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Many biological, social, and communication systems can be modeled by “searchers” moving through a
complex network. For example, intracellular cargo is transported on tubular networks, news and rumors spread
through online social networks, and the rapid global spread of infectious diseases occurs through passengers
traveling on the airport network. To understand the timescale of search (or “transport” or “spread”), one
commonly studies the first-passage time (FPT) of a single searcher (or “transporter” or “spreader”) to a target.
However, in many scenarios the relevant timescale is not the FPT of a single searcher to a target, but rather the
FPT of the fastest searcher to a target out of many searchers. For example, many processes in cell biology are
triggered by the first molecule to find a target out of many, and the time it takes an infectious disease to reach
a particular city depends on the first infected traveler to arrive out of potentially many infected travelers. Such
fastest FPTs are called extreme FPTs. In this paper, we study extreme FPTs for a general class of continuous-time
random walks on networks (which includes continuous-time Markov chains). In the limit of many searchers, we
find explicit formulas for the probability distribution and all the moments of the kth fastest FPT for any fixed
k � 1. These rigorous formulas depend only on network parameters along a certain geodesic path(s) from the
starting location to the target since the fastest searchers take a direct route to the target. Hence, the extreme
FPTs are independent of the details of the network outside this geodesic(s) and can be drastically faster and less
variable than conventional FPTs of single searchers. Furthermore, our results allow one to estimate if a particular
system is in a regime characterized by fast extreme FPTs. We also prove similar results for mortal searchers on
a network that are conditioned to find the target before a fast inactivation time. We illustrate our results with
numerical simulations and uncover potential pitfalls of modeling diffusive or subdiffusive processes involving
extreme statistics. In particular, we find that the many searcher limit does not commute with the diffusion limit
for random walks, and thus care must be taken when choosing spatially continuous versus spatially discrete
diffusion models.
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I. INTRODUCTION

Networks are used to model many biological, social, and
communication systems [1–3]. A network (or graph) consists
of (i) nodes (or vertices) which can represent cells, individu-
als, cities, computers, etc., and (ii) edges between nodes which
represent their interactions. An important area of network sci-
ence studies random walks on networks, which are stochastic
processes involving “searchers” (or “transporters” or “spread-
ers”) who explore a network by randomly moving between
connected nodes [4,5]. Random walks on networks have been
used to model very diverse dynamical systems, including the
spread of infectious diseases [6], intracellular transport [7],
animal foraging, the spread of opinions and rumors, and node
ranking (i.e., PageRank) [5].

First passage times (FPTs) are commonly used to under-
stand the timescale of search (or “transport” or “spread”) in
such models [4,5,8]. A FPT is defined as the first time a
searcher reaches a given target(s). Mathematically, if X (t )
denotes the position of a searcher in a discrete set of nodes I at
time t � 0, then the FPT to some set of target nodes Itarget ⊂ I
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is defined by

τ := inf{t > 0 : X (t ) ∈ Itarget}. (1)

Important advances have been made to compute the statistics
of such a FPT, and in particular to understand how the FPT
depends on the structure of the network [4,5,9,10].

However, in many applications the important timescale is
not the FPT of a given single searcher to a target. Instead, the
relevant timescale is the FPT of the fastest searcher to find a
target out of many searchers. For example, in the context of
epidemics spreading globally between cities, the first time the
disease reaches a particular locale depends on the first infected
traveler to arrive out of potentially many infected travelers. As
another example, it was recently pointed out that the transport
efficiency of the endoplasmic reticulum network depends on
the time it takes the fastest molecule to travel between nodes
out of many molecules [7]. In fact, many events in cell biology
are triggered by the fastest searcher out of many searchers (see
the review [11] and subsequent commentaries [12–18]).

Such fastest FPTs are an example of extreme statistics
[19–21] and are thus called extreme FPTs [22]. Mathemati-
cally, an extreme FPT is defined as

TN := min{τ1, . . . , τN },

2470-0045/2020/102(6)/062118(14) 062118-1 ©2020 American Physical Society

https://orcid.org/0000-0003-2208-026X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.102.062118&domain=pdf&date_stamp=2020-12-09
https://doi.org/10.1103/PhysRevE.102.062118


SEAN D. LAWLEY PHYSICAL REVIEW E 102, 062118 (2020)

where τ1, . . . , τN are N FPTs as in (1). In particular,
τ1, . . . , τN represent the FPTs of N searchers who are search-
ing simultaneously for a target, and thus TN is the FPT of the
fastest searcher. Typically, the N searchers are assumed to be
homogeneous and noninteracting, in which case τ1, . . . , τN

are independent and identically distributed (iid). More gen-
erally, some systems depend on the kth fastest FPT for k ∈
{1, . . . , N},

Tk,N := min
{
{τ1, . . . , τN }\ ∪k−1

j=1 {Tj,N }
}
,

where T1,N := TN . For searchers which move by diffusion
through a continuous state space, many works have studied
extreme FPTs [22–35]. However, much less is known about
extreme FPTs for processes on discrete state spaces.

In this paper, we study extreme FPTs for N � 1 searchers
on a network. We find explicit and rigorous approximations
of the full probability distribution and all the moments of TN

for large N . We obtain these results by proving that a certain
rescaling of TN converges in distribution to a Weibull random
variable. In addition, we generalize these results to the kth
fastest FPT, Tk,N , for any k � N .

In our model, each searcher moves according to a
continuous-time random walk (CTRW). To describe how such
a CTRW searcher moves through a network, one must specify
(i) where a searcher moves and (ii) when a searcher moves.
For (i), we assume that the discrete-time process obtained by
observing the sequence of nodes visited by the searcher is
a discrete-time Markov chain. For (ii), we first assume that
the waiting time between moves is exponentially distributed.
In this case, the searcher is a continuous-time Markov chain
(CTMC). We then generalize (ii) by allowing the waiting time
to come from a general family of probability distributions.

Our results show that extreme FPTs are much faster than
single FPTs,

TN � τ, (2)

less variable than single FPTs, and independent of much of the
details of the network. In particular, while a typical searcher
explores much of the network before finding the target, the
fastest searcher follows a certain geodesic path(s) from its
starting location to the target. See Fig. 1 for an illustration.
Indeed, our explicit formulas for the distribution and moments
of extreme FPTs depend only on the parameters along this
geodesic path(s). Furthermore, our moment formulas are ac-
companied by rigorous convergence rates, which thus allow
one to estimate when a particular system is in the extreme
regime in (2). That is, while it is quite intuitive that TN � τ

for sufficiently large N , our analysis determines quantitatively
what constitutes “large N” and estimates TN in this large N
regime.

We use our results to investigate the well-studied problem
of extreme FPTs of diffusive searchers. This analysis reveals
some potential pitfalls in modeling diffusive or subdiffusive
processes involving extreme statistics. Specifically, we show
that the many searcher limit (N → ∞) does not commute with
the diffusion limit for random walks. That is, extreme FPTs
differ drastically between “diffusion” modeled with a contin-
uous state space and “diffusion” modeled with a discrete state
space.

FIG. 1. While a typical searcher (blue trajectory) wanders around
the network before reaching the target, the fastest searcher (red
trajectory) out of many follows a certain geodesic path(s) from its
initial position (source) to the target.

