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The timescales of many physical, chemical, and biological processes are determined by first passage times
(FPTs) of diffusion. The overwhelming majority of FPT research studies the time it takes a single diffusive
searcher to find a target. However, the more relevant quantity in many systems is the time it takes the fastest
searcher to find a target from a large group of searchers. This fastest FPT depends on extremely rare events and
has a drastically faster timescale than the FPT of a given single searcher. In this work, we prove a simple
explicit formula for every moment of the fastest FPT. The formula is remarkably universal, as it holds for
d-dimensional diffusion processes (i) with general space-dependent diffusivities and force fields, (ii) on
Riemannian manifolds, (iii) in the presence of reflecting obstacles, and (iv) with partially absorbing targets.
Our results rigorously confirm, generalize, correct, and unify various conjectures and heuristics about the fastest
FPT.
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I. INTRODUCTION

Many events in physical, chemical, and biological systems
are initiated when a diffusive searcher finds a target [1].
Investigations of such first passage times (FPTs) began with
Helmholtz and Lord Rayleigh in the context of acoustics
[2,3] and continue with current research driven largely by
biological and chemical physics [4–13]. The overwhelming
majority of these studies seek to answer the question, How
long does it take a given single diffusive searcher to find a
target?

However, several recent studies, reviews, and commen-
taries have declared a major paradigm shift in the study and
application of FPTs [14–26]. This work has shown that the
relevant question in many systems is actually, Out of a large
group of diffusive searchers, how long does it take the fastest
searcher to find a target?

This paradigm shift has generated new questions, calls for
further analysis, and interesting conjectures to explain the
apparent redundancy in many systems [15–22]. For example,
this work has been invoked to explain why roughly 108 sperm
cells search for the oocyte in human fertilization, when only
one sperm cell is required [17,24,27]. In fact, the recently
formulated “redundancy principle” posits that many seem-
ingly redundant copies of an object (molecules, proteins, cells,
etc.) are not a waste, but rather have the specific function of
accelerating search processes [15].

To illustrate, consider N � 1 independent and identically
distributed (iid) diffusive searchers. Let τ1, . . . , τN be their
N iid FPTs to find some target. While most studies have
calculated statistics of a single FPT, τ1, the more relevant
quantity in many systems is the time it takes the fastest
searcher to find the target,

T1,N := min{τ1, . . . , τN }. (1)
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This fastest FPT, T1,N , is called an extreme statistic [28], and
it has a drastically faster timescale than τ1.

Despite the fact that the statistics of a single FPT are
well understood in many scenarios, very little is known about
the fastest FPT. Indeed, rigorous results have been generally
limited to effectively one-dimensional domains, with mostly
conjectures and heuristics for diffusion in higher dimensions
[14,27,29–34].

In this work, we prove a general theorem that determines
every moment of the fastest FPT as N → ∞ based on the
short time distribution of a single FPT. We then combine this
theorem with large deviation theory to prove a formula for
the moments of the fastest FPT that holds in many diverse
scenarios. In particular, the formula holds for d-dimensional
diffusion processes (i) with general space-dependent diffusivi-
ties and force (drift) fields, (ii) on a Riemannian manifold, (iii)
in the presence of reflecting obstacles, and (iv) with partially
absorbing targets.

To summarize, first extend the definition in (1) by defining
the kth fastest FPT for k � 1,

Tk,N := min
{{τ1, . . . , τN }\ ∪k−1

j=1 {Tj,N }}. (2)

For any fixed m � 1 and k � 1, we prove that the mth moment
of the kth fastest FPT satisfies

E[(Tk,N )m] ∼
(

L2

4D ln N

)m

as N → ∞, (3)

where “ f ∼ g” means f /g → 1. In (3), D is a diffusivity and
L is a certain geodesic distance (given below) between the
searcher starting locations and the target that (i) avoids any
obstacles, (ii) includes any spatial variation or anisotropy in
diffusivity, and (iii) incorporates any geometry in the case
of diffusion on a curved manifold. Further, the length L is
unaffected by forces on the diffusive searchers or a finite
absorption rate at the target. The result in (3) rigorously con-
firms, generalizes, corrects, and unifies various conjectures
and heuristics about the fastest FPT.
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II. MAIN THEOREM

Let S(t ) := P (τ1 > t ) denote the survival probability of a
single FPT. The survival probability of the fastest FPT is then

P (T1,N > t ) = P (min{τ1, . . . , τN } > t ) = [S(t )]N ,

assuming τ1, . . . , τN are iid. Now, the mean of any nonnega-
tive random variable Z � 0 is

∫ ∞
0 P (Z > z)dz. Therefore, the

mean fastest FPT is

E[T1,N ] =
∫ ∞

0
[S(t )]N dt . (4)

Since S(t ) is a decreasing function of time, it is clear from
(4) that the large N asymptotics of E[T1,N ] are determined by
the short time behavior of S(t ). The following theorem deter-
mines these asymptotics in terms of the short time behavior
of S(t ) on a logarithmic scale. Throughout this work, “ f ∼ g”
means f /g → 1.

Theorem 1. Let {τn}∞n=1 be a sequence of iid nonnegative
random variables with survival probability S(t ) := P (τ1 > t ).
Assume that∫ ∞

0
[S(t )]N dt < ∞ for some N � 1, (5)

and assume that there exists a constant C > 0 so that

lim
t→0+

t ln[1 − S(t )] = −C < 0. (6)

Then for any m � 1 and k � 1, the mth moment of the kth
fastest time Tk,N in (2) satisfies

E[(Tk,N )m] ∼
(

C

ln N

)m

as N → ∞. (7)

We now sketch the proof of Theorem 1 for the case m =
k = 1. The assumption in (6) means roughly that

S(t ) ≈ 1 − e−C/t for t � 1.

