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Role of trap recharge time on the statistics of captured particles
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We consider n particles diffusing freely in a domain. The boundary contains absorbing escape regions, where
the particles can escape, and traps, where the particles can be captured. Modeled after biological examples
such as receptors in the synaptic cleft and ambush predators waiting for prey, these traps, or capture regions,
must recharge between captures. We are interested in characterizing the time courses of the number of particles
remaining in the domain, the number of cumulative captures, and the number of available capture regions. We
find that under certain conditions, the number of cumulative captures increases linearly in time with a slope and
duration determined explicitly by the recharge rate of the capture regions. This recharge rate also determines
the mean and variance of the clearance time, defined as the time it takes for all particles to leave the domain.
Further, we find that while a finite recharge rate will always result in a lower number of captured particles when
compared to instantaneous recharging, it can either increase or decrease the amount of variability. Lastly, we
extend the model to partially absorbing traps in order to investigate the dynamics of receptor activation within
an idealized synaptic cleft. We find that the width of the domain controls the amount of time that these receptors
are activated, while the number of receptors controls the amplitude of activation. Our mathematical results are
derived from considering this system in several ways: as a full spatial diffusion process with recharging traps, as
a continuous-time Markov process on a discrete state space, and as a system of ordinary differential equations in
a mean-field approximation.
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I. INTRODUCTION

In this work, we investigate the time dynamics of parti-
cles diffusing in a domain with a boundary containing traps
[Fig. 1(a)]. After capturing a particle, these traps, or capture
regions, become reflecting for a transitory recharge time be-
fore capturing additional particles [Fig. 1(b)]. The boundary
also contains escape regions, where the particles may freely
leave the domain. As a result, each particle will eventually
be removed from the domain by either escaping or being
captured. We are interested in the time evolution of the first
and second moments of (a) the number of particles remaining
in the domain, (b) the number of cumulative captures, and (c)
the number of available capture regions that evolve with time.
Specifically, we focus on how these time courses are affected
by the capture regions having a finite recharge rate.

The study of this stochastic process, referred to here as
diffusion with recharging traps (DiRT), is primarily motivated
by two applications: (i) molecules interacting with receptors
(e.g., neurotransmitters in the synaptic cleft [1] and drug de-
livery via biodegradable nanoparticles [2]), and (ii) prey being
ambushed by predators [3]. In both of these applications,
the capture regions (receptors or predators) must recharge
between captures, and how the number of cumulative captures
evolves with time is crucial to understanding the process
(when downstream molecules are produced or how long do
prey have to escape).

*borisyuk@math.utah.edu

This noninstantaneous recharge rate results in the particles
indirectly interacting with each other, resulting in a signifi-
cantly different problem mathematically than those studied
previously. Much work has been done with regard to the distri-
bution of exit times when the particles are trying to find small
targets, in what is known as the narrow escape problem [4–7].
These results have also been extended to account for particles
that interact directly with one another in the domain (e.g.,
particles in a highly crowded environment) [8]. We deviate
from these previous studies in this work by not necessarily
assuming that the capture regions are small, and by having
the particles interact via the switching boundary conditions.
There has also been a large amount of work completed on
studying diffusion with stochastically switching boundary
conditions [9–14]. In these studies, the particle paths are also
statistically correlated, since they are diffusing in the same
random environment. However, the state of the boundary does
not depend on interacting with the particles, and the particles’
paths do not influence one another.

In our previous work, we investigated the average number
of total captures in the DiRT process [15]. We proved that this
quantity grows logarithmically in the number of initial parti-
cles. This result is drastically different from the linear growth
that occurs when capture regions recharge instantaneously.
However, this previous work offers no information about the
time dynamics of the process or higher-order statistics.

In this work, we extend this previous study by investigating
the dynamical behavior of not only the number of cumu-
lative captures, but also the number of particles remaining
in the domain and the number of available capture regions.
We are specifically interested in answering the following
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FIG. 1. Schematics of domain and recharging capture regions.
(a) Particles diffusing in domain ! with boundary ∂! = ∂!R ∪
∂!C ∪ ∂!E , where ∂!R are reflecting regions, ∂!C are capture
regions, and ∂!E are escape regions. (b) After capturing a particle,
capture regions are reflecting for a transitory recharge time, which we
take to be exponentially distributed with rate ρ, where ρ is referred
to as the recharge rate.

questions: What is the role of the recharge rate in deter-
mining the mean dynamics? More broadly, what are the
overall trends of the dynamical behavior of these higher-
order statistics, and how do parameters such as location,
number, and recharge of capture regions influence these time
courses? Specifically, we seek analytical answers to these
questions.

While insight into this problem can be gained with direct
Monte Carlo simulations of the DiRT process, such simula-
tions are computationally expensive for a large number of
particles. Further, due to the correlations that arise between
particles, this spatial and stochastic process is challenging
to investigate analytically. Thus, we begin this work by ap-
proximating this stochastic process with a continuous-time
Markov process on a discrete state space, along with its corre-
sponding mean-field approximation and reduction in the limit
that captures occur instantly (Sec. II). These approximations
significantly reduce the complexity of the DiRT model and
are then used to answer the questions outlined in the previous
paragraph (Sec. III).

II. DIRT MODEL AND APPROXIMATIONS

This work focuses on understanding the underlying
stochastic dynamics of the diffusion with recharging traps
(DiRT) process, which we define precisely in the next sub-
section. To yield analytical results pertaining to this model,
we derive a series of approximations to the DiRT model
that capture similar qualitative and quantitative results, under
certain conditions. We first make a quasistationary distribu-
tion assumption on the distribution of particles to derive a
continuous-time Markov process on a discrete state space that
is still stochastic, but nonspatial. We then make a mean-field
approximation to yield a nonspatial and deterministic model.
Then, assuming that captures occur instantly, we reduce the
discrete state model to yield a nonspatial, stochastic model,
which is simplified enough to yield analytical results. Thus,
in total, we consider models that take the following forms:
(i) spatial and stochastic, (ii) nonspatial and stochastic, and
(iii) nonspatial and deterministic (Fig. 2). With this toolbox
of models in hand, we are able to select the appropriate
models to answer each of the questions proposed in Sec. I,
yielding insights into the original diffusion with recharging
traps process.

A. Diffusion with recharging traps

Consider n particles diffusing in a bounded domain ! ⊂
Rn [Fig. 1(a)]. The boundary (∂!) is partitioned into escape
regions that absorb particles (∂!E ), reflecting regions that
reflect particles (∂!R), and m-many traps, or capture regions
(∂!C = ∪m

k=1∂!k
C). After capturing a particle, a capture re-

gion becomes reflecting for a transitory recharge time, where
the recharge time is an exponential random variable with
rate ρ, during which it cannot capture additional particles
[Fig. 1(b)]. The locations of the n molecules diffusing in this
domain can be described by the following set of stochastic
differential equations:

dXk (t ) =
√

2DdWk (t ), k = 1, . . . , n for Xk (t ) ∈ !, (1)

where the Xk (t ) denotes the location of the particle, the
W j (t )’s are independent Wiener processes, and D is the

FIG. 2. Flow diagram of all models. Red box: DiRT model (spatial and stochastic), purple box: DS and RDS models (nonspatial and
stochastic), and blue box: MF model (nonspatial and deterministic).
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diffusivity. While we assume that these particles do not in-
teract during motion, the boundary conditions depend on the
paths of particles, and as a result, the particles can indirectly
affect each other. Eventually, all particles will leave the do-
main either by escaping through an escape region or by being
captured by a capture region.

We focus on three key variables: the number of particles
remaining in the domain at time t , P(t ), the number of
captured particles before time t , C(t ), and the number of
available capture regions at time t , R(t ). This paper focuses on
understanding the dynamics and statistics of these variables as
a function of the number of initial particles n and the recharge
rate of the capture regions ρ. We are particularly interested
in finite ρ. In the limit ρ → ∞ (instantaneous recharge), the
capture regions behave exactly like escape regions, eliminat-
ing the correlation between particle paths and allowing the
use of more traditional techniques. For example, it is easy
to show that the number of total captures follows a binomial
distribution with mean nh and variance nh(1 −h), where h is
the probability of hitting a capture region for a given initial
condition. We provide more details about computing h in the
Supplemental Material [16].