In addition, we prove qualitatively similar results for so-
called mortal searchers [27,36–43]. Mortal searchers cannot
search for the target indefinitely, but rather may be inactivated
(degrade, die, evanesce, etc.) before finding the target. We find
formulas for the moments of the FPT of a single searcher
who is conditioned to find the target before a fast inactivation
time. Similar to our results for extreme FPTs and the results in
Refs. [42,43] for diffusive mortal searchers, we find that such
conditional searchers take a direct route the target.

The rest of the paper is organized as follows. In Sec. II we
analyze the case that the searchers are CTMCs, which means
the waiting times are exponentially distributed. In Sec. III we
extend our analysis to more general waiting time distributions.
In Sec. IV we compare our results to numerical simulations on
complex networks. In Sec. V we apply our results to extreme
FPTs of diffusive and subdiffusive searchers. In Sec. VI we
consider mortal searchers. We conclude by discussing our
results in the context of several related works.

II. EXPONENTIAL WAITING TIMES

A. Random walk setup

Let X = {X (t )}t�0 be a CTMC on a finite or countably infi-
nite state space I . The process X is a single searcher (random
walker), and the state space I is the nodes (vertices) of the
network (graph). There is a directed edge from i ∈ I to j ∈ I
if X can jump directly from i to j. We refer to the time it takes
X to jump directly from i to j as the waiting time. Since X is
a CTMC, such waiting times are exponentially distributed.

The dynamics of X are described by its infinitesimal gen-
erator matrix [44],

Q = {q(i, j)}i, j∈I .

The off-diagonal entries of Q are non-negative,

q(i, j) � 0, i 	= j,
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and give the rate that X jumps from state i ∈ I to state j ∈ I .
The diagonal entries of Q are nonpositive,

q(i, i) � 0, i ∈ I,

and are chosen so that Q has zero row sums,∑
j∈I

q(i, j) = 0, i ∈ I. (3)

It is convenient to define

q(i) := −q(i, i) � 0, i ∈ I,

which is the total rate that X leaves state i ∈ I (regardless of
the state that X jumps to). We assume that

sup
i∈I

q(i) < ∞,

which ensures that X cannot take infinitely many jumps in
finite time.

B. Single FPTs

Define the FPT of X to some target set Itarget ⊂ I ,

τ := inf{t > 0:X (t ) ∈ Itarget}. (4)

Denote the initial distribution of X by

ρ = {ρ(i)}i∈I = {P (X (0) = i)}i∈I .

To avoid trivial cases, we assume that X cannot start directly
on the target, which means

Itarget ∩ supp(ρ) = ∅, (5)

where supp(ρ) ⊂ I denotes the support of the distribution ρ,

supp(ρ) := {i ∈ I:ρ(i) > 0}.
We refer to τ as a single FPT, since it is the FPT of a given

single searcher X . We are interested in studying the fastest
(extreme) FPT out of N � 1 searchers,

TN := min{τ1, . . . , τN },
where τ1, . . . , τN are N iid realizations of τ . Since τ1, . . . , τN

are iid, it is immediate that the distribution of TN is

P (TN > t ) = (P (τ > t ))N . (6)

Since P (τ > t ) decreases monotonically in t > 0, it is
intuitively clear from (6) that the large N distribution of TN

is determined by the short-time distribution of τ . In this sub-
section, we find this short-time distribution. In particular, we
prove in Proposition 1 below that

P (τ � t ) ∼ �

d!
t d as t → 0+, (7)

where (i) d � 1 is the smallest number of jumps that X must
take to reach Itarget and (ii) � > 0 is a sum of the products of
the jump rates along the shortest paths from supp(ρ) to Itarget

(where the terms in the sum are weighted according to ρ). In
the remainder of this subsection, we make (7) precise.

Define a path P of length d ∈ Z�0 from a state i0 ∈ I to a
state id ∈ I to be a sequence of d + 1 states in I ,

P = (P (0), . . . ,P (d )) = (i0, i1, . . . , id ) ∈ Id+1, (8)

so that

q(P (k),P (k + 1)) > 0, for k ∈ {0, 1, . . . , d − 1}. (9)

In words, (9) means that there is a strictly positive probability
that X may traverse the path P . Naturally, we assume that
there is a path from the support of ρ to the target,⋃

d�1

{P ∈ Id+1:P (0) ∈ supp(ρ),P (d ) ∈ Itarget} 	= ∅. (10)

If (10) is violated, then τ = TN = ∞ almost surely and the
problem is trivial.

For a path P ∈ Id+1, define λ(P ) to be the product of the
rates along the path,

λ(P ) :=
d−1∏
i=0

q(P (i),P (i + 1)) > 0. (11)

Let dmin(I0, I1) ∈ Z�0 denote the length of the geodesic path
from a set of nodes I0 ⊂ I to another set of nodes I1 ⊂ I ,

dmin(I0, I1) := inf{d:P ∈ Id+1,P (0) ∈ I0,P (d ) ∈ I1}. (12)

In words, dmin(I0, I1) is the smallest number of jumps required
for X to move from I0 to I1.

Define the set of all paths from I0 to I1 with the minimum
length dmin(I0, I1) in (12),

S (I0, I1)

:= {P ∈ Id+1:P (0) ∈ I0,P (d ) ∈ I1, d = dmin(I0, I1)}.
(13)

Define

�(ρ, I1) :=
∑

P∈S(supp(ρ),I1 )

ρ(P (0))λ(P ). (14)

The quantity �(ρ, I1) is easiest to understand by first con-
sidering the case that ρ(i0) = 1 for some i0 ∈ I [meaning
supp(ρ) = i0 = X (0) almost surely]. In this case, if there is a
unique path with the minimum number of jumps dmin(i0, I1),
then �(ρ, I1) is simply the product of the jump rates along
this geodesic path [λ(P ) in (11)]. If there are multiple such
geodesic paths, then �(ρ, I1) sums the products of the jump
rates along these paths. Finally, if the support of ρ is not
concentrated at a single point, then �(ρ, I1) simply sums the
products of the jump rates along all the geodesic paths, where
the sum is weighted according to the initial distribution ρ.

With these definitions in place, we can now give the short-
time behavior of the distribution of τ . Throughout this paper,

“ f ∼ g” means f /g → 1.

Proposition 1. We have that

P (τ � t ) ∼ �

d!
t d as t → 0+,

where

d = dmin(supp(ρ), Itarget ) ∈ Z>0,

� = �(ρ, Itarget ) > 0.

The proof of Proposition 1, as well as the proofs of the
theorems and propositions below, are given in the Appendix.
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C. Fastest FPT

Having determined the short-time distribution of a single
FPT τ in Proposition 1, we now determine the large N dis-
tribution and moments of the fastest FPT TN . In Theorem 1
below, we prove that a certain rescaling of TN converges in
distribution to a Weibull random variable. Before stating the
theorem, we recall two requisite definitions.

Definition 1. A sequence of random variables {ZN }N�1

converges in distribution to a random variable Z if

P (ZN � z) → P (Z � z) as N → ∞,

for all points z ∈ R such that F (z) := P (Z � z) is continuous.
If this holds, then we write

ZN →d Z as N → ∞.

Definition 2. A random variable Z � 0 has a Weibull dis-
tribution with scale parameter t > 0 and shape parameter
d > 0 if

P (Z > z) = exp(−(z/t )d ), z � 0. (15)

If (15) holds, then we write

Z =d Weibull(t, d ).

Theorem 1. Let d � 1 and � > 0 be as in Proposition 1
and define

A = �

d!
> 0.