Now, for a one-dimensional, pure diffusion process with unit
diffusivity starting at the origin, let τ (l ) denote the first
time the process escapes the interval (−2l, 2l ). The survival
probability Sl (t ) := P (τ (l ) > t ) satisfies

Sl (t ) ≈ 1 − e−l2/t for t � 1.

Therefore, taking l± = √
C ± ε for small ε > 0 yields

Sl− (t ) � S(t ) � Sl+ (t ) for t � 1.

Hence, for sufficiently large N we have the bounds∫ ∞

0
[Sl− (t )]N dt �

∫ ∞

0
[S(t )]N dt �

∫ ∞

0
[Sl+ (t )]N dt,

since the large N behavior of these integrals is determined by
the short time behavior of their integrands (this uses (5), which
ensures that E[T1,N ] < ∞ is finite for large N). Furthermore,
it is known that [29,35]∫ ∞

0
[Sl± (t )]N dt ∼ C ± ε

ln N
as N → ∞.

Noting that ε is arbitrary completes the argument. The full
proof is in Appendix A.

III. APPLICATIONS OF THEOREM 1

In this section, we combine Theorem 1 with large deviation
theory to (i) prove that (7) is remarkably universal and (ii)
identify the constant C in (7).

Let {X (t )}t�0 be a d-dimensional diffusion process on a
manifold M and let p(x, t |x0, 0) be the probability density that
X (t ) = x given X (0) = x0. That is,

p(x, t |x0, 0)dx = P (X (t ) = x | X (0) = x0). (8)

Let τ > 0 be the FPT to some target set UT ⊂ M,

τ := inf{t > 0 : X (t ) ∈ UT}, (9)

and let S(t ) := P (τ > t ) be the survival probability. Let
{τn}∞n=1 be a sequence of iid realizations of τ and let Tk,N be
the kth order statistic in (2). We assume the target UT is the
closure of its interior, which precludes trivial cases such as
the target being a single point (which would make τ = +∞
in dimension d � 2). Assume the initial distribution of X is a
probability measure with compact support U0 ⊂ M that does
not intersect the target,

U0 ∩ UT = ∅. (10)

For example, the initial distribution could be a Dirac mass at a
point X (0) = x0 = U0 ∈ M if x0 /∈ UT, or it could be uniform
on U0 if the closed set U0 satisfies (10).

A. Pure diffusion in Rd

To set up more complicated applications of Theorem 1,
first consider the simple case of free diffusion in M = Rd

with diffusivity D > 0. Of course, the probability density (8)
is Gaussian,

p(x, t |x0, 0) = 1

(4πDt )d/2
exp

[−L2
euc(x0, x)

4Dt

]
, (11)

where Leuc(x0, x) := ‖x0 − x‖ is the standard Euclidean
length. A simple manipulation of (11) reveals the following
short time behavior of the probability density,

lim
t→0+

t ln p(x, t |x0, 0) = −L2
euc(x0, x)

4D
. (12)

This behavior of the probability density implies that (see
Appendix B)

lim
t→0+

t ln[1 − S(t )] = −L2
euc(U0,UT)

4D
< 0, (13)

where Leuc(U0,UT) is the shortest distance from U0 to the
target,

Leuc(U0,UT) := inf
x0∈U0,x∈UT

Leuc(x0, x) > 0. (14)

Note that (10) ensures (14) is strictly positive.
Therefore, Theorem 1 implies (3) for the Euclidean length

L = Leuc(U0,UT) if (5) is satisfied. If the dimension is d ∈
{1, 2}, then (5) is satisfied for N = 3. If d � 3, then merely
taking the complement of the target, Rd\UT, to be bounded
ensures (5) is satisfied for N = 1.
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B. Diffusion with space-dependent diffusivity and drift

Suppose the diffusion follows the Itô stochastic differential
equation on M = Rd ,

dX = b(X )dt +
√

2Dσ (X )dW. (15)

Here, b : Rd → Rd is the space-dependent drift vector de-
scribing any force on the searcher, σ : Rd → Rd×m is a
dimensionless function describing any space dependence or
anisotropy in the diffusion, D > 0 is a characteristic diffusiv-
ity, and W (t ) ∈ Rm is a standard Brownian motion. Assume
Rd\UT is bounded to ensure (5) is satisfied. Assume b and σ

satisfy mild conditions (namely that b is uniformly bounded
and uniformly Holder continuous and that σσ T is uniformly
Holder continuous and its eigenvalues are bounded above
α1 > 0 and bounded below α2 > α1).

For any smooth parametric path ω : [0, 1] → M, define the
length of the path in the Riemannian metric given by the
inverse of the diffusivity matrix a := σσ T ,

l (ω) :=
∫ 1

0

√
ω̇T (s)a−1(ω(s))ω̇(s) ds. (16)

Then, the probability density (8) satisfies [36]

lim
t→0+

t ln p(x, t |x0, 0) = −L2
rie(x0, x)

4D
, (17)

where Lrie is the geodesic length

Lrie(x0, x) := inf{l (ω) : ω(0) = x0, ω(1) = x}, (18)

where the infimum is over smooth paths ω : [0, 1] → M
which connect ω(0) = x0 to ω(1) = x. Equation (17) is a cel-
ebrated result in large deviation theory known as Varadhan’s
formula [36,37], which generalizes the elementary formula in
(12). Intuitively, Lrie(x0, x) is the length of the optimal path
from x0 to x, where paths are penalized for passing through
regions of slow diffusion; see Fig. 1. Notice that Lrie reduces
to the Euclidean length Leuc if a is the identity matrix.

