aut(D(0, 1)). Then, ψ(0) = z with |z| < 1. By the
above discussion, there exists γ ∈ SU(1, 1) such that ϕγ([0, 1]) = [z, 1]. Hence, the

composition of φ0 ◦ ϕγ−1 ◦ φ−1
0 with ψ is an automorphism of D(0, 1) which fixes

the origin. The rest is based on the following observation.

1.7.2. Lemma. Let Φ be an holomorphic automorphism of D(0, 1) which fixes the
origin. Then there exists λ ∈ C, |λ| = 1, such that Φ(z) = λz for all z ∈ D(0, 1).

Therefore, if a is a complex number such that a2 = λ, Φ = φ0 ◦ ϕδ ◦ φ−1
0 for

δ =

(

a 0
0 a−1

)

in SU(1, 1). Hence, assuming the lemma, we see that φ0 ◦ ϕδ ◦ φ−1
0 = (φ0 ◦ ϕγ−1 ◦

φ−1
0 ) ◦ψ and ψ = φ0 ◦ϕγ·δ ◦ φ−1

0 . It follows that φ is induced by a linear fractional
transformation corresponding to an element of SU(1, 1).

This proves the following result.
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1.7.3. Theorem. The homomorphism γ 7−→ φ0 ◦ϕγ ◦φ−1
0 is a surjective homomor-

phism of SU(1, 1) onto the group of all holomorphic automorphisms Aut(D(0, 1))
of D(0, 1).

The kernel of this homomorphism is {±I}.
It remains to prove 1.7.2. The proof is based on the Schwartz lemma [2, The-

orem 12.2]. Clearly, Φ and Φ−1 map D(0, 1) into itself. Hence, by Schwartz
lemma, |Φ′(0)| ≤ 1 and |(Φ−1)′(0)| ≤ 1. On the other hand, by the chain rule,
Φ′(0)(Φ−1)′(0) = 1. Hence, we must have |Φ′(0)| = 1. By Schwartz lemma, this
implies that Φ(z) = λz for all z ∈ D(0, 1).

1.8. Fixed points of automorphisms. Let M be one of Riemann surfaces we
studied in previous sections, and ϕ a holomorphic automorphism of M . We want
to check when ϕ has a fixed point in M .

The situation is especially simple for the Riemann sphere.

1.8.1. Theorem. Any holomorphic automorphism of the Riemann sphere has a
fixed point.

Proof. By 1.5.2, any holomorphic automorphism of the Riemann sphere is repre-
sented by linear fractional transformation ϕγ for some matrix γ in SL(2,C). This
matrix has an nonzero eigenvalue, and the corresponding eigenvector defines a line
in C2 which determines a point in P1. Clearly, this point is fixed by ϕγ . �

More precisely, any γ ∈ SL(2,C) has two eigenvalues λ and 1
λ
with λ ∈ C−{0}.

Therefore, if λ is also different from ±1, these eigenvalues are distinct. Hence, in
this case γ has two linearly independent eigenvectors. Each of them determines
a line in C2 which is invariant under γ. Hence, the corresponding automorphism
ϕγ has two fixed points in P1. If the eigenvalues are ±1, either γ = ±I and φγ
acts trivially on P1, or γ is ±δ where δ is a unipotent matrix different from I. In
this case, γ has only one linearly independent eigenvector. The corresponding line
determines the unique fixed point of γ in P1.

The answer is also simple in the case of complex plane C. By 1.6.1, any holomor-
phic automorphisms of C is given by a nonconstant linear function z 7−→ az+ b. If
w is a fixed point of that automorphism, we have aw + b = w and (a− 1)w = −b.
This equation has a solution if and only if either a 6= 1 or b = 0. But a = 1 and
b = 0 implies that the automorphism is the identity map. Therefore, we proved the
following result.

1.8.2.Theorem. The only holomorphic automorphisms of the complex plane acting
without fixed points are translations z 7−→ z + b with b 6= 0.

It remains to study the action of the elements SU(1, 1) on the unit disk D(0, 1).

1.9. Some properties of elements of SU(1, 1). To study SU(1, 1) more carefully
it is useful to construct an isomorphism of that group with the group SL(2,R) of
real two-by-two matrices with determinant 1. Consider the matrix

T =
1√
2

(

1 i
i 1

)

.