The following rescaling of TN converges in distribution to a
Weibull random variable:

(AN )1/d TN →d Weibull(1, d ) as N → ∞. (16)

Suppose further that

E[TN ] < ∞ for some N � 1.

Then for each moment m ∈ (0,∞), we have that

E[(TN )m] ∼ �(1 + m/d )

(AN )m/d
as N → ∞. (17)

The convergence in (16) means roughly that the distribu-
tion of TN for large N is given by

TN ≈d Weibull((AN )−1/d , d ). (18)

Further, the general formula for the mth moment in (17) means
that as N → ∞ the mean and variance are

E[TN ] ∼ �
(
1 + 1

d

)
(AN )1/d

,

Variance(TN ) ∼ �
(
1 + 2

d

) − (
�

(
1 + 1

d

))2

(AN )2/d
. (19)

Compared to a single FPT, Theorem 1 implies that extreme
FPTs are (i) faster, (ii) less variable, and (iii) less affected by
the size, structure, and details of the network. To see points
(i) and (ii), note the vanishing mean and variance in (19)
[which is implied by the vanishing moments in (17)]. To see
point (iii), notice that Theorem 1 implies that the limiting
distribution of TN is completely determined by the parameters
N , �, and d . In particular, the only network parameters that
enter into the large N distribution of TN are along the geodesic

source target

source target

FIG. 2. The fastest searcher out of N � 1 searchers moving
through the top network takes the geodesic path from initial position
(source) to the target, which is highlighted in red. Theorems 1 and 2
imply that the statistics of the extreme FPTs depend only on network
parameters along this geodesic path. Therefore, deleting the nodes
outside this geodesic path does not affect the extreme FPTs. Hence,
the complicated top network and the simple bottom network have
the same extreme FPTs for large N (assuming the rates along the
geodesic path are identical in the top and bottom networks).

path(s) from the initial distribution to the target. Therefore,
if there are many searchers (N � 1), the distribution of TN

is unaffected by changes to the network outside this geodesic
path(s). This is illustrated in Fig. 2, which depicts two vastly
different networks that nonetheless have the same extreme
FPT distributions.

In addition, (17) allows us to estimate when TN is in the
extreme Weibull regime of Theorem 1. In particular, we are
assured by (17) that TN is in this large N regime for all
moments m � 1 if (AN )−1/d is much smaller than the other
timescales in the problem, which means

N � (supi∈I q(i))d

A
= d!(supi∈I q(i))d

�
,

since supi∈I q(i) < ∞ is the fastest rate in the problem.

D. kth fastest FPT

We now generalize Theorem 1 on the fastest FPT to the kth
fastest FPT,

Tk,N := min
{
{τ1, . . . , τN }\ ∪k−1

j=1 {Tj,N }
}
,

where T1,N := TN . The large N distribution of Tk,N is described
in terms of a generalized gamma random variable.

Definition 3. A random variable X � 0 has a generalized
gamma distribution with parameters t > 0, d > 0, k > 0 if

P (Z > z) = �(k, (z/t )d )
�(k)

, z � 0, (20)

where �(a, z) := ∫ ∞
z ua−1e−u du denotes the upper incom-

plete gamma function. If (20) holds, then we write

Z =d gen�(t, d, k).
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Theorem 2. Fix k � 1 and let A be as in Theorem 1. The
following rescaling of Tk,N converges in distribution to a gen-
eralized gamma random variable,

(AN )1/d Tk,N →d gen�(1, d, k) as N → ∞.

Suppose further that

E[TN ] < ∞ for some N � 1.

Then for each moment m ∈ (0,∞), we have that

E[(Tk,N )m] ∼ �(k + m/d )/�(k)

(AN )m/d
as N → ∞. (21)

Similar to (18), Theorem 2 means roughly that the distri-
bution of Tk,N for large N is

Tk,N ≈d gen�((AN )−1/d , d, k).

Further, the general formula for the mth moment in (21) means
that as N → ∞ the mean and variance are

E[Tk,N ] ∼ �
(
k + 1

d

)
/�(k)

(AN )1/d
,

Variance(Tk,N ) ∼ �
(
k + 2

d

)
/�(k) − (

�
(
k + 1

d

)/
�(k)

)2

(AN )2/d
.

III. GENERAL WAITING TIMES

A. Random walk setup

In the previous section, we took the random walkers to
be CTMCs. From a modeling perspective, there are three
key restrictions implied by this assumption. First, the waiting
times are always exponentially distributed. Second, the wait-
ing times depend only on the current state. That is, the waiting
time to jump from node i to node j depends only on i and
not on the destination j [the waiting time is exponential with
rate q(i) even though the “jump rate” is q(i, j); see below].
Naturally, in many applications the time it takes to move
depends on the destination. Third, the waiting times may be
arbitrarily short. That is, for any small time ε > 0, there is a
strictly positive probability that the searcher will jump from
i to j in a time less than ε [as long as q(i, j) > 0]. In this
section, we remove these three restrictions.

Let X = {X (t )}t�0 be a continuous-time stochastic process
on a discrete state space I (as a technical point, we assume
paths of X are continuous from the right). In contrast to Sec. II,
we assume for simplicity that I is finite. Informally, we sup-
pose that the CTRW X walks on the network I in the following
manner. From a state i ∈ I , the walker chooses its next state
according to a probability distribution that depends on only its
current state i. Then, having chosen that the next state is some
j ∈ I , the walker waits at its current state until time S > 0,
where S is chosen according to a probability distribution that
may depend on both the current state i and the next state j.

More precisely, let J (0), J (1), . . . be the jump times of X ,
which are defined by [44]

J (0) = 0,

J (n + 1) = inf{t � J (n):X (t ) 	= X (J (n))}, n � 0.

Further, define the waiting times S(1), S(2), . . . by

S(n) :=
{

J (n) − J (n − 1) if J (n − 1) < ∞,

∞ otherwise, n � 1.

In words, the nth jump of X happens at time t = J (n), and X
waits at its new state for time S(n + 1).

Assume that the discrete-time process obtained by observ-
ing X only at the jump times,

Y (n) := X (J (n)), n � 0, (22)

is a discrete-time Markov chain. Further, assume that for
each n � 1, conditional on Y (0), . . . ,Y (n), the waiting times
S(1), . . . , S(n) are independent random variables with

P (S(m) � t ) = FY (m−1),Y (m)(t ), t ∈ R, (23)

where {Fi, j (t )}i, j∈I are a given set of cumulative distribution
functions. In addition, assume that each Fi, j (t ) satisfies

Fi, j (t ) = 0, t � t0(i, j), (24)

Fi, j (t ) ∼ λ(i, j)(t − t0(i, j))r, as t → t0(i, j)+, (25)

where t0(i, j) � 0, λ(i, j) > 0, and r > 0. Assume that

sup
i, j∈I

λ(i, j) < ∞,

which ensures that X cannot take infinitely many jumps in
finite time (that is, X is not explosive).

The assumption in (23) means that the waiting time S(n)
from state Y (n − 1) to state Y (n) can depend on both Y (n − 1)
and Y (n). The assumption in (24) means that t0(i, j) � 0 is
the fastest possible waiting time from state i to state j. From
a modeling perspective, the benefit of this assumption is that
it allows one to ensure that waiting times cannot be arbitrarily
small by setting t0(i, j) > 0. The assumption in (25) describes
the waiting time distribution near the fastest waiting time
t0(i, j).