Varadhan’s formula (17) implies (see Appendix B)

lim
t→0+

t ln[1 − S(t )] = −L2
rie(U0,UT)

4D
< 0, (19)

where Lrie(U0,UT) is defined analogously to (14),

Lrie(U0,UT) := inf
x0∈U0,x∈UT

Lrie(x0, x) > 0, (20)

and is strictly positive by (10). Therefore, Theorem 1 implies
that the extreme FPT formula (3) holds for the length L =
Lrie(U0,UT).

Hence, the drift b in (15) has no effect on extreme FPTs.
This counterintuitive result confirms a conjecture of Weiss,
Shuler, and Lindenberg [29]. Furthermore, (18) reveals how
extreme FPTs depend on heterogeneous diffusion. In partic-
ular, (18) shows that the fastest searchers avoid regions of
space in which the diffusivity is slow. These two points are
illustrated in Fig. 1.

C. Diffusion on a manifold with reflecting obstacles

Let M be a d-dimensional smooth Riemannian manifold.
As two simple examples, M could be a set in Rd with smooth
outer and inner boundaries (obstacles) as in Fig. 2(a), or M

FIG. 1. Diffusion with space-dependent diffusivity and drift. For
the diffusion process in (15), the thin trajectories are 15 typical paths
which get pushed to the left by the drift. The thick blue curve shows
that the fastest searcher is unaffected by the drift and moves almost
deterministically to the target through regions of fast diffusion (gray
regions) while avoiding regions of slow diffusion (white regions).

could be the surface of a 3-dimensional sphere as in Fig. 2(b).
Consider a diffusion process on M described by its generator
L, which in each coordinate chart is a second order differential
operator of the form

L f = D
n∑

i, j=1

∂

∂xi

[
ai j (x)

∂ f

∂x j

]
,

where a = {ai j}n
i, j=1 satisfies some mild conditions (assume

that in each chart, a is symmetric, continuous, and its eigenval-
ues are bounded above some α1 > 0 and bounded below some
α2 > α1). Assume the diffusion reflects from the boundary of
M (if M has a boundary) and assume M is connected and
compact to ensure (5) is satisfied.

In this setup, the probability density (8) satisfies [37]

lim
t→0+

t ln p(x, t |x0, 0) = −L2
rie(x0, x)

4D
, (21)

FIG. 2. Diffusion on a manifold with reflecting obstacles. (a) The
thin black trajectory shows a typical diffusive path that wanders
around before finding the target. The thick blue trajectory illustrates
that the fastest searcher moves almost deterministically along the
shortest path to the target while avoiding any obstacles. (b) The blue
trajectory shows that the fastest searcher follows the shortest path to
the target, which depends on the curvature of the manifold. If the
target is multiple regions, the fastest searcher finds the closest one.
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where the length is again given by (18), and thus (see Ap-
pendix B)

lim
t→0+

t ln[1 − S(t )] = −L2
rie(U0,UT)

4D
< 0, (22)

which is strictly negative by (10). Therefore, Theorem 1
implies that the extreme FPTs satisfy (3).

Figure 2(a) illustrates that the fastest searcher takes the
shortest path to the target while avoiding any obstacles. Note
that the infimum in (18) is over smooth paths which lie in M,
and thus paths which go through obstacles are excluded. Fig-
ure 2(b) illustrates that the fastest searcher takes the shortest
path to the target, where the length depends on the curvature
of the manifold. Figure 2(b) also illustrates that if the target
UT consists of multiple regions, the fastest searcher finds the
closest target.

D. Partially absorbing targets

Our analysis above, and all previous work on extreme
FPTs, assumes that the target is perfectly absorbing. That
is, it assumes that the searcher is absorbed as soon as it
hits the target. However, a more general model assumes that
the target is partially absorbing. This means that when a
searcher hits the target, it is either absorbed or reflected, and
the probabilities of these events are described by a parameter
κ > 0, called the reactivity or absorption rate [38].

Consider a one-dimensional pure diffusion on the positive
real line with a partially absorbing target at the origin with
reactivity κ . Let τ be the first time the diffusion hits the target
and τκ � τ be when it is absorbed. If X (0) = L > 0, then an
exact calculation yields

Sκ (t ) := P (τκ > t ) = S(t ) + e
κ (κt+L)

D erfc

(
2κt + L√

4Dt

)
, (23)

where S(t ) = P (τ > t ) = 1 − erfc( L√
4Dt

). Using this for-
mula, a straightforward calculation shows that

lim
t→0+

t ln[1 − Sκ (t )] = lim
t→0+

t ln[1 − S(t )] = − L2

4D
.

Therefore, upon noting that (5) is satisfied for N = 3, we
conclude that the extreme statistics satisfy (3). That is, if Tk,N,κ

is the kth fastest absorption time and Tk,N is the kth fastest
hitting time, then as N → ∞,

E[(Tk,N,κ )m] ∼ E[(Tk,N )m] ∼
(

L2

4D ln N

)m

. (24)

Hence, the extreme statistics for a partially absorbing target
and a perfectly absorbing target are identical.

Since (24) is a statement about the large N behavior of the
extreme statistics, it is natural to ask about the convergence
rate. Further, it is clear that for any finite N , and any moment
m > 0,

E[(Tk,N )m] < E[(Tk,N,κ+ )m] < E[(Tk,N,κ− )m],

where 0 < κ− < κ+ < ∞. It is thus also natural to ask how
the convergence depends on the reactivity κ . Using the exact

FIG. 3. Relative error (26) as a function of N for different values
of the reactivity κ . We take L = D = 1.

formula in (23), we can numerically evaluate the integral,

E[T1,N,κ ] =
∫ ∞

0
[Sκ (t )]N dt, (25)

to yield a numerical approximation to E[T1,N,κ ]. In Fig. 3, we
plot the relative error,∣∣∣∣∣

∫ ∞
0 [Sκ (t )]N dt − L2

4D ln N∫ ∞
0 [Sκ (t )]N dt

∣∣∣∣∣, (26)

between our asymptotic formula in (24) and the quadrature
in (25) as a function of N . This figure illustrates that the
convergence rate is slow, since the relative error is on the order
of tens of percentage points for N as large as 1010. Indeed, the
slow convergence rate for formulas for extreme statistics of
FPTs of diffusion is well known [29]. This figure also shows
that the error decreases as κ increases (κ = ∞ corresponds to
a perfectly absorbing target). This is to be expected, since for
any fixed N , the FPT Tk,N,κ diverges almost surely as κ → 0+,
whereas the asymptotic formula in (24) is independent of κ .
To see how the extreme FPT statistics depend on κ at higher
order for large N , see our recent work in Ref. [35].