B. Continuous-time Markov process on discrete states

While the DiRT model tracks the paths of individual parti-
cles, the dynamics of P(t ), C(t ), and R(t ) simply depend on
when one of the following events occurs: (i) a particle escapes
the domain, (ii) a particle is captured and a capture region
closes, and (iii) a capture region reopens. Due to this fact,
we approximate the DiRT model with a discrete state model,
where the states are given by (P(t ),C(t ), R(t )).

Assuming that we are currently in state (P(t ),C(t ), R(t )),
there are three possible states it may transition to, namely

(P(t ) −1,C(t ), R(t )), particle escapes,

(P(t ) −1,C(t ) + 1, R(t ) −1), particle is captured,

and (P(t ),C(t ), R(t ) + 1), capture region reopens.

Further, the rates can be estimated from simulations of the
DiRT model. For a general transition from discrete state
(P,C, R) to (P̂, Ĉ, R̂), there is a corresponding transition rate
κpcr,p̂ĉr̂ , which has the maximum likelihood estimator [17,18]

κ̂pcr,p̂ĉr̂ = no. of transitions from (P,C, R) to (P̂, Ĉ, R̂)
total time in state (P,C, R)

.

Unfortunately, there are several drawbacks to using this max-
imum likelihood estimator in this context. Most notably, the
number of states in this model is O(n2m), and each state is
visited at most once during a single simulation of the DiRT
model. Thus, an unreasonable number of simulations of the
DiRT model for a given domain ! and boundary ∂! are
required to get estimates of these transition rates. As a result,
it would be easier to use these simulations of the DiRT model
directly to understand the time courses of P(t ), C(t ), and R(t ).

With this key drawback in mind, we make the additional
approximation that the transition rates are proportional to
the number of molecules remaining in the domain and the
number of open capture regions. Specifically, the transitions

from (P(t ),C(t ), R(t )) are

(P(t ) −1,C(t ), R(t )), with rate γ P(t ),

(P(t ) −1,C(t ) + 1, R(t ) −1), with rate νP(t )
R(t )
m

,

and (P(t ),C(t ), R(t ) + 1), with rate ρ(m −R(t )),

where γ , ν, and ρ are constants independent of the current
state, and m is the total number of capture regions. While this
approximation significantly reduces the number of parame-
ters, it remains to be shown whether we can choose constants
γ and ν such that this discrete state model captures similar
quantitative characteristics to the DiRT model (note: ρ is the
mean recharge rate for the capture regions).

We make the following assumption for γ and ν: the rate
at which a particle escapes (is captured in) the domain is
proportional to the probability of hitting the escape (capture)
region and inversely proportional to the average time it takes
a particle to reach the escape (capture) region. More specifi-
cally, we take these constants to be of the form h/τs, where
h is the probability of hitting the region of interest and τs
is the mean first passage time to hit an absorbing region
of the boundary, assuming that the particles are distributed
according to a quasistationary distribution (QSD). The full
algorithm for estimating these parameter values and sufficient
conditions for when this approximation may be reasonably
accurate can be found in the Supplemental Material [16].

C. Mean-field approximation

It is straightforward to write down the corresponding gen-
eral master equation for our discrete state model. Further, this
equation can be used to derive the following exact system of
differential equations for E[C(t )], E[P(t )], and E[R(t )] using
techniques found in [19]:

dE[P]
dt

= −γE[P] −νE[PR]
m

,

dE[R]
dt

= ρ(m −E[R]) −νE[PR]
m

,

dE[C]
dt

= νE[PR]
m

.

These techniques can also be used to derive equations for
higher-order moments that are necessary to calculate quan-
tities such as variance. For example,

dE[C2]
dt

= νE[PR]
m

+ 2νE[PRC]
m

.

However, it is readily apparent, due to the appearance of the
higher-order term E[PRC], that this will result in a system of
infinitely many differential equations, and an approximation
must be used to close the system of equations. A number of
such approximations were attempted in order to have a system
of equations that contained at least second-order moments, but
the errors introduced produced results not consistent with the
DiRT model. As a result, we reduce the focus of our mean-
field model to the three-equation system for E[C(t )], E[P(t )],
and E[R(t )]. The following mean-field approximation can be
used to close this system of three equations:

E[PR] ≈E[P]E[R]. (2)
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Applying this approximation and the following definitions:

p(t ) = E[P], c(t ) = E[C], r(t ) = E[R],

we find the following closed system of differential equations:

d p
dt

= −γ p −νpr
m

,

dr
dt

= ρ(m −r) −νpr
m

,

dc
dt

= νpr
m

,

with initial conditions p(0) = n, c(0) = 0, and r(0) = m (i.e.,
all capture regions are initially open).

D. Reduced discrete state model

In the limit ν → ∞ (instantaneous capture rate), the dis-
crete state model can be reduced significantly. Specifically,
the states are given by (P(t ),C(t )), with transitions

(P(t ) −1,C(t )), with rate γ P(t ),

and (P(t ) −1,C(t ) + 1), with rate ρm.

In the discrete state model, the particles are correlated through
the number of available capture regions, since when one
particle is captured, the number of available capture regions
decreases by 1, making subsequent captures less likely. How-
ever, the reduced discrete state model does not contain this
correlation, and as a result, it can yield analytical results
relating to higher-order statistics.

E. Example domains

A complete algorithm to calculate parameters γ and ν can
be found in the Supplemental Material [16]. This algorithm
can be applied to very general bounded domains ! with
boundary ∂! = ∂!R ∪ ∂!E ∪ ∂!C . Here, we provide the
description and parameter values for two domains where these
approximations perform well, and will be considered for the
rest of this work.

First, we consider the 1D domain,

!1D = [0, 1],

with an escape region at x = 0 and a capture region at x = 1.
We also consider the 2D domain

!2D = [0, 1] × [0, 0.1],

with escape regions along x = 0 and 1, ∂!C = {(x, y)|y =
0 and x ∈ [0.250, 0.417] ∪ [0.417, 0.583] ∪ [0.583, 0.750]}
(m = 3 capture regions), and reflecting boundaries for the rest
of the domain (Fig. 3). This rectangular domain, longer in the
horizontal direction, was inspired by a synaptic cleft, and it
was used in [15]. Initially, the particles are located at x = 0.5
in !1D and x = 0.5, y = 0.1 in !2D (triangle in the left panels
of Fig. 3). We choose this point distribution in order to avoid
biasing our results by making the unreasonable assumption
that the particles are initially distributed according to their
QSD, which would surely benefit our approximation.

All associated parameter values for these domains can be
found in Table I. The first four parameters in this table (those

FIG. 3. Example domains. Top: !1D, bottom: !2D. The escape
regions denoted by black dashed lines, capture regions by red solid
lines, and reflecting regions by black solid lines. Unless otherwise
specified, all particles are initially located at the gray triangles in
each domain for simulations of the DiRT model.

to the left of the double vertical line) were assumed, while
those to the right were calculated using the algorithm. For this
paper, we consider arbitrary time and space units.

III. RESULTS

With the toolbox of models outlined in Sec. II and the
details found in the Supplemental Material [16] to calculate
the necessary parameters, we now seek to answer each of
the motivating questions outlined in Sec. I. Specifically, we
seek to characterize the time courses of the DiRT process,
focusing on the number of particles remaining in the domain,
P(t ), the number of cumulative captures, C(t ), and the number
of available capture regions, R(t ). Using the discrete state
and mean-field approximations, we examine how these time
courses depend explicitly on the recharge rate ρ. We also
investigate higher-order statistics (variance and coefficient of
variation) of the number of cumulative captures, and how
these depend on ρ, as well as the number and distribution of
capture regions. Finally, we extend the model to the case of
partially absorbing capture regions.

A. Accuracy of the discrete state model

We start by verifying that the discrete state model accu-
rately captures the average behavior of the DiRT model in
domains !1D and !2D (defined in Sec. II E). We estimate the

TABLE I. Parameter values for !1D and !2D [capture regions
located along y = 0 and x ∈ (0.25, 0.75)]. The parameters to the left
of the double vertical line were assumed. The remaining parameters
were found following the algorithm provided in the Supplemental
Material [16] (analytically for !1D and numerically for !2D using
the NDEigensystem and NDSolveValue functions in MATHEMATICA

[20]). Unless otherwise noted, these are parameters used in the
figures. The units are arbitrary time and space units.