We note that if X is merely a CTMC as in Sec. II, then

Fi, j (t ) = 1 − e−q(i)t , t � t0(i, j) = 0,

λ(i, j) = q(i),

r = 1. (26)

In particular, notice that Fi, j (t ) in (26) depends only on i for
the case of a CTMC.

B. Single FPTs

To describe the short-time distribution of the FPT τ in
(4) for this generalized process X , we must generalize our
definitions in (8)–(14). First, let

� = {π (i, j)}i, j∈I

be the stochastic matrix governing the discrete-time process
Y (n) in (22) [44]. In particular, π (i, j) is the probability that
Y jumps from i to j. Define a path P of length d ∈ Z�0 from
a state i0 ∈ I to a state id ∈ I to be a sequence of d + 1 states
in I ,

P = (P (0), . . . ,P (d )) = (i0, i1, . . . , id ) ∈ Id+1, (27)
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so that

π (P (k),P (k + 1)) > 0, for k ∈ {0, 1, . . . , d − 1}. (28)

Note that (27) and (28) generalize the definition of a path in
(8) and (9) since if X is a CTMC as in Sec. II, then [44]

π (i, j) =
{

q(i, j)/q(i) if j 	= i and q(i) 	= 0
0 if j 	= i and q(i) = 0 ,

π (i, i) =
{

0 if q(i) 	= 0
1 if q(i) = 0 .

(29)

As in Sec. II, we assume of course that there is a path from
the support of ρ to the target [see (10)]. We also assume (5),
which means the searcher cannot start directly on the target.

For a path P ∈ Id+1, define λ(P ) to be the product of the
π (i, j)’s and λ(i, j)’s in (25) along the path,

λ(P ) :=
d−1∏
i=0

π (P (i),P (i + 1))λ(P (i),P (i + 1)) > 0. (30)

Note that (26) and (29) imply that (30) generalizes (11). In
addition, for a path P ∈ Id+1, define t0(P ) to be the sum of
the t0(i, j)’s in (25) along the path,

t0(P ) :=
d−1∑
i=0

t0(P (i),P (i + 1)) � 0.

In words, t0(P ) is the shortest possible time required to tra-
verse the path P . Taking the infimum over paths, define the
shortest possible time to reach a set I1 ⊂ I starting from a set
I0 ⊂ I ,

tmin(I0, I1)

:= inf{t0(P ) : P ∈ Id+1,P (0) ∈ I0,P (d ) ∈ I1} � 0.

Next, define the smallest number of jumps required to reach
I1 from I0 if the searcher traverses a path P with the minimum
required time t0(P ) = tmin(I0, I1),

dmin(I0, I1)

:= inf{d:P (0) ∈ I0,P (d ) ∈ I1, t0(P ) = tmin(I0, I1)}.
Further, define

S (I0, I1) := {P ∈ Id+1 : P (0) ∈ I0,P (d ) ∈ I1,

t0(P ) = tmin(I0, I1), d = dmin(I0, I1)}.
In words, S (I0, I1) are the paths P going from I0 to I1 which (i)
have the minimum time and (ii) have the minimum number of
jumps out of the paths which have the minimum time. Define

�(ρ, I1) :=
∑

P∈S(supp(ρ),I1 )

ρ(P (0))λ(P ).

It is immediate that these definitions generalize the definitions
in Sec. II since t0(P ) = 0 for every path in the case that X is
a CTMC.

Proposition 2. We have that

P (τ � tmin + t ) ∼ (�(r + 1))d

�(dr + 1)
�t d as t → 0+,

where r > 0 is in (25) and

tmin = tmin(supp(ρ), Itarget ) � 0,

d = dmin(supp(ρ), Itarget ) ∈ Z>0,

� = �(ρ, Itarget ) > 0.

C. Extreme FPTs

Having determined the short-time distribution of a single
FPT τ in Proposition 2, we now determine the distribution
and moments of the fastest FPT, TN , and the kth fastest FPT,
Tk,N , out of N � 1 iid realizations of τ .

Theorem 3. Let tmin � 0, d � 1, r > 0, and � > 0 be as in
Proposition 2 and define

A = (�(r + 1))d

�(dr + 1)
� > 0.

The following rescaling of TN − tmin converges in distribution
to a Weibull random variable,

(AN )1/d (TN − tmin) →d Weibull(1, d) as N → ∞.

Suppose further that

E[TN ] < ∞ for some N � 1.

Then for each moment m ∈ (0,∞), we have that

E[(TN − tmin)m] ∼ �(1 + m/d )

(AN )m/d
as N → ∞.

Theorem 4. Fix k � 1 and let A be as in Theorem 3. The
following rescaling of Tk,N − tmin converges in distribution to
a generalized gamma random variable,

(AN )1/d (Tk,N − tmin) →d gen�(1, d, k) as N → ∞.

Suppose further that

E[TN ] < ∞ for some N � 1.

Then for each moment m ∈ (0,∞), we have that

E[(Tk,N − tmin)m] ∼ �(k + m/d )/�(k)

(AN )m/d
as N → ∞.

IV. NUMERICAL SIMULATIONS

In this section, we compare the results of our analysis to
numerical simulations on complex networks. We consider the
setup of Sec. II in which each searcher moves according to a
CTMC.

To create the CTMC, we create a graph by randomly
connecting V = |I| � 1 vertices by E directed edges (we con-
struct the graph so that E ≈ 5V ). We then assign jump rates
to each directed edge independently according to a uniform
distribution. More precisely, if the CTMC has infinitesimal
generator matrix Q = {q(i, j)}i, j∈I , then the diagonal entries,
q(i, i) � 0 are chosen so that Q has zero row sums [see (3)],
and the off-diagonal entries, q(i, j) � 0 with i 	= j, are

q(i, j) =
{

Ui, j if there is a directed edge from i to j
0 otherwise ,

where {Ui, j}i, j∈I are independent uniform random variables on
[0,1].
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FIG. 3. Mean fastest FPT, E[TN ], as a function of the number of
searchers, N . The different colored solid curves are E[TN ] computed
numerically for different random graphs (different CTMCs). These
curves approach the theoretical values [see Theorem 1 and (34)],
which are the dashed lines.

To numerically compute the distribution and mean of the
fastest FPT TN , we need only compute the survival probability
P (τ > t ) of a single FPT τ since

P (TN > t ) = (P (τ > t ))N , (31)

E[TN ] =
∫ ∞

0
(P (τ > t ))N dt . (32)

To compute P (τ > t ), let the target be a single node, Itarget =
itarget ∈ I , and let Q̃ denote the matrix obtained by deleting the
row and column in Q corresponding to itarget. Similarly, for
an initial distribution ρ, let ρ̃ denote the vector obtained by
deleting the entry in ρ corresponding to itarget. Then, P (τ > t )
is given by the sum of the entries in the vector eQ̃t ρ̃, where
Q̃ denotes the transpose of Q̃ and eQ̃t denotes the matrix
exponential [45]. In particular, we can write P (τ > t ) as the
dot product,

P (τ > t ) = 1 · eQ̃t ρ̃, (33)

where 1 ∈ RV −1 is the vector of all ones.
In Fig. 3 we plot the mean fastest FPT, E[TN ], as a function

of the number of searchers, N , for different values of the
number of vertices V and the shortest distance d from the
starting location to the target state. The solid curves are E[TN ]
computed from (32), with P (τ > t ) computed from (33). The
dashed lines are the large N formula for E[TN ] found in
Theorem 1, namely,

�(1 + 1/d )

(AN )1/d
. (34)

In agreement with the theory, the solid curves in Fig. 3
approach the corresponding dashed lines as N increases.
In particular, this plot illustrates that the MFPT of a sin-
gle searcher (E[T1] = E[τ ] ≈ 102) is much slower than the
MFPT of the fastest searcher out of many searchers (E[TN ] �
E[τ ] if N � 102).
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FIG. 4. Probability density of the rescaled fastest FPT,
(AN )1/d TN , for different values of the number of searchers, N . The
black solid curve is the probability density of a Weibull random
variable with unit scale parameter and shape parameter d . In this
plot, the random graph has V = 103 vertices (states in the CTMC),
and the shortest distance from the starting state to the target is d = 3.