While the calculation which led to (24) was for a one-
dimensional problem, this result that the leading order ex-
treme statistics are independent of the reactivity κ extends
to much more general systems. To see why, observe that the
absorption time, τκ , is the sum of (i) the time, τ , that it takes
a searcher to first hit the target and (ii) the time, call it τ0,
that it takes to be absorbed after starting on the target (this
follows from the strong Markov property [39]). The fact that
the extreme statistics are unaffected by a partially absorbing
target (κ < ∞) versus a perfectly absorbing target (κ = ∞)
is equivalent to τ0 � τ for the fastest searchers. As we have
seen, P (τ > t ) ≈ 1 − exp[−L2/(4Dt )] at short times, where
L > 0 depends on the domain. Further, the short time behavior
of P (τ0 > t ) will not depend on the domain, since the problem
is effectively one-dimensional at short times for a searcher
starting on a partially absorbing target. Hence, the fact that
τ0 � τ for the fastest searchers in this one-dimensional prob-
lem implies that it also holds for more general systems. We
make this argument rigorous in Appendix C. Specifically, we
prove that the extreme statistics for a partially absorbing target
and a perfectly absorbing target are identical for pure diffusion
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in smooth bounded domains in Rd where the target is any
finite disjoint union of hyperspheres.

IV. DISCUSSION

We have proven the formula in (3) for the extreme FPT
statistics of diffusive search, where L = L(U0,UT) > 0 is
given in (20) and is the geodesic distance between the possible
initial searcher locations U0 and the target UT. This distance
is the minimal length of a path that connects the initial
searcher location to the target that (i) avoids any reflecting
obstacles, (ii) incurs a cost for paths that go through regions
of slow diffusion, and (iii) incorporates any curvature in the
underlying space. Further, this distance is (iv) unaffected by a
force (drift) field and (v) unaffected by a partially absorbing
target.

The study of extreme FPTs of diffusion began in 1983
with Weiss, Shuler, and Lindenberg [29], where they derived
E[Tk,N ] ∼ L2/(4D ln N ) for one-dimensional domains with
constant diffusivity and a certain class of force field. They
conjectured that E[Tk,N ] ∼ C/ ln N in higher dimensions in-
dependent of the force field, but pointed out that they had
“nothing like a proof” and that the constant C may be “quite
difficult to calculate.” Our results rigorously confirm their
conjecture and determine C. Important analysis of extreme
FPTs in effectively one-dimensional domains continued in
[27,30–33,40].

The recent interest in extreme FPTs of diffusion was
sparked by the pioneering work in [14], wherein the authors
formally derived E[T1,N ] ∼ L2/(4D ln N ) for pure diffusion
in 2-dimensional domains with small targets. Their work also
found that E[T1,N ] decays like 1/

√
ln N in 3-dimensional

domains, which was later corrected for convex domains in
[41]. In fact, the correct 3-dimensional result for small targets
was first derived in [34].

The importance of extreme FPTs of diffusion in molecular
and cellular biology was recently highlighted in the excellent
review [15]. This review prompted 7 subsequent commen-
taries [16–22], which each emphasized different aspects of
how extreme statistics transform traditional notions of biolog-
ical timescales. These commentaries also noted the need for
further analysis of extreme FPTs.

The results in this work significantly extend the previous
results on extreme FPTs. Indeed, most prior work considered
only pure diffusion in either effectively one-dimensional do-
mains or domains with small targets. In contrast, our results
allow general space-dependent diffusivities and force fields
with general targets, diffusion on manifolds with obstacles,
and partially absorbing targets. In addition, our analysis yields
every moment of the extreme FPTs, rather than only the
mean. Indeed, (3) implies that the variance vanishes faster
than (ln N )−2,

Variance(Tk,N ) = o((ln N )−2) as N → ∞.

In further contrast, prior analysis tended to rely on ex-
act formulas for certain probabilities which are known only
for simple domains or complicated formal asymptotics. The
present work unites and extends this previous work with a
simple and rigorous argument.

It is well known that intracellular [42] and extracellular
[43,44] domains are very tortuous. This tortuosity is com-
monly modeled by heterogeneous diffusivity [45], reflecting
obstacles [42], and/or an effective force field that tends
to exclude searchers from regions of dense obstacles [46].
Hence, this work has direct relevance to these models. In-
deed, a number of influential works have found that tortuous
and crowded geometries drastically affect FPTs of single
searchers [46–48]. For example, Ref. [46] used microscopic
imaging of a nucleus to determine how volume exclusion
by chromatin affects the time it takes a regulatory protein to
find specific binding sites (the chromatin was modeled by an
effective force field). Since we have proven that extreme FPTs
are unaffected by force fields and depend only on the shortest
path that avoids obstacles and regions of slow diffusivity,
we predict that tortuous domains have a much weaker effect
on processes initiated by the fastest searcher out of many
searchers.