Its inverse is

T−1 =
1√
2

(

1 −i
−i 1

)

.
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Moreover, detT = detT−1 = 1, i.e., T is in SL(2,C). Clearly, conjugation by T ,
i.e., the map S 7−→ TST−1 is an automorphism of the group SL(2, C). Let

S =

(

α β
γ δ

)

be a matrix in SL(2,R), i.e., α, β, γ and δ are real and αδ − βγ = 1. Then

TST−1 =
1

2

(

1 i
i 1

)(

α β
γ δ

)(

1 −i
−i 1

)

=
1

2

(

α+ iγ − iβ + δ −iα+ γ + β + iδ
iα+ γ + β − iδ α− iγ + iβ + δ

)

=

(

a b
b̄ ā

)

where

a =
1

2
(α + δ − i(β − γ)) and b =

1

2
(β + γ − i(α− δ)).

Clearly, TST−1 is in SU(1, 1). Hence, we have the group homomorphism Ψ :
SL(2,R) −→ SU(1, 1) given by Ψ(S) = TST−1.

Moreover, for any matrix
(

a b
b̄ ā

)

in SU(1, 1), we can put α = Re a − Im b, β = − Im a + Re b, γ = Im a + Re b and
δ = Re a+ Im b. Then

αδ − βγ = (Re a)2 − (Im b)2 + (Im a)2 − (Re b)2 = |a|2 − |b|2 = 1,

i.e.,

S =

(

α β
γ δ

)

is in SL(2,R) and Φ(S) is equal to our matrix.
Therefore, Ψ : SL(2,R) −→ SU(1, 1) is a group isomorphism.
Since Ψ is a conjugation, the matrices S and Ψ(S) have the same characteristic

polynomial, and the same eigenvalues.
Let S be a matrix in SL(2,R). Then its characteristic polynomial is

det(λI − S) =

∣

∣

∣

∣

λ− a −b
−c λ− d

∣

∣

∣

∣

= λ2 − (a+ d)λ+ ad− bc = λ2 − (trS)λ+ 1.

Therefore, the eigenvalues are

1

2
(trS +

√

(trS)2 − 4) and
1

2
(trS −

√

(trS)2 − 4).

If | trS| ≥ 2, the eigenvalues are real. If | trS| < 2, the eigenvalues are mutually
conjugate complex numbers and their absolute value is

1

4
((tr S)2 + 4− (trS)2) = 1.

Therefore, we have the following result.

1.9.1. Lemma. Any matrix from SL(2,R) (or SU(1, 1)) has eigenvalues which are
either

(1) λ and 1
λ
for a real λ;

(2) λ and λ̄ for complex number λ such that |λ| = 1.
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Now we want to discuss fixed points of automorphisms of D(0, 1).
First, we study the fixed points of ϕγ for γ ∈ SU(1, 1).
Let γ ∈ SU(1, 1) be represented by a matrix

(

a b
b̄ ā

)

.

Assume that [z0, z1] is a fixed point of ϕγ in P1. Then we have

[az0 + bz1, b̄z0 + āz1] = [z0, z1]

and
(

a b
b̄ ā

)(

z0
z1

)

= t

(

z0
z1

)

for some t ∈ C∗. This implies that

az0 + bz1 = tz0 and b̄z0 + āz1 = tz1.

By complex conjugation we get

āz̄0 + b̄z̄1 = t̄z̄0 and bz̄0 + az̄1 = t̄z̄1.

This implies
(

a b
b̄ ā

)(

z̄1
z̄0

)

= t̄

(

z̄1
z̄0

)

Assume that the eigenvalue t is real and different from ±1. From the previous
discussion, we know that ϕγ has two fixed points in P1. Therefore, the eigenspace
for the eigenvalue t is one-dimensional. Hence we have

(

z0
z1

)

= s

(

z̄1
z̄0

)

for some s ∈ C∗. It follows that z0 = sz̄1 and z1 = sz̄0. This implies that z0 6= 0 and
z1 6= 0. Moreover, z0 = |s|2z0, i.e., |s| = 1. Hence, the fixed point [z0, z1] = [s, 1] is
on the equator of the Riemann sphere. Applying the same argument to the other
eigenvalue 1

t
, we see that in this case the automorphism ϕγ has two different fixed

points in P1 and both of them are on the equator.
If the eigenvalue t is equal to either 1 or −1, γ is either I, or −I, or all of its

eigenvectors are proportional. In the first two cases the action on P1 is trivial. In
the third case, we know that we have only one fixed point. By the same argument
as above, we see that it is on the equator of P1. Therefore, in all of these cases,
nontrivial ϕγ has no fixed points in the open lower hemisphere.