D n m ρ γ h λ1 ν = h · λ1

!1D 1 100 1 10 2.467 0.500 9.870 4.935
!2D 1 1000 3 10 9.870 0.563 110.808 62.394
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FIG. 4. Comparison of DiRT and discrete state model for !1D. (a) E[P(t )], (b) E[C(t )], and (c) E[R(t )] for DiRT (red solid) and discrete
state (blue dashed) models. Inset shows a zoomed-in view of E[P(t )] for an early time interval. These panels show good agreement between
the two models, with the differences arising due to the time it takes for the distribution of particles to converge to the QSD. Parameter values
are found in Table I.

parameter values to use in the discrete state model via an
algorithm outlined in the Supplemental Material [16]. This
calculation assumes a quasistationary distribution (QSD) of
particles conditioned on not being absorbed for a large time.
As a result, we expect the approximation of the DiRT process
by the discrete state model to be the most accurate when
the particle distribution converges quickly to this QSD. We
denote this convergence rate by the function α(!, ∂!, D, ρ),
where ! is the domain with boundary ∂!, D is the diffusion
coefficient, and ρ is the recharge rate (see the Supplemental
Material [16] for additional details).

We first consider domain !1D and compare the E[P(t )],
E[C(t )], and E[R(t )] estimated from simulations of both mod-
els (Fig. 4). We find qualitative and quantitative similarities
with all three variables. More specifically, we see that in both
models, the expected number of remaining particles, E[P(t )],
decays exponentially. Meanwhile, the expected number of
cumulative captures, E[C(t )], rises quickly to 1 (the total
number of capture regions in this domain), and then increases
linearly, until saturating. Lastly, the expected number of avail-
able capture regions, E[R(t )], quickly drops close to zero, and
then increases back to 1 sigmoidally.

The convergence rate for this domain and parameter values
is

α(!1D, ∂!1D, 1, 10) ≈1.97.

While this rate is exponential (as discussed in the Supplemen-
tal Material [16]), we find that the distribution of particles is
not particularly close to the QSD in the DiRT model when
t ≪ 1 [Fig. 4(a), inset]. Specifically, we find that E[P(t )] stays
elevated for a moment in the DiRT model before dropping,
unlike in the discrete state model. This result is expected, since
the particles initially begin at x = 0.5 for the DiRT model and
are not immediately close to an absorbing region. This inset
also notes that once the number of particles in the domain
does begin to drop in the DiRT model, it drops at a faster rate
than the discrete state model. During this time, the particle
distribution has yet to converge to the QSD in the DiRT model,
and the escape rate is actually higher than estimated rate.

As a result, the discrete state model overestimates E[P(t )].
However, this has a minor effect on E[C(t )], with the two
models resulting in quite similar time courses [Fig. 4(b)].

We also find great quantitative agreement between the two
models for domain !2D (Fig. 5). Further, we find similar
qualitative time courses to the previous example, namely
that E[P(t )] decays exponentially, E[C(t )] increases almost
instantaneously to 3 (the total number of capture regions) and
then increases linearly before saturating, and E[R(t )] drops to
zero and saturates back to 3 sigmoidally.

For this domain and parameter values, the convergence rate
is

α(!2D, ∂!2D, 1, 10) ≈2.96,

which is larger than in the previous example. Again, the
distribution of particles is not particularly close to the QSD
during the early moments of E[P(t )] [Fig. 5(a), inset]. For the
DiRT model, we see a quick decrease of three particles (being
absorbed by the three capture regions) and then a slight pause
before a sustaining exponential decrease. This result makes
sense intuitively. In the DiRT model, the initial distribution of
particles is δ(x −0.5)δ(y −0.1), and the particles are much
closer to the capture regions than the escape regions. Similar
to the last example, this transient state is not captured in
simulations of the discrete state model, as expected. However,
again, despite a noticeable difference in the time course of
E[P(t )] (here, the discrete state model results in an underesti-
mation), we see a great agreement for E[C(t )] and E[R(t )].

For the rest of this article, we limit ourselves to domain
!2D, where we have shown that this approximation performs
well. Unless otherwise noted, the shape of the domain and the
number of receptors is the same as those outlined in Sec. II E.

B. Time course of the average behavior

Having established that the discrete state model performs
well in capturing the dynamics of the DiRT model, we now
turn our attention to understanding the underlying dynamical
structure driving the time courses of E[P(t )], E[C(t )], and
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FIG. 5. Comparison of DiRT and discrete state model for !2D. (a) E[P(t )], (b) E[C(t )], and (c) E[R(t )] for the DiRT (red solid) and
discrete state (blue dashed) models. Inset shows a zoomed-in view of E[P(t )] at an early time. Similar to the previous figure, we again see
good agreement between the two models, with the differences arising due to the time it takes for the distribution of particles to converge to the
QSD. Parameter values are found in Table I.

E[R(t )]. To perform this analysis, we employ the determin-
istic mean-field model,

d p
dt

= −γ p −νpr
m

,

dr
dt

= ρ(m −r) −νpr
m

,

dc
dt

= νpr
m

,

which lends itself well to phase plane analysis.

1. Accuracy of the mean-field approximation

Before investigating the mean-field model in detail, we
first assess its accuracy, since the mean-field approximation,
Eq. (2), is only exact when P and R are uncorrelated. This

is certainly not the case here, since when a particle binds to
a capture region and decreases R, it has also been removed
from the domain, decreasing P. However, despite this fact,
Fig. 6 illustrates that this is not a poor approximation to
make. As this figure shows, the discrete state model and
the numerical solution to the mean-field model quantitatively
agree for E[P(t )], E[C(t )], and E[R(t )]. Further, the inset
of Fig. 6(a) shows that the absolute error of the mean-field
approximation (i.e., |E[PR] −E[P]E[R]|) is small, and only
increases to a potentially significant level when a few particles
are remaining in the domain (which only occurs for a short
period of time).

2. Phase plane analysis of the mean-field system

Since the mean-field model accurately captures the dy-
namics observed in the discrete state model, it can be used

FIG. 6. Comparing the discrete state and mean-field models. (a) E[P(t )], (b) E[C(t )], and (c) E[R(t )] for the discrete state (blue dashed)
and mean-field (black solid) models. Inset shows a zoomed-in view of the error in the mean-field approximation |E[PR] −E[P] · E[R]|. Panels
show great agreement between the two models. Simulations were run in domain !2D (parameters found in Table I).
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FIG. 7. Plot of the duration of linear growth [Eq. (3)] for different
values of C using parameters from !2D (Table I). The dashed portion
of the line denotes when T linear > 1/(mρ ), the average time for a
capture region to recharge. This figure shows that the linear growth
phase is most prominent for intermediate values of ρ.

to understand the mean dynamics of the original spatial and
stochastic DiRT process. Specifically, we turn our attention to
the time course of c(t ), where we have seen previously that
it increases almost instantaneously to the number of capture
regions and then grows linearly before saturating. Specifically,
one can show (see the Supplemental Material [16]) that for a
large portion of time,

dc
dt

≈mρ.

This result matches the slope of c(t ) during its linear growth
regime in the DiRT and discrete state models. In words, mρ is
the rate at which particles are captured by all capture regions,
assuming they each capture a particle the moment they have
recharged. Further, the duration of this linear growth is given
by

T linear = 1
γ

log

(
1 + mρ

nγ

C + mρ
nγ

)

, (3)

where C is the fraction of particles remaining at time T linear.
A plot of Eq. (3) as a function of recharge rate ρ for various
values of C is found in Fig. 7. This figure illustrates that
T linear monotonically decreases as a function of ρ. The dashed
portion of the line indicates the parameter regime where
T linear > 1/(mρ), meaning the predicted time is greater than
the average recharge rate of the receptors; therefore, we do
not expect to observe this linear growth. For example, when
ρ = 0.01 and C = 0.01, the equation finds that T linear = 0.47.
However, with this choice of ρ, the average time for a capture
region to recharge is 1/(3 × 0.01) or approximately 33.33.
Not only is this recharge time greater than T linear, but it is
greater than the expected clearance time (i.e., the time the last
particle to leaves the domain). Combining this with the fact
that T linear → 0 for large values of ρ, we conclude that Eq. (3)
is most useful for intermediate values of ρ (i.e., between these

two extremes). Unfortunately, we also note that in this regime,
the curves are sensitive to the parameter C, which is domain-
dependent. Again, while choosing C > 0 might yield more
accurate results in a given domain, choosing C = 0 provides
a reasonable upper bound.