While the present work computes every moment of Tk,N

assuming merely that (6) holds, one can obtain more informa-
tion about the distribution of Tk,N if we have more information
about S(t ) at short time. Specifically, we have recently proven
[35] that if

1 − S(t ) ∼ At pe−C/t as t → 0+,

for some A > 0, p ∈ R, C > 0, then a certain rescaling of Tk,N

converges in distribution to a type of Gumbel random variable.
In addition to giving the distribution of Tk,N , the results in [35]
yield higher order terms in the moment formulas obtained in
the present work.

Finally, a remarkable feature of extreme FPTs of diffusion
is that the fastest searchers are almost deterministic, as they
tend to follow the shortest path to the target. This point has
been argued heuristically, beginning in [29] and continuing
with recent work [23].

The point that the fastest searchers move almost determin-
istically along the shortest path to the target is clear from
our formula (3) upon noting that the length L in the formula
is a “local” quantity that depends only on properties near
this shortest path. That is, extreme FPTs are independent
of perturbations outside any small region around this path
(as long as these perturbations do not create a shorter path).
Indeed, taking the diffusivity to be arbitrarily small away from
this path does not affect extreme FPTs. Of course, this can
only be true if the fastest searchers follow the shortest path.

While the asymptotically deterministic behavior of ex-
treme first passage processes stems from the large number of
searchers, this phenomenon is very different from the law of
large numbers. In the law of large numbers, the deterministic
behavior arises through averaging many random samples. In
contrast, the deterministic behavior in extreme first passage
theory occurs through rare events. This is a manifestation of
the well known principle in large deviations that rare events
occur in a predictable fashion; they are controlled by the least
unlikely scenario.

ACKNOWLEDGMENTS

The author was supported by the National Science Foun-
dation (Grants No. DMS-1814832 and No. DMS-1148230).

012413-5



SEAN D. LAWLEY PHYSICAL REVIEW E 101, 012413 (2020)

APPENDIX A: PROOF OF THEOREM 1

Before proving Theorem 1, we first prove a slightly differ-
ent result.

Proposition 1. Assume S : [0,∞) → [0, 1] is a nonin-
creasing function satisfying

(a)
∫ ∞

0 [S(t )]N dt < ∞ for some N � 1;
(b) there exists a constant C > 0 so that

lim
t→0+

t ln[1 − S(t )] = −C < 0.

Then for each m � 1, we have that∫ ∞

0
[S(t1/m)]N dt ∼

(
C

ln N

)m

as N → ∞.

Proof of Proposition 1. For l > 0, let τ (l ) denote the first
time a one-dimensional diffusion process with unit diffusiv-
ity starting at the origin escapes the interval (−2l, 2l ). The
survival probability Sl (t ) = P (τ (l ) > t ) satisfies

lim
t→0+

t ln[1 − Sl (t )] = −l2 < 0. (A1)

Let ε ∈ (0,C) and define l± := √
C ± ε. By (A1) and as-

sumption (b) of the proposition, there exists a δ > 0 so that

Sl− (t1/m) � S(t1/m) � Sl+ (t1/m) for all t ∈ [0, δ].

Therefore,∫ δ

0
[Sl− (t1/m)]N dt +

∫ ∞

δ

[S(t1/m)]N dt

�
∫ ∞

0
[S(t1/m)]N dt

�
∫ δ

0
[Sl+ (t1/m)]N dt +

∫ ∞

δ

[S(t1/m)]N dt . (A2)

Now, a simple change of variables shows that∫ ∞

0
[S(t1/m)]N dt = m

∫ ∞

0
tm−1[S(t )]N dt if m � 1.

By assumption (a) of the proposition, there exists an N0 � 1
so that

∫ ∞
0 [S(t )]N0 dt < ∞. It is then straightforward to check

that

m
∫ ∞

0
tm−1[S(t )]2m−1N0 dt < ∞.

Hence, if N � N0, we have that since S is nonincreasing,∫ ∞

δ

[S(t1/m)]N dt � K0[S(δ1/m)]N ,

where S(δ1/m) < 1 by assumption (b) of the proposition, and

K0 =
∫ ∞

δ

[
S(t1/m)

S(δ1/m)

]N0

dt < ∞.

Thus,

lim
N→∞

(ln N )m
∫ ∞

δ

[S(t1/m)]N dt = 0.

Therefore, multiplying (A2) by (ln N )m and taking N →
∞ yields

(C − ε)m � lim inf
N→∞

∫ ∞
0 [S(t1/m)]N dt

(1/ ln N )m

� lim sup
N→∞

∫ ∞
0 [S(t1/m)]N dt

(1/ ln N )m
� (C + ε)m,

since it is known [29,35] that for any l > 0,∫ δ

0
[Sl (t

1/m)]N dt ∼
∫ ∞

0
[Sl (t

1/m)]N dt

∼
(

l2

ln N

)m

as N → ∞.

Since ε ∈ (0,C) was arbitrary, the proof is complete. �
Proof of Theorem 1. Since the mean of any nonnegative

random variable Z � 0 is
∫ ∞

0 P (Z > z)dz, we have that

E[(Tk,N )m] =
∫ ∞

0
P (Tk,N > t1/m)dt .

For k ∈ {1, . . . , N}, it is immediate that

P (Tk,N > t ) = P (T1,N > t ) + P (T1,N < t < T2,N )

+ · · · + P (Tk−1,N < t < Tk,N ).

Furthermore, we have that P (T1,N > t ) = [S(t )]N and

P (Tj,N < t < Tj+1,N ) =
(

N

j

)
[1 − S(t )] jS(t )N− j,

for j ∈ {1, . . . , k − 1}.
Now, it is straightforward to check that if j ∈ {1, . . . , k −

1}, then

lim
N→∞

∫ ∞
0

(N
j

)
[1 − S(t1/m)] jS(t1/m)N− jdt

(1/ ln N )m
= 0.

