Math 6220-1 Midterm 1, March 1, 2012

1. Determine if there exists an entire function such that

$$
f\left(\frac{1}{n}\right)=f\left(-\frac{1}{n}\right)=\frac{1}{n}
$$

for all $n \in \mathbb{N}$.
2. Let f be an entire function. Suppose that in its power series expansions

$$
f(z)=\sum_{n=0}^{\infty} c_{n}(z-a)^{n}
$$

for any $a \in \mathbb{C}$, at least one coefficient is equal to zero (where n can depend on a). Show that f is a polynomial.
3. Suppose that f and g are entire functions such that $|f(z)| \leq$ $|g(z)|$ for all $z \in \mathbb{C}$. What conclusions can you draw?
4. Let

$$
f(z)=1-\cos z
$$

(i) Find all zeros of this function;
(ii) find the multiplicities of these zeros.

In the next three problems we develop the basic facts about Laurent series. A Laurent series

$$
\sum_{n=-\infty}^{\infty} c_{n}(z-a)^{n}
$$

around $a \in \mathbb{C}$ is the sum of the series

$$
\sum_{n=1}^{\infty} \frac{c_{-n}}{(z-a)^{n}} \text { and } \sum_{n=0}^{\infty} c_{n}(z-a)^{n}
$$

The first series is called the principal part and the second the regular part of the Laurent series.
5. Let

$$
\sum_{n=-\infty}^{\infty} c_{n}(z-a)^{n}
$$

be a Laurent series. Let

$$
r=\limsup _{n \rightarrow \infty}\left|c_{-n}\right|^{\frac{1}{n}} \quad \text { and } \quad R=\frac{1}{\lim \sup _{n \rightarrow \infty}\left|c_{n}\right|^{\frac{1}{n}}}
$$

Then the Laurent series converges absolutely in the open annulus $\{z \in$ $\mathbb{C}|r<|z-a|<R\}$ and diverges for $|z-a|<r$ and $|z-a|>R$. If the above annulus is nonempty, the function

$$
f(z)=\sum_{n=-\infty}^{\infty} c_{n}(z-a)^{n}
$$

is holomorphic in the annulus.
6. Let f be a holomorphic function in the open annulus $\{z \in \mathbb{C} \mid$ $r<|z-a|<R\}$. Let γ be a positively oriented circle centered at a of radius ρ such that $r<\rho<R$. Put

$$
c_{n}=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{(z-a)^{n+1}} d z
$$

for any $n \in \mathbb{Z}$. Show that

$$
f(z)=\sum_{n=-\infty}^{\infty} c_{n}(z-a)^{n}
$$

in the annulus (This series is called the Laurent series of f).
7. Let Ω be a domain and $a \in \Omega$. Let f be a function holomorphic in $\Omega-\{a\}$. Let $D(a, R)$ be an open disk in Ω. Then f can be represented by its Laurent series

$$
f(z)=\sum_{n=-\infty}^{\infty} c_{n}(z-a)^{n}
$$

on the punctured disk $D^{\prime}(a, R)$. Show:
(a) a is a removable singularity if and only if $c_{n}=0$ for all $n<0$;
(b) a is a pole of order m if and only if $c_{-m} \neq 0$ and $c_{n}=0$ for $n<-m$;
(c) a is an essential singularity if and only if infinitely many c_{n} are different from 0 for $n<0$.
8. Let

$$
f(z)=\sin \left(\frac{z}{z+1}\right)
$$

(i) Determine all isolated singularities of f and their type;
(ii) find the Laurent expansions of f at these singularities;
(iii) find the residues of f at these singularities.
9. Evaluate the integral

$$
\int_{-\infty}^{\infty} \frac{x \cos x}{x^{2}-2 x+10} d x
$$

using the residue theorem.
10. Evaluate the integral

$$
\int_{0}^{2 \pi} \frac{\cos ^{2} 3 \phi}{1-2 a \cos \phi+a^{2}} d \phi
$$

where a is a complex number such that $|a|<1$, using the residue theorem.