This result may be particularly helpful for understanding
applications where multiple puffs of particles are inserted in
the domain over a period of time (e.g., neuronal synapses),
and it can provide a bound on the time between puff events
such that particles in different puffs minimally interact. This
is investigated in more detail in the next section, where we
examine the statistics of the clearance time.

C. Higher-order statistics for total particle
captures and clearance time

Having investigated the dynamics of E[P(t )], E[C(t )],
and E[R(t )], and having explored the phase space underlying
E[C(t )] in detail, we now seek information regarding higher-
order statistics. Focusing first on deriving analytical results,
we turn to the reduced discrete state model.

1. Estimating the total average number
of captures and its variance

Considering first the average number of total captures, one
can show (see the Supplemental Material [16]) that

⇒ E[Ctotal] = m + mρ

γ
[+ (0)(n −m + 1 + mρ/γ )

−+ (0)(1 + mρ/γ )], (4)

var[Ctotal] = mρ

γ
[+ (0)(n −m + 1 + mρ/γ )

−+ (0)(1 + mρ/γ )]

+
(

mρ

γ

)2

[+ (1)(n −m + 1 + mρ/γ )

−+ (1)(1 + mρ/γ )], (5)

where + ( j) is the polygamma function of order j [21].
Although Eqs. (4) and (5) appear unwieldy, they provide
valuable insight as n → ∞ when coupled with asymptotic
expansions for + (0)(n) and + (1)(n), namely

E[Ctotal] = m + mρ

γ
log n

− mρ

γ
+ (0)(1 + mρ/γ ) + O

(
1
n

)
, (6)

var[Ctotal] = mρ

γ
log n −mρ

γ
+ (0)(1 + mρ/γ )

−
(

mρ

γ

)2

+ (1)(1 + mρ/γ ) + O
(

1
n

)
. (7)

Thus, in agreement with our previous results, the mean grows
like O(log n) [15]. Further, this calculation suggests that the
variance should also grow like O(log n). Figure 8(a) compares
this theoretical result to simulations from the DiRT model, and
finds that not only does the variance estimated from the DiRT
model grow like O(log n), but it matches well with Eq. (5).
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FIG. 8. Variability of total captures. (a) The variance of total captures from the DiRT model (red dotted-solid) matches well with Eq. (5)
(blue dashed) for !2D with ρ = 10. (b) The variance and (c) the coefficient of variation of total captures as a function of n from Eq. (5)
for different recharge rates (dashed, dotted, and dot-dashed) and with instantaneous recharge (solid, h = 0.99) in !2D. Depending on the
parameters, a finite recharge rate may lead to more or less variability when compared to an instantaneous recharge rate.

We can also use these theoretical results to approximate how
the coefficient of variation, a normalized measure of variance,

cv = standard deviation
mean

,

changes with n, and we find that it decays as O(1/
√

log n).
We can compare these results to those when the capture

regions recharge instantaneously. In that case, recall that the
number of total captures follows a binomial distribution, with
n trials and a probability of success h; therefore, the expected
number of particles captured is nh and it has a variance of
nh(1 −h), both of which grow as O(n). Further, in the instan-
taneous recharge case, the cv grows as O(1/

√
n). As a result, it

appears that a finite recharge rate has the effect of decreasing
the rate at which the expected value and variance terms grow
as a function of n, while in terms of this normalized measure
of variability, a finite recharge rate has the ability to increase
the amount of variability observed.

However, this asymptotic analysis is true only in the limit
n → ∞. For finite n, we directly compare Eq. (5) to nh(1 −h)
for parameters from domain !2D (h = 0.99 for this domain
and initial condition). As Fig. 8(b) illustrates, while Eq. (5)
(dashed) grows as O( log(n)) for different values of ρ and the
instantaneous recharge (black, solid) case grows as O(n), it is
not necessarily true that a finite recharge rate will lead to a
lower variance. Specifically, we see that while the curve for
ρ = 0.1 lies below the solid line, this is not the case for ρ = 1
and 10 for all values of n.

We can understand this result by noting that in the limit
ρ → 0, each capture region will catch at most one particle,
with all remaining particles almost surely escaping the domain
before they have a chance to recharge. As a result, there is
little to no variability for ρ ≪ 1; thus increasing ρ will lead
to an increase in variability. The fact that the ρ = 1 and 10
curves lie above the instantaneous recharge curve for some
values of n is a result of the large hitting probability used in
the nh(1 −h) calculation, resulting in a small slope for this
line. As a result, we conclude that a finite recharge rate can
result in a higher variance for the total number of captures,

but this result depends on the domain, initial condition, n,
and ρ.

In terms of the coefficient of variation, the results are
more straightforward, with Fig. 8(c) showing that a finite
recharge rate consistently results in a higher coefficient of
variation when compared to ρ = ∞. However, it does not
behave monotonically as a function of ρ (ρ = 0.1 has the
lowest cv , ρ = 1 the highest, and ρ = 10 rests in the middle).
The coefficient of variation as a function of time is explored
in more detail in Sec. III D.

Equations (4) and (5) can also be used directly to pre-
dict and compare the amount of variability of two neuronal
synapses expressing different types of receptors. Specifically,
we consider the synapses discussed in [15], with one con-
taining exclusively NMDA receptors (slow recharge rate) and
another consisting of AMPA receptors (fast recharge rate). We
find the variability in the total number of captures for these
two synapses to be drastically different (var[Ctotal] = 0.20 for
the NMDA synapse and 47.77 for the AMPA synapse). How-
ever, this is not particularly surprising, since synapses with
AMPA receptors have a much higher mean number of particle
captures (due to both the larger number of receptors, 20
NMDA versus 200 AMPA receptors, and the faster recharge).
We can account for this disparity by comparing instead the
coefficients of variations. Doing so still yields a noticeable
difference between the two cases (0.01 for the NMDA synapse
and 0.19 for the AMPA synapse). As a result, the synapses
with a larger fraction of AMPA receptors are predicted to be
more noisy, i.e., result in a less consistent conductance change
in the postsynaptic neuron and, subsequently, more neuron
response variability and altered information processing in
networks with such synapses.

2. Estimating the clearance time

One can also use the reduced discrete state model to
estimate statistics regarding the time it takes for all particles
to leave the domain, referred to here as the clearance time.
Let T clear denote this random variable and let Tk denote the
interleaving time between the (k −1)th particle and the kth
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FIG. 9. Comparing the expected value and variance of clearance
times for different values of ρ using Eqs. (8) and (9). The bars denote
one standard deviation. We find that ρ determines the mean and
variance of the random variable T clear. Other parameters can be found
in Table I for !2D.

particle. It follows that

T clear =
n∑

k=m+1

Tk,

where Tk is simply an exponential random variable with
parameter mρ + γ [n −(k −1)]. As a result, we can perform
a very similar calculation to the one in Sec. III C 1 to find
E[T clear] and var[T clear],

E[T clear] = 1
γ

[+ (0)(n −m + 1 + mρ/γ )

−+ (0)(1 + mρ/γ )], (8)

var[T clear] = 1
γ 2

[−+ (1)(n −m + 1 + mρ/γ )

+ + (1)(1 + mρ/γ )]. (9)

Using the asymptotic expansions from the previous section, it
follows that the expected value of the clearance time grows
as O(log n), while the variance grows as O(1). This is illus-
trated in Fig. 9, where for a fixed recharge rate ρ, the bars
denoting one standard deviation remain relatively unchanged.
Interestingly, as the recharge rate increases, not only does
the expected clearance time decrease, but the variability also
decreases.

We can again return to the neuronal example and compare
the clearance time of neurotransmitters for the two types
of synapses. Using Eq. (8), we find that for the NMDA
synapse the clearance time is 0.11 ms, and it is 0.07 ms for
the AMPA synapse. This minimal discrepancy suggests that
the difference in recharge rate between these two types of
receptors has a minimal effect on clearance time, and other
parameters of the problem (e.g., domain size) have a larger
impact. This is examined in more detail in Sec. III E.