Therefore, since Proposition 1 implies that

lim
N→∞

∫ ∞
0 [S(t1/m)]N dt

(C/ ln N )m
= 1,

the proof is complete. �

APPENDIX B: PROBABILITY DENSITY AND SURVIVAL
PROBABILITY AT SHORT TIME

Varadhan’s formula [36,37] gives the short time behavior
of the probability density of a diffusive searcher in terms of a
certain geodesic distance [see (12), (17), and (21)]. However,
the assumptions of Theorem 1 require the short time behavior
of the survival probability rather than the probability density.
Here, we show how the short time behavior of the probability
density yields the short time behavior of the survival probabil-
ity.

Proof that Eq. (12) implies Eq. (13). Consider the case of
free diffusion in M = Rd with diffusivity D > 0 (Sec. III A).
We first bound 1 − S(t ) from below. Notice that if the process

012413-6
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is at the target at time t , then certainly τ � t . That is,

1 − S(t ) = P (τ < t ) � P (X (t ) ∈ UT)

=
∫

UT

∫
U0

p(x, t |x0, 0)dμ(x0)dx, (B1)

where μ is the probability measure of the initial position of
the searcher and U0 is its support. It follows from (12) that

lim
t→0+

t ln
∫

UT

∫
U0

p(x, t |x0, 0)dμ(x0)dx = −L2
euc(U0,UT)

4D
,

(B2)

where Leuc(U0,UT) is defined in (14).
To see why (B2) holds, define the neighborhood of U0,

B :=
{

x ∈ M : inf
y∈U0

Leuc(x, y) < 2Leuc(U0,UT)

}
.

Then, we decompose the target into UT = {UT ∩ B} ∪ {UT\B}
to obtain∫

UT

∫
U0

p(x, t |x0, 0)dμ(x0)dx

=
∫

UT∩B

∫
U0

p(x, t |x0, 0)dμ(x0)dx

+
∫

UT\B

∫
U0

p(x, t |x0, 0)dμ(x0)dx =: I1 + I2. (B3)

To handle the first integral, I1, let ε > 0 and note that (13)
holds uniformly for x0, x in compact sets [36]. Hence, we may
choose t0 > 0 so that

e− L2
euc (x0 ,x)+ε

4Dt � p(x, t |x0, 0) � e− L2
euc (x0 ,x)−ε

4Dt

for all t ∈ (0, t0], x ∈ UT ∩ B, and x0 ∈ U0. Now, a straight-
forward application of the Laplace principle (or Varadhan’s
lemma [49]) yields

lim
t→0+

t ln
∫

UT∩B

∫
U0

e−[L2
euc(x0,x)±ε]/(4Dt ) dμ(x0)dx

= −L2
euc(U0,UT) ± ε

4D
.

Since ε > 0 is arbitrary, we obtain

lim
t→0+

t ln I1 = −L2
euc(U0,UT)

4D
.

It is straightforward to show that the second integral, I2, in
(B3) does not contribute to the limit, and so we obtain (B2).
Therefore, (B1) and (B2) imply

lim inf
t→0+

t ln[1 − S(t )] � −L2
euc(U0,UT)

4D
. (B4)

To bound 1 − S(t ) from above, let ε > 0 and define the set
of all points in M = Rd that are more than distance ε from the
target,

Mε :=
{

x ∈ M : inf
y∈UT

Leuc(x, y) > ε

}
.

Then decompose 1 − S(t ) into the case that the diffusion is
either in Mε or not in Mε at time t ,

1 − S(t ) = P (τ < t, X (t ) ∈ Mε ) + P (τ < t, X (t ) /∈ Mε ).

In the case that the diffusion is outside of Mε, we have

P (τ < t, X (t ) /∈ Mε ) � P (X (t ) /∈ Mε )

=
∫

M\Mε

∫
U0

p(x, t |x0, 0)dμ(x0)dx,

and it again follows from (12) that

lim
t→0+

t ln
∫

M\Mε

∫
U0

p(x, t |x0, 0)dμ(x0)dx

= −L2
euc(U0, M\Mε )

4D
� − [Leuc(U0,UT) − ε]2

4D
, (B5)

since

Leuc(U0,UT) � Leuc(U0, M\Mε ) + Leuc(M\Mε,UT)

� Leuc(U0, M\Mε ) + ε,

by definition of Mε.
It remains to bound P (τ < t, X (t ) ∈ Mε ). Notice that

P (τ < t, X (t ) ∈ Mε ) is the probability of paths which hit the
target before time t (since τ < t) and then move distance ε

away from the target [since X (t ) ∈ Mε]. The basic idea is
that for small t , these paths are less likely than paths that hit
the target before time t and stay within an ε neighborhood
of the target. To make this precise, let s ∈ (0, t ) and z ∈ ∂UT

denote the respective time and position that the diffusion hits
the target and use the strong Markov property to obtain

P (τ < t, X (t ) ∈ Mε )

=
∫ t

0

∫
∂UT

∫
Mε

p(x, t − s|z, 0)dx dνs(z)dν(s), (B6)

where ν denotes the probability measure for the time the
diffusion hits the target and νs denotes the probability measure
for the position that the diffusion hits the target conditioned
upon hitting it at time s. Now if s ∈ (0, t ), then it follows from
the definition of Mε that∫

∂UT

∫
Mε

p(x, t − s|z, 0)dx dνs(z)

� P (Leuc(X (t − s), X (0)) > ε)

� P (Leuc(X (t ), X (0)) > ε),

and P (Leuc(X (t ), X (0)) > ε) → 0 as t → 0+. Similarly, if
s ∈ (0, t ), then∫

∂UT

∫
M\Mε

p(x, t − s|z, 0)dx dνs(z)

� P (Leuc(X (t − s), X (0)) < ε)

� P (Leuc(X (t ), X (0)) < ε),

012413-7
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and P (Leuc(X (t ), X (0)) < ε) → 1 as t → 0+. It follows then
from (B6) that

P (τ < t, X (t ) ∈ Mε )

�
∫ t

0

∫
∂UT

∫
M\Mε

p(x, t − s|z, 0)dx dνs(z)dν(s)

= P (τ < t, X (t ) /∈ Mε ) � P (X (t ) /∈ Mε ),

and we bounded the short time behavior of P (X (t ) /∈ Mε ) in
(B5). We therefore obtain the upper bound

lim sup
t→0+

t ln[1 − S(t )] � − [Leuc(U0,UT) − ε]2

4D
.