In addition to the moments of TN , Theorem 1 gives the full
probability distribution of TN for large N . We illustrate this
convergence in Fig. 4 by plotting the probability density of
the rescaled fastest FPT, (AN )1/d TN , for different values of
N . The probability density of (AN )1/d TN is computed from
(31). In this plot, the graph has V = 103 vertices (states for
the Markov chain) and the shortest distance from the starting
location to the target is d = 3. In agreement with the theory,
the probability density of (AN )1/d TN approaches the density
of a Weibull random variable with unit scale parameter and
shape parameter d (namely, the limiting density is dzd−1e−zd

).

V. (SUB)DIFFUSIVE SEARCHERS

A. Diffusion

In this subsection, we compare our results to extreme FPTs
for continuous state space diffusion processes, which have
been studied extensively [22–35]. Let X diff = {X diff (t )}t�0 be
a one-dimensional continuous state space diffusion process
starting at the origin with diffusivity D > 0. That is, suppose
X diff satisfies the stochastic differential equation,

dX diff =
√

2D dW, X (0) = 0,

where W = {W (t )}t�0 is a standard Brownian motion. Hence,
the probability density p(x, t ) that X (t ) = x satisfies the
Fokker-Planck equation,

∂

∂t
p = D

∂2

∂x2
p, x ∈ R, t > 0, (35)

p(x, 0) = δ(x).

Let τ diff be the first time that X diff escapes the interval
(−L, L),

τ diff := inf{t > 0 : X diff (t ) /∈ (−L, L)}, (36)
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and define the extreme FPT,

T diff
N := min

{
τ diff

1 , . . . , τ diff
N

}
, (37)

where τ diff
1 , . . . , τ diff

N are N iid realizations of τ diff . It is well
known that [23]

E
[
T diff

N

] ∼ L2

4D ln N
, as N → ∞. (38)

Indeed, the asymptotic behavior in (38) holds in much greater
generality, including for diffusion processes on d-dimensional
manifolds with space-dependent diffusivities and force fields
[22].

It is interesting to compare the behavior in (38) for dif-
fusive searchers to the behavior we found in Theorem 1 for
CTMCs. Suppose we discretize space with step size

�x = L

d
� L, (39)

where d is a large natural number. Let {X ctmc(t )}t�0 be the
CTMC which takes values in the one-dimensional network,

I := {i�x}i∈Z = {. . . ,−�x, 0,�x, . . . }, (40)

and has jump rates (using the notation of Sec. II),

q(i, i ± 1) = q(i)

2
= D

(�x)2
= D

L2
d2 > 0, i ∈ Z.

Assume X ctmc(0) = 0. Depending on the context, X diff may
be viewed as an approximation of X ctmc, or vice versa. The
correspondence between X diff and X ctmc is perhaps most eas-
ily seen by noticing that if we use a centered, second-order
finite difference approximation for the spatial derivative in
the Fokker-Planck equation (35) for X diff , then we obtain the
master equation (Kolmogorov forward equation) for X ctmc.

Define τ ctmc and T ctmc
N analogously to τ diff and T diff

N ,

τ ctmc := inf {t > 0:X ctmc(t ) /∈ {i�x}|i|<d},
T ctmc

N := min
{
τ ctmc

1 , . . . , τ ctmc
N

}
,

(41)

where τ ctmc
1 , . . . , τ ctmc

N are N iid realization of τ ctmc. Theorem
1 above implies that

E
[
T ctmc

N

] ∼ L2

D

f (d )

N1/d
, as N → ∞, (42)

where

f (d ) := (d!)1/d�(1 + 1/d )

d2
∼ 1

de
, as d → ∞.

Hence, while the distributions of X diff (t ) and X ctmc(t ) can be
made close for any fixed t � 0 by taking d large, we see from
(38) and (42) that the extreme FPTs of X diff and X ctmc are
quite different for any d � 1.

Put another way, this shows that the diffusion limit, d →
∞, and the many searcher limit, N → ∞, of T ctmc

N do not
commute. From a modeling perspective, this means that care
must be taken in choosing a model of diffusion (spatially
continuous X diff versus spatially discrete X ctmc) if the system
depends on extreme statistics. See Ref. [46] for an analysis
of extreme statistics of diffusion modeled by a piecewise
deterministic Markov process (i.e., a velocity jump process).

B. Subdiffusion

In this subsection, we compare our results to extreme FPTs
for subdiffusive processes. A subdiffusive process {X (t )}t�0

is defined by a mean-squared displacement that grows sublin-
early in time [47],

E[(X (t ) − X (0))2] ∝ tα, α ∈ (0, 1).

A common model for subdiffusion is a certain type of CTRW
[48]. In one space dimension, this model is characterized by
a jump length probability density function (pdf), l (x), and
a waiting time pdf, w(t ). In particular, if the searcher lands
at some position Y (n) ∈ R, the searcher waits until a time
chosen from w(t ), then jumps to a new location Y (n + 1) =
Y (n) + ξ (n + 1), where ξ (n + 1) is chosen from l (x). The
searcher continues this process indefinitely.

Assume that the jump length pdf l (x) is symmetric about
the origin so that the walk is unbiased, and assume that it has
finite standard deviation,

�x :=
√∫ ∞

−∞
x2l (x) dx < ∞.

In addition, assume that the waiting time pdf has a slow
power-law decay,

w(t ) ∼ Cα

(�t

t

)1+α

, as t → ∞, (43)

where α ∈ (0, 1), for some timescale �t and some rate Cα >

0. Choose l (x) so that �x = L/d as in (39) and choose w(t )
so that �t satisfies

(�t )α = (�x)2

2Kα

= (L/d )2

2Kα

, (44)

where Kα > 0 is some fixed generalized diffusivity. Then,
in the diffusion limit d → ∞, it is well known that the pdf
of the limiting process satisfies the fractional Fokker-Planck
equation [48],

∂

∂t
p = 0D1−α

t Kα

∂2

∂x2
p, x ∈ R, t > 0, (45)

where 0D1−α
t is the fractional derivative of Riemann-Liouville

type [49], defined by

0D1−α
t f (t ) = 1

�(α)

d

dt

∫ t

0

f (s)

(t − s)1−α
ds.