D. Dynamics of higher-order statistics and dependence
on parameter space

Seeking to extend the analytical results from the previous
subsection, we now turn our attention to the dynamics of
higher-ordered statistics, as well as how results may differ
over a wide range of parameter values. Numerical simulations
of the discrete state model are the approach of choice here, as
they strike a balance between being sufficiently detailed yet
computationally tractable.

1. Time evolution of the coefficient of variation
and dependence on recharge

Before exploring the parameter space with the discrete
state model, we must first confirm that it accurately matches
the higher-order statistics of the DiRT model, since Sec. III A
only examined the average behavior. Figures 10(a) and 10(b)
compare cv (C(t )) for these two models in !2D for different
recharge rates. These figures illustrate quantitative agreement
for both parameter choices. Further, we observe that for a large
recharge rate (ρ = 1000), the coefficient of variance decreases
monotonically over time, while for a smaller recharge rate
(ρ = 10) it varies nonmonotonically.

Having established this quantitative match between the dis-
crete state and DiRT models, and having found this interesting
nonmonotonic behavior, we now investigate cv (C(t )) over a
wider range of values for ρ using just the discrete state model.
As illustrated in Fig. 10(c), we find that the final amount of
variation [i.e., limt→∞ cv (C(t ))] does not vary monotonically
with ρ, further confirming our results from Sec. III C 1. Also,
this panel indicates that the nonmonotonic behavior in time
observed in Fig. 10(a) appears to be an intermediate step
between the extremes of a slow and fast recharge rate. For
ρ small, the coefficient of variation monotonically increases
with time. However, as ρ increases to intermediate values,
the coefficient of variation behaves nonmonotonically. Specif-
ically, it increases before decreasing to a final value. Inter-
estingly, in the cases in which this nonmonotonic behavior is
observed, cv (C(t )) seems to always peak at the same value.
Finally, as ρ increases to larger values, cv (C(t )) monotoni-
cally decreases. Thus, a finite recharge rate will influence not
only the final amount of variability observed, but also the time
course of variability.

2. Influence of the number and spatial arrangement
of capture regions

We now expand our investigation to include the dynamics
of the number of available capture regions, and how their
number and spatial distribution influence these dynamics.
We start by considering !2D with one capture region lo-
cated at ∂!c = {(x, y)|y = 0 and x ∈ [0.45, 0.55]} (Fig. 11,
red dashed line). We compare this to the same domain, but
with ∂!c split into five capture regions of equal size (orange
solid line). Note that ν and γ are the same for both domains,
and their estimation only needs to be performed once. As il-
lustrated in Figs. 11(a) and 11(b), the domain with five capture
regions captures more particles while having a lower amount
of variation. Figures 11(c) and 11(d) contain plots for the ex-
pected fraction and standard deviation of open capture regions
(i.e., E[R(t )/m]), and they illustrate that the system reaches
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FIG. 10. Coefficient of variation of C(t ) for the DiRT and discrete state models. (a) ρ = 10, (b) ρ = 1000 for the DiRT (red solid) and
discrete state (blue dashed) models. Panels shows excellent agreement between the two models. (c) Coefficient of variation of C(t ) for the
discrete state model as a function of ρ. Panel shows that the cv varies nonmonotonically over time. Simulations were conducted in !2D and
parameter values can be found in Table I.

steady state faster with five capture regions and has a lower
amount of variation for the fraction of open capture regions.

With these results in mind, one might wonder whether
having five capture regions yields similar results to having
a single capture region with a five times faster recharge rate
(purple dot-dashed line). However, Fig. 11 clearly illustrates
that this is not the case. The number of cumulative captures
does increase, but unlike in the case of five capture regions, the
initial increase in E[C(t )] is only 1, as opposed to 5. Further,
the amount of variation seen is drastically different, and the
system returns to steady state significantly faster with this
larger recharge rate.

Lastly, we investigate how the spread of capture regions
may affect these curves. Specifically, we distributed the
five capture regions along y = 0, with ∂!C = {(x, y)|y = 0

and x ∈ [0.09, 0.11] ∪ [0.29, 0.31] ∪ [0.49, 0.51] ∪ [0.69,
0.71] ∪ [0.89, 0.91]} (purple dotted line). We found a
minimum difference between this arrangement of capture
regions and the arrangement where all of the capture regions
were placed in the center of the domain. These results suggest
that a combination of the number and recharge rate, but not
the spatial location of receptors, primarily determines the
time courses and their variability. This result is particularly
interesting in the context of our neuronal synapse application,
where receptors have been shown to cluster in the center
of the postsynaptic terminal [22]. Our result suggests that
this spatial arrangement of receptors does not directly affect
the reliability of signal propagation through the synapse,
and the functional consequences of such an arrangement lie
elsewhere.

FIG. 11. Parameter exploration using the discrete state model. (a) E[C(t )], (b) coefficient of variation of E[C(t )], (c) E[R(t )/m],
and (d) standard deviation of R(t )/m for different recharge rates, capture region numbers, and capture region locations. The domain
for all curves is !2D. The capture regions have been adjusted to be ∂!C = {(x, y)|y = 0 and x ∈ ∪[0.45, 0.55]} for the m = 1 curves,
∂!C = {(x, y)|y = 0 and x ∈ [0.45, 0.47] ∪ [047, 0.49] ∪ [0.49, 0.51] ∪ [0.51, 0.53] ∪ [0.53, 0.55]} for the centered m = 5 curve, and ∂!C =
{(x, y)|y = 0 and x ∈ [0.09, 0.11] ∪ [0.29, 0.31] ∪ [0.49, 0.51] ∪ [0.69, 0.71] ∪ [0.89, 0.91]} for the distributed m = 5 curve. The algorithm
provided in the Supplemental Material [16] was used to calculate parameters ν and γ .
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FIG. 12. Role of domain size and number of capture regions with partially absorbing capture regions. (a) The average number of occupied
capture regions for the DiRT (red solid) and discrete state (blue dashed) models for m = 50 and partially absorbing receptors (K = 1). The
purple dot-dashed line corresponds to the discrete state model for m = 50 and perfect absorbers (parameters found in Table I). (b) The
average number of occupied capture regions for the discrete state model in domain !2D (blue dashed) and !̂2D = [0.25, 0.75] × [0, 0.1] (black
solid) for m = 50. (c) The average number of occupied capture regions for the discrete state model with m = 50 (blue dashed) and m = 25
(orange solid) capture regions. Parameters γ and ν were calculated using the extensions to the main algorithm, and they can be found in the
Supplemental Material [16]. For !2D: γ = 9.8696, ν = 6.6496, and for !̂2D: γ = 39.4784, ν = 9.6754.

E. Application to an idealized synapse

We now apply our mathematical model to investigate the
dynamics of an idealized synaptic cleft, where the particles
are neurotransmitters, the capture regions are receptors, and
the neurotransmitters are broken down by enzymes after being
captured by the receptors. In this context, the number of
currently bound capture regions (i.e., m −E[R(t )]) is the key
variable of interest, as it represents the number of currently
activated receptors and relates to the conductance through
the postsynaptic neuron. These receptors are not perfect ab-
sorbers, leading us to generalize the model to partially ab-
sorbing capture regions. Unlike the perfect absorbing capture
regions considered up to this point, there is some probability
of a particle not being captured after coming in contact
with a partially absorbing capture region. We can extend the
technique used to estimate parameters γ and ν to account for
such capture regions by including appropriate Robin boundary
conditions (see the Supplemental Material [16]). Here, we
consider an absorption rate K = 1 (in the case of a perfect
absorber, K = ∞). We also increase the number of capture
regions from m = 3 to 50 (still uniformly spaced along the
interval x ∈ [0.25, 0.75]), which is closer to reality for a
neuronal synapse [23].

Figure 12(a) starts the investigation by first illustrating that
the discrete state model accurately models the DiRT process
with such a partial absorbing capture region (red solid and
blue dashed lines). This figure also compares partially absorb-
ing capture regions (blue dashed line) with perfect absorbers
(purple dot-dashed line). These curves show that perfectly
absorbing capture regions are faster at capturing particles,
they are closer to being fully saturated when m −E[R(t )] is at
its peak, and they have a slower initial decay away from this
peak.