Using (B4) and the fact that ε > 0 is arbitrary completes the
proof. �

Proof that Eq. (17) implies Eq. (19). The proof follows
along lines similar to those of the previous proof. �

Proof that Eq. (21) implies Eq. (22). This can be proven
along lines similar to those of the previous proof, though in
this setup, the proof follows directly from Theorem 1.2 in
[37]. �

APPENDIX C: PARTIALLY ABSORBING BOUNDARY

We now prove that the extreme statistics for a partially
absorbing target versus a perfectly absorbing target are iden-
tical in the case of pure diffusion in a general class of d-
dimensional spatial domains.

Let {X (t )}t�0 denote the path of a searcher diffusing
with diffusivity D > 0 in a bounded domain U ⊂ Rd with
reflecting boundaries and a partially absorbing target UT with
reactivity κ > 0 (assume U is bounded, open, connected, and
has a smooth boundary). Suppose the target UT ⊂ U is a finite,
disjoint union of open balls (we took UT to be closed in the
main text, but it is notationally convenient to take UT open in
this setting). Hence, X (t ) satisfies the stochastic differential
equation,

dX =
√

2D dW + ν(X )dL + νT(X )dLT, (C1)

where W (t ) ∈ Rd is a standard d-dimensional Brownian mo-
tion,

ν : ∂U → Rd , νT : ∂UT → Rd (C2)

are the unit normal fields, both pointing into U\UT, and
L(t ), LT(t ) are the local times of X (t ) on the boundaries of U
and UT, respectively. The significance of the local time terms
in (C1) is that they force X (t ) to reflect from the boundary
of U and the boundary of UT. For simplicity, assume that the
initial distribution of X is a Dirac mass at a single point,

X (0) = x0 ∈ U\UT.

The searcher is said to be absorbed at the partially ab-
sorbing target once its local time on the target surpasses an
independent exponential random variable with rate κ . That is,
the absorption time is

τκ := inf{t > 0 : LT(t ) > �κ},
where �κ � 0 is independent of X (t ) and satisfies

P (�κ > t ) = e−κt .

For technical reasons, it is convenient to continue to allow
X (t ) to diffuse in U\UT according to (C1) after the “absorp-
tion time” τk . Notice that

τκ � τ := inf{t > 0 : X (t ) ∈ UT}. (C3)

That is, the searcher must reach the target before it can be
absorbed at the target. Of course, τκ = τ if the target is
perfectly absorbing, κ = +∞.

Define the survival probabilities Sκ (t ) := P (τκ > t ) and
S(t ) := P (τ > t ). Then (C3) implies

Sκ (t ) = S(t ) + P (τκ > t, τ < t )

= S(t ) + [1 − S(t )]P (τκ > t | τ < t ).

Therefore,

lim
t→0+

t ln[1 − Sκ (t )] = lim
t→0+

t ln[1 − S(t )]

+ lim
t→0+

t ln[1 − P (τκ > t | τ < t )].

(C4)

To show that the asymptotic behavior of the extreme FPT is
unaffected by the partial absorption, Theorem 1 implies that it
remains to show that

lim
t→0+

t ln[1 − P (τκ > t | τ < t )] = 0. (C5)

Using the definition of conditional probability and the
strong Markov property gives

P (τκ > t | τ < t ) �
∫ t

0 supy∈∂UT
Py(τκ > t − s) f (s)ds

1 − S(t )
,

where Py denotes the probability measure conditioned on
X (0) = y and f (s) = −S′(s) is the density of τ . At this
point, assume that there exists a function Sb(t ) satisfying the
following three conditions,

Sb(0) = 1, (C6)

sup
y∈∂UT

Py(τκ > t ) � Sb(t ), for t sufficiently small, (C7)

S′
b(t ) � −λ < 0, for t sufficiently small. (C8)

We will return to the question of the existence of such a
function Sb in the subsection below.

Using (C6)–(C8) yields that for small t ,∫ t

0
sup

y∈∂UT

Py(τκ > t − s) f (s)ds �
∫ t

0
Sb(t − s) f (s)ds

� 1 − S(t ) − λ

∫ t

0
[1 − S(s)]ds,

after integrating by parts. Therefore,

t ln[1 − P (τκ > t | τ < t )] � t ln

{
λ

∫ t
0 [1 − S(s)]ds

1 − S(t )

}

= t ln

{
λ

∫ t

0
[1 − S(s)]ds

}
− t ln[1 − S(t )].

Notice that

lim
t→0+

t ln[1 − S(t )] = −L2
euc(x0,UT)

4D
, (C9)
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and limt→0+ t ln[1 − P (τκ > t | τ < t )] � 0. Hence, in order
to verify (C5), it remains to show that

lim
t→0+

t ln

{
λ

∫ t

0
[1 − S(s)]ds

}
� −L2

euc(x0,UT)

4D
.

It follows from (C9) that if ε > 0, then

1 − S(t ) � exp

[
−L2

euc(x0,UT) + ε

4Dt

]

for all t sufficiently small. Therefore,

lim
t→0+

t ln λ

∫ t

0
[1 − S(s)]ds

� lim
t→0+

t ln λ

∫ t

0
exp

[
−L2

euc(x0,UT) + ε

4Ds

]
ds

= −L2
euc(x0,UT) + ε

4D
.