Let X sub = {X sub(t )}t�0 denote the subdiffusive process
starting at the origin,

X sub(0) = 0,

whose pdf satisfies the fractional equation (45) (note that X sub

can be constructed as a random time change of X diff [50]).
Define τ sub and T sub

N analogously to (36) and (37). It was
recently proven [35] that

E
[
T sub

N

] ∼ tα
(ln N )2/α−1

as N → ∞, (46)

where tα > 0 is the timescale,

tα :=
(
αα (2 − α)2−α L2

4Kα

)1/α

> 0.
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The CTRW leading to the fractional equation (45) can be
put in the framework of Sec. III. In particular, consider a
process {X ctrw(t )}t�0 with waiting time pdf w(t ) satisfying
(43) and (44) and jump length pdf l (x) given by a sum of
Dirac delta functions,

l (x) = 1
2δ(�x − x) + 1

2δ(�x + x), x ∈ R,

with �x = L/d . In the notation of Sec. III, the state space I is
the discrete set in (40), the jump chain follows

π (i, j) =
{

1/2 if |i − j| = 1,

0 otherwise,

and

Fi,i±1(t ) =
∫ t

0
w(t ′) dt ′, i ∈ Z.

Suppose that limt→0+ w(t ) = 2λ(d ) > 0 for some function
λ(·) so that F (t ) := Fi,i±1(t ) ∼ 2λ(d )t as t → 0+. Thus F
satisfies (24) and (25) with r = 1 and t0 = 0.

Therefore, in the diffusion limit d → ∞, the pdf of the lim-
iting process satisfies (45), and thus the extreme FPTs satisfy
(46). That is, if we take d → ∞ first, and then take N → ∞
limit, then we obtain (46). However, Theorem 3 above shows
that if we take N → ∞ first for the CTRW X ctrw, then we
obtain that the extreme FPTs satisfy

E
[
T ctrw

N

] ∼
[

�(1 + 1/d )

(d!)1/dλ(d )

]
1

N1/d
, as N → ∞, (47)

where T ctrw
N is defined analogously to (41).

Comparing (46) and (47), we again see that the diffusion
limit (d → ∞) and the many searcher limit (N → ∞) do not
commute. In addition, comparing (42) and (47) shows that
the extreme FPTs of the discrete state space diffusive process
X ctmc and the discrete state space subdiffusive process X ctrw

both decay as N−1/d as N → ∞. In fact,

E
[
T ctmc

N

] ∼ E
[
T ctrw

N

]
, as N → ∞,

if we take λ(d ) = (D/L2)d2. Hence, the behavior of extreme
statistics is very different in the discrete case (d < ∞) com-
pared to the continuum limit (d = ∞).

VI. FAST INACTIVATION OF MORTAL WALKERS

Compared to a single FPT, we found in Secs. II and III that
extreme FPTs are faster, less variable, and less affected by
network size and structure. In essence, considering only the
fastest FPTs filters out searchers which deviate from a direct
route to the target. It was recently shown in Refs. [42,43]
that fast inactivation can have a similar effect on FPTs by
filtering out slow searchers. These two prior works considered
searchers which move by continuous state space diffusion
[42,43] or discrete state space diffusion [42]. In this section,
we consider fast inactivation for searchers on networks which

move according to a CTMC as in Sec. II or a CTRW as in
Sec. III.

Consider a single searcher that can be inactivated (de-
grade, die, evanesce, etc.) before reaching the target. Such
finite lifetime searchers are called “mortal” or “evanescent”
and have been widely studied [27,36–43]. Indeed, mortal
searchers have been used to model a variety of systems, in-
cluding inactivation of intracellular signaling molecules [42],
sperm cells searching for an egg despite a high mortality rate
[27], animals or bacteria foraging for food, extinction of a
fluorescent signal in bio-imaging methods, messenger RNA
searching for a ribosome, and storage of nuclear waste [41].

Mathematically, in addition to the FPT τ of a single
searcher [as in (1)], one introduces an independent and ex-
ponentially distributed inactivation time σ with rate γ > 0,

σ =d exponential(γ ).

Hence, the event τ < σ means that the searcher found the tar-
get before it was inactivated, while σ < τ corresponds to the
opposite scenario. Consider the mth moment of τ , conditioned
that the searcher finds the target before it is inactivated,

E[τm | τ < σ ] := E[τm1τ<σ ]

P (τ < σ )
, (48)

where 1τ<σ denotes the indicator function,

1τ<σ :=
{

1 if τ < σ,

0 otherwise .

As in Refs. [42,43], we are interested in the behavior of the
conditional FPT moments (48) in the limit of fast inactivation,
i.e., γ → ∞. The following theorem gives this behavior in
terms of the short-time behavior of the unconditioned FPT
τ . In particular, Theorem 5 is stated for an arbitrary random
variable τ satisfying a certain assumption about its short-time
distribution. The subsequent corollaries then consider the case
that τ is a CTMC FPT as in Sec. II (Corollary 1) and the case
that τ is a CTRW FPT as in Sec. III (Corollary 2).

Theorem 5. Let τ be any random variable satisfying

P (τ � tmin + t ) ∼ Atd as t → 0+,

for some tmin � 0, A > 0, and d > 0. Let σ be an independent
exponential random variable with rate γ > 0 and let m > 0. If
tmin = 0, then

E[τm | τ < σ ] ∼ �(d + m)

�(d )

1

γ m
as γ → ∞. (49)

If tmin > 0, then

E[τm | τ < σ ] − (tmin)m ∼ dm

γ
(tmin)m−1 as γ → ∞. (50)

The next two corollaries follow immediately from Theo-
rem 5 and Propositions 1 and 2.

Corollary 1. Let τ be as in Sec. II and let d � 1 be as
in Theorem 1. Let σ be an independent exponential random
variable with rate γ and let m > 0. Equation (49) holds.
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Corollary 2. Let τ be as in Sec. III and let d � 1 and tmin �
0 be as in Theorem 3. Let σ be an independent exponential
random variable with rate γ and let m > 0. If tmin = 0, then
(49) holds. If tmin > 0, then (50) holds.

Theorem 5 and Corollaries 1 and 2 show that FPTs con-
ditioned to be less than a fast inactivation time and extreme
FPTs have similar qualitative properties. In particular, com-
pared to unconditioned FPTs, such conditional FPTs are
faster, less variable (all the moments vanish), and are less
affected by the network size, structure, and details, since they
depend only on the minimum number of jumps d that are
required to reach the target. Corollary 1 recovers some results
proven in Ref. [42] for a discrete state space diffusion model.

VII. DISCUSSION

We have analyzed extreme FPTs for a general class of
CTRWs on networks. In the case that there are many searchers
(random walkers), we found explicit formulas for the extreme
FPT distribution and moments that depend only on the param-
eters along the geodesic path(s) from the starting location(s)
to the target. Hence, the extreme FPTs are independent of
the details of the network outside this geodesic(s). We proved
similar results for searchers which are conditioned to find the
target before a fast inactivation time.

Extreme FPTs have been studied extensively for diffusion
processes with continuous state spaces [22–35]. This project
was started in 1983 by Weiss, Shuler, and Lindenberg [23],
and more recent work has been motivated primarily by biolog-
ical applications [11]. Interesting work has also been done for
extreme FPTs of diffusion on fractals [51,52]. These previous
works are marked by an inverse logarithmic decay of the mean
extreme FPT,

E[TN ] ∝ 1

ln N
, (51)

as the number of searchers N grows. Indeed, it was recently
proven [22] that (51) holds for diffusive search under very
general assumptions, as long as the searchers cannot start
arbitrarily close to the target. If the diffusive searchers start
uniformly in the spatial domain (which means that they can
start arbitrarily close to the target), then it was proven in
Refs. [53,54] that as N → ∞,

E[TN ] ∝ 1

N2
or E[TN ] ∝ 1

N
, (52)

depending on whether the target is perfectly or partially re-
active (the result E[TN ] ∝ N−2 for a perfectly reactive target
was in fact first shown in Ref. [23]).