Returning our attention to the specific application of a
neuronal synapse, we investigate how the size of the cleft
and number of capture regions influence the time course
of m −E[R(t )], since both of these quantities have been
experimentally shown to vary [24,25]. We first compare !2D

to the smaller domain !̂2D [Fig. 12(b), inset]. As Fig. 12(b)
illustrates, the magnitude of m −E[R(t )] does not change
between the two domains, but it has a significantly shorter
duration in domain !̂2D. We also consider m = 50 and 25
capture regions in domain !2D [Fig. 12(c)]. Unsurprisingly,
more capture regions are occupied in the m = 50 case. How-
ever, while the durations of the two curves are similar, the
time course with m = 50 has a noticeably quicker decay from
its maximal value. As a result, we conclude that the discrete
state model can approximate a neuronal synapse with partially
absorbing receptors, and it finds that the size of the synapse
and the number of receptors determine the time course of
receptor activation.

IV. CONCLUSIONS AND DISCUSSION

In this paper, we investigated the dynamics of the diffusion
with recharging traps process, focusing on P(t ), the num-
ber of particles remaining in the domain, C(t ), the number
of cumulative captures, and R(t ), the number of available
capture regions. We outlined conditions where this spatial
and stochastic process can be approximated by a discrete
state model, and its corresponding mean-field approximation.
Using these models, we found that the recharge rate, ρ, of
the capture regions determines the time course of E[C(t )]
(increases linearly with a slope and duration that depend
explicitly on ρ), as well as the average and variance of the
clearance time, the time it takes for all particles to leave the
domain. In our previous work, we showed that accounting
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for a finite recharge rate for the capture regions drastically
decreased the average number of particles captured when
compared to an instantaneous rate [15]. Here, we have built
upon that result, and found that, depending on the param-
eter regime, a finite recharge rate will either increase or
decrease the amount of variability. Lastly, we considered the
dynamics of the model with partial absorbing and found that
the time course of capture region activation is determined
by both the size of the domain and the number of capture
regions.

We now mention a couple of possible extensions to the
model. First, we note that the continuous-time Markov pro-
cess on a discrete state space used to approximate the DiRT
model consisted of transition rates that only accounted for the
number of available capture regions. However, this discrete
state model can be made more complex by explicitly account-
ing for the arrangement of currently available capture regions.
For example, with m = 3 capture regions, we would have
escape rates γi jk and capture rates νi jk , where i, j, and k denote
the state of capture regions one, two, and three, respectively
(1 if it is available, and 0 otherwise). With this setup, the
number of transition rates is m!, which is large for even a
moderate number of receptors. While this complication to the
model would potentially improve the approximation, we have
shown that this additional computation was not necessary for

a quantitative agreement between the DiRT model and its
approximations for domains !1D and !2D.

One also could generalize the DiRT model to account
for more general assumptions on particle motion. Such a
generalization would appear in the Fokker-Planck equation,
and the algorithm used to calculate the parameters could be
extended appropriately. Another possible generalization is to
suppose that each particle is removed from the system at
some constant rate, γdec (i.e., particles have an exponentially
distributed lifetime, and would apply to second messenger
proteins such as IP3 [26]). In this case, the transition rate for
a particle to escape in the discrete state model would simply
become γ + γdec. Lastly, one could allow for multiple types
of capture regions, some that remove the particles from the
domain, as we studied here, and others that would return them
back into the domain. This would lead to a less idealized
synaptic cleft model, but we note that while this updated
model would further reduce the number of molecules seen by
the receptors, it would not affect their activation directly.
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Supplementary Material: Role of trap recharge time on the statistics of captured
particles

Gregory Handy, Sean D. Lawley, and Alla Borisyuk⇤
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Here we provide details for estimating the parameters
� and ⌫, as well as the technical details backing the math-
ematical assertions made in the main text.

I. ESTIMATING PARAMETERS � AND ⌫

This section provides an algorithm to estimate param-
eters � and ⌫ (see Section II B of the main text). We
start by defining the quasi-stationary distribution, escape
time, and hitting probability, all of which are used in the
final calculation.

A. Quasi-Stationary Distribution

To derive parameter values that do not rely on the
time-dependent distribution of particles, we make the as-
sumption that the particles are distributed in what is
known as the quasi-stationary distribution (QSD) [1]. In
words, this distribution describes the position of parti-
cles, conditioned on not being absorbed for large time.
To derive the formula for this distribution, assume that
the probability density of particle locations is governed
by the following Fokker-Planck equation,

@tp = D�p, x 2 ⌦,

p = 0, x 2 @⌦S , (1)

@�p = 0, x 2 @⌦\@⌦S ,

for any problem where @⌦S is absorbing, @⌦\@⌦S is re-
flecting, and @� denotes the normal derivative. Below,
we will make di↵erent explicit choices of ⌦S , depending
on what parameter is being estimated (see Section ID).
For any ⌦� ✓ ⌦, it follows that the probability the kth
particle is in ⌦�, conditioned on still being in the domain,
is

P(Xk(t) 2 ⌦�|Xk(t) 2 ⌦) =
P(Xk(t) 2 ⌦� \Xk(t) 2 ⌦)

P(Xk(t) 2 ⌦)

=
P(Xk(t) 2 ⌦�)

P(Xk(t) 2 ⌦)

=

Z

⌦�

p(x, t)dxR
⌦ p(y, t)dy

.

⇤ borisyuk@math.utah.edu

Using separation of variables to solve the Fokker-Planck
Equation (1), it follows that

P(Xk(t) 2 ⌦�|Xk(t) 2 ⌦)

=

Z

⌦�

P1
k=1 Ake��kDt�k(x)dxP1

k=1 Ake��kDt
R
⌦ �k(y)dy

, (2)

where �k(x) and �k are the eigenfunctions and eigenval-
ues,

��k�k = ��k, x 2 ⌦,

�k = 0, x 2 @⌦S , (3)
@
@��k = 0, x 2 @⌦\@⌦S ,

with 0 < �1 < �2  . . . , and �k ! 1 as k ! 1. Under
reasonable assumptions on the boundary @⌦, it has been
proven that a set of eigenfunctions and eigenvalues exists
for this problem [2]. Simplifying Eq. (2) and taking t !
1 yields

P(Xk(t) 2 ⌦�|Xk(t) 2 ⌦)

=

Z

⌦�

�1(x)dxR
⌦ �1(y)dy

+O(e(�1��2)Dt), as t ! 1.

(4)

Thus, the quasi-stationary distribution converges to
�1(x)/(�1, 1) exponentially, where (·, ·) denotes the inner
product. This distribution will now be used to estimate
the escape time and the probability of hitting a portion
of the boundary.

B. Escape Time

The escape time, ⌧s, is the mean first passage time for a
particle to be absorbed via @⌦S . When the particles are
distributed according the quasi-stationary distribution,
then

⌧s =
1

D�1
. (5)

This follows from the fact that the mean first passage
time for a particle to escape a domain satisfies the elliptic
problem [3]

�1 = D�se, x 2 ⌦,

se = 0, x 2 @⌦S ,
@
@� se = 0, x 2 @⌦\@⌦S ,
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and so if the particles are distributed according to its
quasi-stationary distribution, then

⌧s =

Z

⌦
se(x)�1(x)/(�1, 1) dx.

Eq. (5) follows by using the PDEs and boundary condi-
tions that �1 and se satisfy, and applying the product
rule for divergence along with the divergence theorem to
evaluate this integral.