Since ε > 0 is arbitrary, (C9) is verified and we conclude from
(C4) that

lim
t→0+

t ln[1 − Sκ (t )] = lim
t→0+

t ln[1 − S(t )].

The existence of Sb in Eqs. (C6)–(C8)

a. Symmetric case where UT ⊂ U are concentric balls

We now show that there exists a function Sb(t ) satisfying
(C6)–(C8). First, consider the special case of a symmetric
problem where U ⊂ Rd is a ball and UT ⊂ U is a single ball
located at the center of U . Specifically, if we denote the open
ball of radius r > 0 centered at z ∈ Rd by

Br (z) := {x ∈ Rd : |x − z| < r},
then suppose

UT = Br (0) ⊂ U = BR(0), (C10)

for 0 < r < R. The survival probability conditioned on an
initial location X (0) = y ∈ U\UT,

S(y, t ) = Py(τκ > t ),

satisfies the backward Fokker-Planck equation [39,50],

∂
∂t S = D�S, y ∈ U\UT,

∂
∂ν

S = 0, y ∈ ∂U,

D ∂
∂νT

S = κS, y ∈ ∂UT,

S = 1, t = 0,

where ∂
∂ν

and ∂
∂νT

denote derivatives with respect to the inward
unit normal fields (C2).

Define the survival probability conditioned on starting on
the target,

S0(t ) := S(y, t ) for y ∈ ∂UT. (C11)

Note that (C11) is the same for any choice of y ∈ ∂UT by
symmetry. It was shown in Sec. III B of [51] that there exists
a λ0 > 0 so that

−S′
0(t ) � λ0S(t ) for all t > 0.

Hence, (C6)–(C8) are satisfied with Sb(t ) = e−λ0t in the spe-
cial case that UT ⊂ U are concentric balls with respective radii
r < R.

b. General case

We now extend to the case that U ⊂ Rd is a bounded
domain and the target is a finite, disjoint union of balls,

UT = ∪K
k=1Brk (zk ) ⊂ U .

Let y ∈ ∂UT. Without loss of generality, suppose y ∈ ∂Br1 (z1).
There exists a δ > r1 > 0 so that Bδ (z1) ⊂ U and Bδ (z1) ∩

UT = Bδ (z1). Then for each t > 0, we have that

Py(τκ < t ) = Py(τκ < t, τδ > t ) + Py(τκ < t, τδ < t ),

(C12)

where τδ is the first time the searcher escapes Bδ (z1).
Now, for the symmetric problem in (C10) with r = r1

and R = 2δ, let τ
sym
κ and τ

sym
δ be the absorption time at

UT = Br1 (0) and the hitting time to ∂Bδ (0), respectively. It is
immediate that if |y0| = r1, then

Py(τκ < t, τδ > t ) = Py0

(
τ sym
κ < t, τ sym

δ > t
)
. (C13)

Hence, dividing (C12) by Py0 (τ sym
κ < t ) for |y0| = r1 yields

Py(τκ < t )

Py0 (τ sym
κ < t )

= Py(τκ < t, τδ > t )

Py0 (τ sym
κ < t )

+ Py(τκ < t, τδ < t )

Py0 (τ sym
κ < t )

.

(C14)

Rearranging (C14) and using (C13) yields

Py(τκ < t )

Py0

(
τ

sym
κ < t

) =
[

1 − Py0

(
τ

sym
κ < t, τ sym

δ < t
)

Py0

(
τ

sym
κ < t, τ sym

δ > t
)
]−1

+ Py(τκ < t, τδ < t )

Py0

(
τ

sym
κ < t

) .

We claim that

lim
t→0

Py0

(
τ

sym
κ < t, τ sym

δ < t
)

Py0

(
τ

sym
κ < t, τ sym

δ > t
) = lim

t→0

Py(τκ < t, τδ < t )

Py0

(
τ

sym
κ < t

) = 0,

(C15)

and thus

lim
t→0+

Py(τκ < t )

Py0

(
τ

sym
κ < t

) = 1. (C16)

To see why (C15) holds, note first that

max

{
Py(τκ < t, τδ < t )

Py0

(
τ

sym
κ < t

) ,
Py0

(
τ

sym
κ < t, τ sym

δ < t
)

Py0

(
τ

sym
κ < t, τ sym

δ > t
)
}

� Py0

(
τ

sym
δ < t

)
Py0

(
τ

sym
κ < t, τ sym

δ > t
) .

Now it follows from Varadhan’s formula [36] that

Py0

(
τ

sym
δ < t

)
� e−(δ−r1 )2/(5Dt )

for sufficiently small t . Further, we established above that
there exists a λ0 > 0 so that

Py0

(
τ sym
κ < t

)
� 1 − e−λ0t (C17)
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for sufficiently small t . Hence,

Py0

(
τ

sym
δ < t

)
Py0

(
τ

sym
κ < t, τ sym

δ > t
)

= Py0

(
τ

sym
δ < t

)
Py0

(
τ

sym
κ < t

) − Py0

(
τ

sym
κ < t, τ sym

δ < t
)

� e−(δ−r1 )2/(5Dt )

1 − e−λ0t − e−(δ−r1 )2/(5Dt )

for sufficiently small t . Taking t → 0+ thus verifies (C15).

We claim that

Py(τκ > t ) � e−(λ0/2)t for sufficiently small t . (C18)

To see this, note that if (C18) is false, then using (C16), (C17),
and L’Hospital’s rule yields

1 = lim
t→0+

Py(τκ < t )

Py0

(
τ

sym
κ < t

) � lim
t→0+

1 − e−(λ0/2)t

1 − e−λ0t
= 1

2
,

which is absurd. Hence, (C6)–(C8) are satisfied with Sb(t ) =
e−(λ0/2)t .
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