In contrast to expressions (51) and (52), in the present work
we found that extreme FPTs of CTRWs on discrete networks
decay as

E[TN ] ∝ 1

N1/d
, as N → ∞, (53)

where d � 1 is the minimum number of jumps required to
reach the target. Comparing (51) and (53), it is clear that
the behavior of extreme FPTs of “diffusion” depend critically
on whether the diffusion is modeled by a continuous state
space or a discrete state space. See Sec. V for more on this
discrepancy.

An interesting related work studying extreme FPTs for
processes on discrete networks is that of Weng and colleagues
[55]. In Ref. [55] the authors investigated the mean of ex-
treme FPTs for discrete-time random walks on finite networks
(termed the “mean first parallel passage time”). These authors
found an exact formula for this mean time in terms of a matrix
describing the network structure. Then, upon averaging over
starting locations and target locations, they found that this
“global” mean time decays as 1/N as the number of searchers
N grows.

An important line of related works is [6,56–59], which
study various network-based measures which generalize the
concept of distance. These measures define the “effective
distance” between pairs of nodes in a network by taking into
account the probabilities of paths between the nodes. Some of
this work seeks to understand the arrival time of an infectious
disease to a given location. In particular, these works seek to
incorporate the idea that frequently traveled routes between
two locations (such as airports) make them effectively closer.

In the present work, we similarly found that a certain
geodesic path between the source node(s) and the target
node(s) controls the extreme FPTs. We found that the geodesic
path that is relevant for extreme FPTs minimizes the number
of intermediary nodes between the source and target (and
the minimum time for the general model in Sec. III). We
emphasize that this is a result of the analysis and not an as-
sumption. Indeed, one might have expected that other notions
of “optimal” paths [56] or most probable paths would yield the
paths taken by the fastest searchers. However, we have found
that this is not the case, as the probability of a path or the rates
along a path play a strictly secondary role for extreme FPTs.

Another related work is a novel study of the transport
efficiency of the endoplasmic reticulum [7], which modeled
the endoplasmic reticulum as an active network. These au-
thors found a remarkable mode of transportation, in which
molecules group together in seemingly redundant packets at
particular locations in the network. Similar to the present
work, these authors then found that the extreme FPT out of
these many apparently redundant molecules is much faster
than a single FPT. The extreme FPTs in Ref. [7] were com-
puted by making a diffusion approximation and applying
results for extreme FPTs of diffusion [which yielded an in-
verse logarithmic decay of the mean extreme FPT as in
Eq. (51)].

One final related work is the recent study of Ma and
colleagues [42], which considered the effects of a fast inac-
tivation time on mortal diffusive searchers in the context of
intracellular signaling. These authors found that if a signaling
molecule is conditioned to reach the nucleus before a fast
inactivation time, then the FPT is much faster, much less
variable, and much less affected by intracellular geometry and
obstacles (compared to unconditioned, immortal searchers).
As in the case of extreme statistics, such conditioning filters
out searchers which deviate from the shortest path to the
target. Mathematically, Ref. [42] considered both continuous
state space and discrete state space models of diffusive search,
and Ref. [43] later considered this problem for continuous
state space diffusive search. Corollaries 1 and 2 in Sec. VI
extend some results in Ref. [42] to the case of general CTMCs
and CTRWs on networks.
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APPENDIX

In this Appendix, we prove the propositions and theorems
of the main text. We begin with a lemma giving the short-time
behavior of the cumulative distribution function of a sum of
independent random variables.

Lemma 1. If {σm}d−1
m=0 are independent random variables

with

P (σm � t ) ∼ λmtr, as t → 0+,

for λm > 0 and r > 0, then

P

(
d−1∑
m=0

σm � t

)
∼ (�(r + 1))d

∏d−1
m=0 λm

�(dr + 1)
t dr, as t → 0 + .

Proof of Lemma 1. If X is a random variable with cumu-
lative distribution function FX (t ) := P (X � t ), then let L∗
denote the Laplace-Stieltjes transform,

L∗F = {L∗F }(s) := E[e−sX ].

Letting

Fσd (t ) := P (σd � t ),

F∑d−1
m=0 σd

(t ) := P

(
d−1∑
m=0

σd � t

)
,

independence implies that

{
L∗F∑d−1

m=0 σd

}
(s) = E

[
e−s

∑d−1
m=0 σd

] =
d−1∏
m=0

E[e−sσd ] (A1)

=
d−1∏
m=0

{
L∗Fσd

}
(s). (A2)

By the Tauberian theorem (see, for example, Theorems 1 and
3 in chapter XIII.5 in Ref. [60]), we have that{

L∗Fσd

}
(s) ∼ �(r + 1)λms−r, as s → ∞.

Therefore, (A1) implies that

{
L∗F∑d−1

m=0 σd

}
(s) ∼ (�(r + 1))d s−dr

d−1∏
m=0

λm, as s → ∞.

Applying the Tauberian theorem again yields

F∑d−1
m=0 σd

(t ) ∼ (�(r + 1))d ∏d−1
m=0 λm

�(dr + 1)
t dr, as t → 0+,

which completes the proof. �
Proof of Proposition 1. We first prove the proposition for

the case that ρ(i0) = 1 for some fixed i0 ∈ I and ρ( j) = 0 for
all j 	= i0. That is, assume X (0) = i0 almost surely.

Let M(t ) ∈ N ∪ {0} be the number of jumps of X (t ) before
time t . Then

P (τ � t ) = P (τ � t ∩ M(t ) � d ), (A3)

since X cannot reach the target from state i0 unless it makes
at least d = dmin(i0, Itarget ) � 1 jumps. Since I is countable,
there are countably many paths of length d from i0 to Itarget.
We can thus index the paths so that

S (i0, Itarget ) = {Pk}k∈K ,

where K ⊆ N is some index set. Let Ek denote the event that
X takes path k ∈ K from i0 to Itarget. Notice that

P (Ek ) =
d−1∏
i=0

q(Pk (i),Pk (i + 1))
q(Pk (i))

= λ(Pk )∏d
i=0 q(Pk (i))

, k ∈ K.

(A4)

Now,

P (τ � t ∩ M(t ) � d | Ek ) = P (M(t ) � d | Ek )

= P

[
d−1∑
m=0

σm/q(Pk (m)) < t

]
,

where {σm}d−1
m=0 are iid exponential random variables with unit

rate. Hence, Lemma 1 and (A4) imply that

P (τ � t ∩ M(t ) � d | Ek )P (Ek ) ∼ λ(Pk )

d!
t d , as t → 0 + .

(A5)

We want to conclude from (A5) that

P (τ � t ∩ M(t ) � d ) =
∑
k∈K

P (τ � t ∩ M(t ) � d | Ek )P (Ek )

∼
∑
k∈K

λ(Pk )

d!
t d , as t → 0 + .

(A6)

If |K| < ∞, then this is immediate. To handle the case that
|K| = ∞, notice that Lemma 1 implies that

P (τ � t ∩ M(t ) � d | Ek )

= P

[
d−1∑
m=0

σm/q(Pk (m)) < t

]

� P

(
d−1∑
m=0

σm/q < t

)
∼ qd

d!
t d , as t → 0+,

where q := supi q(i) < ∞. Therefore, there exists an ε > 0
that is independent of k ∈ K so that

P (τ � t ∩ M(t ) � d | Ek )P (Ek )

t d

� 2
qd

d!
P (Ek ), for all t ∈ (0, ε), k ∈ K.