C. Hitting Probability

The hitting probability, h, is the probability of hitting
and being absorbed by @⌦Q ✓ @⌦S . Similar to the es-
cape time, h can be found by solving the PDE

0 = �ĥ, x 2 ⌦,

ĥ = 1, x 2 @⌦Q, (6)

ĥ = 0, x 2 @⌦S\@⌦Q,
@
@� ĥ = 0, x 2 @⌦\@⌦S ,

and then integrating with respect to the quasi-stationary
distribution,

h =

Z

⌦
ĥ(x)�1(x)/(�1, 1) dx. (7)

D. Algorithm for calculating parameters

Using the PDEs just defined, Algorithm 1 can be used
to calculate parameters �, the escape rate, and ⌫, the
capture rate, with appropriate choices for @⌦S and @⌦Q.
We choose to calculate � with @⌦S = @⌦Q = @⌦E . This
choice is motivated by the fact that we are choosing pa-
rameters n, m, and ⇢ such that recharge matters, mean-
ing particles will escape the domain while the capture re-
gions are occupied. For ⌫, we choose @⌦S = @⌦E [ @⌦C

and @⌦Q = @⌦C , meaning the leaving rate is calculated
assuming all of the capture regions are available. How-
ever, the number of available capture regions is accounted
for by multiplying ⌫ by R(t)/m.

Algorithm 1 Parameter calculation
(1) Estimate the leading eigenvalue, �1, and eigenfunction,

�1(x), of the eigenproblem found in Subsection IA with ap-

propriate @⌦S .

(2) Estimate the solution, ĥ(x), found in Subsection IC with

appropriate @⌦Q, and take the hitting probability to be

h =

Z

⌦

ĥ(x)�1(x)/(�1, 1) dx.

(3) Take the rate that a particle leaves the domain ⌦ via the

boundary @⌦Q as h · (D�1).

Note: Depending on the choice of @⌦S and @⌦Q, this algo-

rithm will produce � or ⌫.

While the corresponding PDEs for � and ⌫ can be
solved analytically in ⌦1D and in ⌦2D for parameter �, we
numerically solve them for ⌫ in ⌦2D using the NDEigen-
system and NDSolveValue functions in Mathematica [4].
Also, for instantaneous recharge, the probability of hit-
ting a capture region is calculated directly by using the
initial distribution of particles in Eq. (7) instead of the
quasi-stationary distribution.

E. Limitations of Algorithm 1

All values for � and ⌫ used in this paper are determined
from Algorithm 1, which uses only information about the
domain ⌦ and boundary @⌦. As a result, our approxima-
tions do not depend on parameters fitted to simulations
of the DiRT model. However, there are some drawbacks
to this algorithm. Most notably, the algorithm relies on
the assumption that the particles are distributed accord-
ing to the quasi-stationary distribution. This approxi-
mation was made for two reasons. First, it allows us
to define the parameters in a time-independent manner.
Second, when the particles are distributed according to
the QSD, the leaving rate is exactly exponential [1].
With this in mind, it is reasonable to expect our ap-

proximations to accurately capture the dynamics of the
DiRT model when the distribution of particles evolves
quickly to the QSD, and when we are in a parameter
regime where the recharge rate plays a significant role
in the dynamics. Eq. (4) shows that the rate of con-
vergence to the QSD depends explicitly on (�1 � �2)D.
Since the rate of convergence is “slow” or “fast” relative
to the other time scale - the recharge rate - we consider
the following quantity to be the convergence rate to the
QSD

(�2 � �1)D

⇢
. (8)

Note that this is an exponential rate of convergence, as
indicated by Eq. (4). Since this quantity depends on the
eigenvalues found in the calculations for parameters �
and ⌫, we actually have a pair of convergence rates. As
a result, we define the overall convergence rate to be

↵(⌦, @⌦, D, ⇢) = min

⇢
(��

2 � ��
1)D

⇢
,
(�⌫

2 � �⌫
1)D

⇢

�
,

and expect accurate results when ↵(⌦, @⌦, D, ⇢) is large.
Using the results from [5], we are in a parameter regime
where the recharge rate matters when

n

m
� 1 and

n

m
·
�

⇢
� 1, (9)

or, in words, when the number of particles is much larger
than the number of capture regions and the recharge rate
is not much larger than the escape rate. Thus, Condi-
tion (8) (for eigenvalues corresponding to the escape rate
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� and the capture rate ⌫), and Condition (9) provide suf-
ficient conditions on when to expect our approximations
to perform well.

Using this understanding as a foundation, we can easily
come up with domains where our approximations would
fail to match the results of the DiRT model. One such do-
main is a rectangular domain that is stretched out so that
the particles take a long time to hit the escape and cap-
ture regions, and to reach a quasi-stationary distribution.
Another domain is one that is fragmented with small “ac-
cess tunnels” between regions, potentially preventing the
distribution from ever reaching the quasi-stationary dis-
tribution.

F. Example Domains

Algorithm 1 can be applied to very general bounded
domains ⌦ with boundary @⌦ = @⌦R[@⌦E[@⌦C . Here,
we provide the description and parameter values for two
domains where these approximations perform well, and
is considered in Section III of the main text.

First, we consider the 1D domain

⌦1D = [0, 1],

with an escape region at x = 0 and a capture region at
x = 1. We also consider the 2D domain

⌦2D = [0, 1]⇥ [0, 0.1],

with escape regions along x = 0 and x = 1, @⌦C =
{(x, y)|y = 0 and x 2 [0.250, 0.417] [ [0.417, 0.583] [
[0.583, 0.750]} (m = 3 capture regions), and reflecting
boundaries for the rest of the domain (Fig. 1). This rect-
angular domain, longer in the horizontal direction, was
inspired by a synaptic cleft, and used in [5]. Initially,
the particles are located at x = 0.5 in ⌦1D and x = 0.5,
y = 0.1 in ⌦2D (triangle in left panels of Fig. 1). We
choose this point distribution in order to avoid biasing
our results by making the unreasonable assumption that
the particles are initially distributed according to their
QSD, which would surely benefit our approximation.

For ⌦1D, it is straight forward to solve the PDEs as-
sociated with Algorithm 1 analytically. For ⌦2D, these
can be solved numerically, using the NDEigensystem
and NDSolveValue functions in Mathematica [4]. The
quasi-stationary distributions with boundary conditions
as specified in Subsection ID for finding � and ⌫ are
shown in Fig. 1. All associated parameter values for these
domains can be found in Table I. The first four parame-
ters in this table (those to the left of the double vertical
line) were assumed, while those to the right were calcu-
lated using the algorithm. For this paper, we consider
arbitrary time and space units.

TABLE I. Parameter values for ⌦
1D

and ⌦
2D

(capture regions

located along y = 0 and x 2 (0.25, 0.75)). The parameters to

the left of the double vertical line were assumed. The remain-

ing parameters, were found following Algorithm 1 analytically

for ⌦
1D

, and numerically ⌦
2D

using the NDEigensystem and

NDSolveValue functions in Mathematica [4]. Unless other-

wise noted, these are parameters used in the figures. The

units are arbitrary time and space units.

D n m ⇢ � h �1 ⌫ = h · �1

⌦
1D

1 100 1 10 2.467 0.500 9.870 4.935

⌦
2D

1 1000 3 10 9.870 0.563 110.808 62.394

G. Extension of Algorithm 1 for Partially
Absorbing Capture Regions

Thus far, we have accounted for the case where the
capture regions are perfect absorbers: an available cap-
ture region will always capture a particle when one comes
into contact with it. However, there are cases where the
capture regions may not have a perfect success rate in
catching a particle. For example, in chemical reactions,
two molecules must not only collide, but collide with
enough energy for the reaction to take place [6]. Such
imperfect absorption can be included in PDEs as appro-
priate Robin boundary conditions where such partially
absorbing capture regions are located [7]. This allows for
a straightforward extension of Algorithm 1. Specifically,
assume that ⌦Q ✓ ⌦S is a partially absorbing boundary
with absorption rate K. Then the parameters can be
adjusted by adding

K�k +D
@

@�
�k = 0, x 2 ⌦Q,

to the eigenproblem, and adjusting Eq. (6) to be

Kh+D
@

@�
h = 1, x 2 ⌦Q.

To compare the results with simulations of the DiRT
model, we use another result from [7], which specifically
relates the PDE formulation to corresponding numerical
simulations of di↵usion with partial absorption at the
boundary. It states that for a given absorption rate K,
the probability of a particle being absorbed by a par-
tially absorbing boundary upon making contact, where
the di↵usion model is using the step size �t, is

P =
K
p
⇡

p
D

·

p

�t.