Assume now that t is on the unit circle, but different form ±1. Then we know
that ϕγ has two fixed points in P

1. Moreover, t and t̄ are two different eigenvalues
and

(

z0
z1

)

and

(

z̄1
z̄0

)

are the corresponding linearly independent eigenvectors. If z0 = 0, then the first
eigenvector corresponds to the point [0, 1], and the second one to [1, 0] in P1. If
z1 = 0, then the first eigenvector corresponds to the point [1, 0], and the second one
to [0, 1] in P1. Therefore, each open hemisphere of the Riemann sphere contains
exactly one fixed point.

If z0 6= 0 and z1 6= 0, then the first eigenvector corresponds to [1, z1
z0
] = [ z0

z1
, 1],

and the second one to [ z̄1
z̄0
, 1]. Since these two eigenvectors are linearly independent,

z0
z1

6= z̄1
z̄0

and |z0|2 6= |z1|2. Therefore, either | z0z1 | < 1 or | z0
z1
| > 1. In the latter case,
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we have | z̄1
z̄0
| < 1. Hence, we again see that each open hemisphere of the Riemann

sphere contains exactly one fixed point.
Hence, if t is on the unit circle, but different form ±1, the automorphism ϕγ has

exactly one fixed point in open power hemisphere.
Therefore, we proved the following result.

1.9.2. Lemma. Let γ ∈ SU(1, 1), γ 6= ±I. Then φ0 ◦ ϕγ ◦ φ−1
0 has a fixed point in

the unit disk D(0, 1) if and only if the eigenvalues of γ are λ and 1
λ
with |λ| = 1

and λ 6= ±1.

1.10. Some discrete subgroups of SU(1, 1). Let R be a commutative ring with
identity 1. Then all two-by-two matrices with entries in R form a ring. Let

SL(2, R) =

{(

α β
γ δ

) ∣

∣

∣

∣

αδ − βγ = 1

}

.

If
(

α β
γ δ

)

and

(

α′ β′

γ′ δ′

)

are two elements in SL(2, R), their product is
(

αα′ + βγ′ αβ′ + βδ′

γα′ + δγ′ γβ′ + δδ′

)

and its determinant is

(αα′ + βγ′)(γβ′ + δδ′)− (αβ′ + βδ′)(γα′ + δγ′)

= αγα′β′ + βγβ′γ′ + αδα′δ′ + βδγ′δ′ − αγα′β′ − βγα′δ′ − αδβ′γ′ − βδγ′δ′

= (αδ − βγ)(α′δ′ − β′γ′) = 1,

i.e., it is also in SL(2, R). Hence, SL(2, R) is closed under multiplication, and for
any S in SL(2, R),

S−1 =

(

δ −β
−γ α

)

is the inverse of S. Hence SL(2, R) is a group.
Clearly, all integral matrices in SL(2,R) form a subgroup SL(2,Z). Since the

integral matrices form a discrete subset in the space of all real two-by-two matrices,
SL(2,Z) is a discrete subgroup of SL(2,R).

1.10.1. Lemma. The group SL(2,Z) is infinite.

Proof. Let α and β be two relatively prime integers. Then the ideal in Z generated
by α and β is equal to Z. In particular, there exist δ and γ in Z such that αδ−βγ =
1, i.e., the matrix

(

α β
γ δ

)

is in SL(2,Z). Since there are infinitely many primes in Z, the number of relatively
prime integers is also infinite. �

Let Zp = Z/pZ for any positive integer p. Then, Zp is a finite ring with identity.
Therefore, SL(2,Zp) is a finite group. Let ρp : Z −→ Zp be the quotient homomor-
phism. Then it induces a group homomorphism Rp : SL(2,Z) −→ SL(2,Zp). The
kernel of this homomorphism is a normal subgroup Γp of SL(2,Z) which is called
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the pth congruence subgroup of SL(2,Z). Since SL(2,Zp) is finite, Γp is an infinite
subgroup.