(A7)

Since ∑
k∈K

2
qd

d!
P (Ek ) = 2

qd

d!
< ∞, (A8)

Lebesgue’s dominated convergence theorem yields (A6),
which then completes the proof for the case ρ(i0) = 1 due
to (A3).
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To handle the case of a general initial distribution ρ on I ,
observe that

P (τ � t ) =
∑

i∈supp(ρ)

P (τ � t | X (0) = i)ρ(i). (A9)

The desired result is then immediate if the support of ρ is
finite. A similar application of the dominated convergence
theorem as above completes the proof for the case that I is
infinite. In particular, as in (A7) and (A8) we have that if
t ∈ (0, ε), then

t−dP (τ � t | X (0) = i)ρ(i)

= ρ(i)
∑
k∈K

t−dP (τ � t | X (0) = i ∩ Ek )P (Ek )

� ρ(i)2
qd

d!
.

Since
∑

i∈supp(ρ) ρ(i)2qd/d! = 2qd/d! < ∞, the proof is
complete. �

Proof of Theorem 1. The result follows directly from
Proposition 1 and Theorems 2 and 3 in Ref. [53]. �

Proof of Theorem 2. The result follows directly from
Proposition 1 and Theorems 5 and 6 in Ref. [53]. �

Proof of Proposition 2. As in the proof of Proposition 1,
we first consider the case that ρ(i0) = 1 for some fixed i0 ∈
I and ρ( j) = 0 for all j 	= i0. That is, we assume X (0) = i0
almost surely.

Since I is finite, it is immediate that there exists ε > 0
so that t0(P ) > tmin + ε for all P with t0(P ) 	= tmin(i0, Itarget ).
Hence, if E denotes the event that X takes a path P with
t0(P ) 	= tmin(i0, Itarget ), then

P (τ � tmin + t ∩ E ) = 0, for all t < ε.

Therefore, if we index all the paths P with t0(P ) =
tmin(i0, Itarget ) as {Pk}k∈K and let Ek denote the event that X
takes path Pk , then

P (τ � tmin + t ) ∼
∑
k∈K

P (τ � tmin + t ∩ Ek ), as t → 0 + .

Let M(t ) ∈ N ∪ {0} be the number of jumps of X (t ) before
time t . Now,

P (τ � tmin + t ∩ Ek )

= P (τ � tmin + t ∩ M(tmin + t ) � d ∩ Ek ), k ∈ K,

since if X takes path Pk with k ∈ K , then it must make at least
d = dmin(i0, Itarget ) � 1 jumps to reach the target.

Next, let K ′ ⊆ K be an index set so that {Pk}k∈K ′ are the set
of paths in S (i0, Itarget ). It is then immediate that

P (τ � tmin + t ∩ M(tmin + t ) � d | Ek )

= P (M(tmin + t ) � d | Ek ), k ∈ K ′.

Further, if X takes path Pk with k ∈ K ′ and M(tmin + t ) � d ,
then

d−1∑
m=0

σm � tmin + t,

where {σm}d−1
m=0 are the d � 1 waiting times. In particular, σm

has the distribution

P (σm � s) = FPk (m),Pk (m+1)(s).

Therefore, if we define

σ̃m = σm − t0(Pk (m),Pk (m + 1)),

then P (σ̃m � s) = F̃Pk (m),Pk (m+1)(s), where

F̃Pk (m),Pk (m+1)(s)

:= FPk (m),Pk (m+1)[s + t0(Pk (m),Pk (m + 1))],

and thus as s → 0+,

F̃Pk (m),Pk (m+1)(s) ∼ λ(Pk (m),Pk (m + 1))sr .

Therefore, by Lemma 1, we have that for k ∈ K ′,

P (τ � tmin + t ∩ M(tmin + t ) � d | Ek )

= P

[
d−1∑
m=0

σm � tmin + t

]

= P

{
d−1∑
m=0

[
t0(Pk (m),Pk (m + 1)) + σ̃m

]
� tmin + t

}

= P

(
d−1∑
m=0

σ̃m � t

)
∼ (�(r + 1))dλ(Pk )

�(dr + 1)
t dr, as t →0 + .

Noting that P (Ek ) = π (Pk ) and summing over k completes
the proof for the case ρ(i0) = 1 (note that |K| < ∞ since
|I| < ∞). The case of a general distribution ρ on I is handled
analogously to (A9). �

Proof of Theorem 3. The result follows directly from
Proposition 2 and Theorems 2 and 3 in Ref. [53]. �

Proof of Theorem 4. The result follows directly from
Proposition 2 and Theorems 5 and 6 in Ref. [53]. �

Proof of Theorem 5. Lemma 3 in Ref. [43] gives the fol-
lowing representation for the conditional mth moment,

E[τm | τ < σ ] =
∫ ∞

0 tmγ e−γ t F (t ) dt∫ ∞
0 γ e−γ t F (t ) dt

−
∫ ∞

0 mtm−1e−γ t F (t ) dt∫ ∞
0 γ e−γ t F (t ) dt

, (A10)

where F (t ) := P (τ � t ). First, suppose that tmin = 0. Let ε ∈
(0, 1). By assumption, there exists δ > 0 so that

(1 − ε)Atd < F (t ) < (1 + ε)Atd , for all t ∈ (0, δ).

Therefore, for any n > −1, we have that

(1 − ε)
∫ δ

0
t n+d e−γ t dt <

1

A

∫ δ

0
t ne−γ t F (t ) dt

< (1 + ε)
∫ δ

0
t n+d e−γ t dt . (A11)

Now, it is a straightforward to check that∫ δ

0
t n+d e−γ t dt ∼

∫ ∞

0
t n+d e−γ t dt, as γ → ∞,
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since
∫ ∞
δ

t n+d e−γ t dt vanishes exponentially as γ → ∞. Fur-
thermore, it is a simple calculus exercise to check that∫ ∞

0
t n+d e−γ t dt = �(d + n + 1)

γ d+n+1
.

Since
∫ ∞
δ

t ne−γ t F (t ) dt vanishes exponentially as γ → ∞
and since ε > 0 is arbitrary in (A11), we thus obtain∫ ∞

0
t ne−γ t F (t ) dt ∼ A�(d + n + 1)

γ d+n+1
, as γ → ∞. (A12)

Combining (A12) with (A10) and simplifying yields (49).
Next, suppose tmin > 0. As above, it is straightforward to

check that if n > −1, then as γ → ∞ we have∫ ∞

0
t ne−γ t F (t ) dt ∼

∫ ∞

tmin

t ne−γ t A(t − tmin)d dt . (A13)

Furthermore, changing variables yields∫ ∞

tmin

e−γ t (t − tmin)d dt = e−γ tmin
�(d + 1)

γ d+1
. (A14)

In addition, a straightforward application of Watson’s lemma
gives

[∫ ∞

tmin

tme−γ t (t − tmin)d dt − e−γ tmin
�(d + 1)(tmin)m

γ d+1

]
∼ e−γ tmin

m�(d + 2)(tmin)m−1

γ d+2
, as γ → ∞.

(A15)

Similarly, Watson’s lemma also gives that as γ → ∞,

∫ ∞

tmin

tm−1e−γ t (t −tmin)d dt ∼ e−γ tmin
�(d + 1)(tmin)m−1

γ d+1
.

(A16)

Combining (A13)–(A16) with (A10) completes the proof. �
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