Let γ be in Γp. Then γ = I+pS where S is a two-by-two integral matrix. Hence,
tr γ = 2 + pm for some integer m ∈ Z. In particular, if p > 3, tr γ cannot be 1, 0
and −1. It follows that | tr γ| ≥ 2 in this case. Combining this with the discussion
preceding the proof of 1.9.1 we obtain the following result.

1.10.2. Lemma. Let p > 3. Then any element in Γp has real eigenvalues.

Combining this with 1.9.2, we have the following consequence.
Let p be a positive integer. Under the isomorphism Ψ : SL(2,R) −→ SU(1, 1)

the congruence subgroup Γp maps into an infinite discrete subgroup Γp of SU(1, 1).

1.10.3. Theorem. Let p > 3. Then any element of Γp different from the identity
acts on the unit disk D(0, 1) without fixed points.

1.11. Uniformization theorem. In the preceding sections we considered three
Riemann surfaces: complex plane C, Riemann sphere P1 and the unit disk D(0, 1)
in the complex plane. All of these spaces are connected and simply connected.
Clearly, the Riemann sphere is compact and the complex plane and the unit disk
are not. Moreover, the complex plane and the unit disk are diffeomorphic.

On the other hand, if we consider holomorphic functions on these Riemann
surfaces we observe the following simple facts. First, since P1 is compact, the only
holomorphic functions on P1 are constants.

On the other hand, there exist nonconstant entire functions, i.e., holomorphic
functions on C. Moreover, by Liouville’s theorem [2, Theorem 10.23], the only
bounded holomorphic functions on C are constants. On the other hand, any entire
function restricted to the unit disk is holomorphic and bounded. This clearly implies
that P1, C and D(0, 1) are not isomorphic as Riemann surfaces.

Therefore, P1, C and D(0, 1) are nonisomorphic simply connected Riemann sur-
faces. The following result, called the uniformization theorem states that this list
is exhaustive. Its proof can be found in [1, Theorem 10-3].

1.11.1. Theorem. Any simply connected Riemann surface is isomorphic to either
the Riemann sphere, the complex plane or the unit disk.

The uniformization theorem allows to describe more precisely general Riemann
surfaces using the theory of covering spaces. In the next few paragraphs we give a
rough sketch this classification.

Let X be a Riemann surface, and X̃ its universal cover. Denote by π : X̃ −→ X
the covering projection. Then X̃ is a simply connected Riemann surface. Therefore,
it is isomorphic to either the Riemann sphere P1, complex plane C or the unit disk
U = D(0, 1). The fundamental group of X act on deck transformations on X̃. The

nontrivial deck transformations are automorphisms of X̃ which act without fixed
points.

Since any automorphism of P1 has a fixed point, the only Riemann surface
covered by P1 is P1 itself.

The only automorphisms of C without fixed points are translations z −→ z + b.
The possible groups of deck transformations are discrete subgroups of C. They are
isomorphic to Z or Z⊕ Z.

In the first case, by applying the automorphism z 7−→ az with a 6= 0, we can
assume that the group of deck transformations is generated by z 7−→ z + 2πi. In
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this case, X is isomorphic to C∗ and the covering projection corresponds to the
exponential function exp : C −→ C∗.

In the second case, the group of deck transformations is a rank two lattice L
in C = R2. The deck transformations are translations z 7−→ z + l for l ∈ L.
By applying the automorphism z 7−→ az with a 6= 0, we can assume that one of
the generators of L is 1. The other is a complex number c such that im c 6= 0.
Since these two elements are linearly independent over R, as a real manifold X is
isomorphic to the two dimensional torus T 2. These Riemann surfaces are called
elliptic curves. The theory of functions on them is equivalent to the theory of
elliptic functions.

Finally, if X̃ is isomorphic to U , the Riemann surface X is the quotient of U
with respect to a torsion free discrete subgroup Γ of SU(1, 1). A series of nontrivial
examples of such subgroups was constructed in the preceding section. The theory
of functions on these Riemann surfaces is equivalent to the theory of automorphic
functions.
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