In simulations with partially-absorbing capture regions,
we take K = 1, D = 1, and �t = 10�5, resulting in
P = 0.0056.
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FIG. 1. Example Domains. Top: ⌦
1D

, Bottom: ⌦
2D

, along with associated quasi-stationary distributions with noted

boundary conditions. The escape regions denoted by black, dashed lines, capture regions by red, solid lines, and reflecting

regions by black, solid lines. Unless otherwise specified, all particles are initially located at the gray triangles in each domain

for simulations of the DiRT model.

II. PHASE PLANE ANALYSIS

For the mean field system detailed in Section III B of
the main text, the di↵erential equation for c(t) is un-
coupled from the first two equations. As a result, we
focus our analysis on the two-dimensional system involv-
ing only p(t) and r(t), which lends itself well to phase-
plane analysis. Since c(t) only depends on the product
p(t)r(t), we nondimensionalize our equations and con-
sider the change of variables

x =
p

n
·
r

m
, y =

p

n
,

which yields the following system of two di↵erential equa-
tions

dx

d⌧
= �↵x�

�x2

y
+ (y � x)� ⌘xy, (10)

dy

d⌧
= �↵y � �x, (11)

where ↵ = �/⇢, � = ⌫/⇢, ⌧ = t⇢, and ⌘ = n⌫/(m⇢).
Under this change of variables, it is easy to show that if
x(0) � 0 and y(0) � 0, then x(⌧) � 0 and y(⌧) � 0 for
all time. Also, there is a single steady state of the system
at (x⇤, y⇤) = (0, 0). The x�nullcline of this system is

y(x) =
(1 + ↵)x±

p
(1 + ↵)2x2 + 4�(1� ⌘x)

2(1� ⌘x)

and the y-nullcline is

y(x) = �
�

↵
x.

Since we know that x(⌧) � 0 and y(⌧) � 0, we are
only concerned with the behavior of solutions in the first
quadrant. We easily see that this region lies above the y-
nullcline, and as a result, dy/dt < 0 for all points. This is
consistent with the original variables, since y(t) = p(t)/n,
and particles are not being added to the domain.

Since we are only concerned with dynamics in the first
quadrant, we only require the positive branch of the x-
nullcline. It is easy to observe that this nullcline asymp-
totes at x = 1/⌘, and as a result, it splits the first quad-
rant into two regions. For points lying to the left of
this nullcline, dx/dt > 0, and for points lying to the
right, dx/dt < 0. However, it is important to note that
we are only interested in one initial condition, namely
(x(0), y(0)) = (1, 1) (i.e., all of the particles begin in the
domain, and all of the capture regions are initially open).
It is straightforward to verify that this initial condition
lies to the right of the x-nullcline for all parameter values.
As a result, the above analysis reveals that solutions in
the x, y-phase plane simply decay in the x and y direc-
tion, to the (0, 0) steady state.

We can yield additional insight about the dynamics
of this two-equation system by assuming that the num-
ber of initial particles n is large. In this limit, the non-
dimensional parameter ⌘ = n⌫/(m⇢) is much larger than
all other parameters, and as a result, dx/d⌧ � 0 and
x equilibrates quickly. In such a parameter regime, the
solution trajectory will quickly approach the x-nullcline
and decay along it to the steady state (Fig. 2).

Interpreted in terms of the original variables, Fig-
ures 2A and 2B are similar to the c(t) time course ob-
served in the DiRT, discrete state, and mean field models,
and can be broken into three portions. First, x quickly
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FIG. 2. Solution Trajectories in the x-y Phase Plane with Di↵erent Recharge Rates. Plots (with respect to the

rescaled variables x = pr/(mn) and y = p/n) of with the x-nullcline (red) and its asymptote (black, dashed), along with

solution trajectories (blue) with initial condition (1, 1) and recharge rates A: ⇢ = 10, B: ⇢ = 1000, and C: ⇢ = 10000. Inset:

Zoomed in view of the phase plane. Panels show that the trajectory quickly equilibrates to the x-nullcline. Simulations were

conducted in domain ⌦
2D

(parameters found in Table I).

equilibrates to the x-nullcline (the initial particles are
quickly absorbed by the m capture regions). The trajec-
tory then decays down the x-nullcline, while remaining
close to the asymptote found at 1/⌘ (the particles are ab-
sorbed by the capture regions at a constant rate). Finally,
the trajectory decays down to the steady state at (0, 0)
(all particles have exited the domain and c(t) levels o↵;
Fig. 2A, inset). Going back to our original variables and
parameters, when the trajectory sits close to the asymp-
tote at 1/⌘, we see x ⇡ 1/⌘ , which implies p

n ·
r
m ⇡

m⇢
n⌫ ,

and so

dc

dt
⇡ m⇢.

This result matches the slope of c(t) during its linear
growth regime in the DiRT and discrete state models. In
words, m⇢ is the rate that particles are captured by all
capture regions, assuming they each capture a particle
the moment they have recharged.

This linear growth regime holds true only when the
trajectory equilibrates to the x-nullcline when it is lying
significantly close to its vertical asymptote at x = 1/⌘. In
Figure 2C, the recharge rate ⇢ has been increased enough
such that this condition is not met, and as a result, the
particles are not captured at a constant rate. Thus, the
rate of linear growth is only possible when ⇢ is finite
(non-instantaneous recharge). However, caution must be
taken when interpreting this linear growth result when ⇢
is small. As ⇢ ! 0, it is not only possible, but likely, that
m particles will bind initially to the capture regions, and
all other particles will escape before they have a chance
to recharge. As a result, this linear growth will not be
observed.

We can use these observations and Eqs. (10) and (11)
to get an estimate for the duration of this linear growth.
Assume that we are in a parameter regime where the
linear growth phase is observed in the time interval 0 <
⌧  ⌧⇤. Since the trajectory lies close to the vertical
asymptote of the x-nullcline during this phase, we can

use the approximation x(⌧) = 1/⌘ to eliminate Eq. (10).
Substituting this into Eq. (11), we find

dy

d⌧
= �↵y � � ·

1

⌘
. (12)

Since the trajectories essentially move horizontally to the
x-nullcline, a reasonable initial condition to accompany
this equation is y(0) = 1. Solving Eq. (12) with this
initial condition yields

y(⌧) = �
�

↵⌘
+ e�↵⌧

✓
1 +

�

↵⌘

◆
, up to time ⌧⇤.

Plugging in ⌧⇤ and solving yields

⌧⇤ =
1

↵
log

✓
1 + �/(↵⌘)

y(⌧⇤) + �/(↵⌘)

◆
.

Finally, rewriting this in terms of our original parameters,
we find

T linear =
1

�
log

 
1 + m⇢

n�

C + m⇢
n�

!
,

where C is the fraction of particles remaining at time
T linear. Since C is some number between 0 and 1, it
follows that T linear is maximized by taking C = 0. As
a result, choosing C = 0 provides an upper bound for
T linear. However, the previous results suggest that the
linear growth phase ends when the number of particles
in the domain drop below some critical threshold, which
is most likely domain-dependent. As a result, a more
accurate value of T linear can be achieved for some C > 0.

III. HIGHER-ORDER STATISTICS FOR TOTAL
PARTICLE CAPTURES AND CLEARANCE

TIME

Recall that the reduced discrete state model assumes
that the captures occur instantaneously (⌫ ! 1), and
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the transitions from (P (t), C(t)) are

(P (t)� 1, C(t)) with rate �P (t),

and (P (t)� 1, C(t) + 1) with rate ⇢m.

We choose to use this model to derive the results on
higher ordered statistics, because the model does not de-
pend on the number of available capture regions, and
thus, the particles are uncorrelated. Here we will derive
results pertaining to the total number of captures.

With the reduced discrete state model, we can consider
the following independent random variables

Uk =

8
><

>:

1, kth particle to leave domain is captured,

0, kth particle to leave domain

escapes the domain.

Further, since this model assumes that the captures occur
instantly, we take U1 = U2 = ... = Um = 1, meaning the
first m particles are captured immediately.

Let Ctotal denote the total number of captured particles
in the reduced discrete state model. It follows that

Ctotal =
nX

k=1

Uk.

The expected number of Ctotal can thus be calculated as
follows

E[Ctotal] =
nX

k=1

E [Uk] = m+
nX

k=m+1

P[Uk = 1]

= m+
nX

k=m+1

m⇢

�(n� (k � 1)) +m⇢

= m+
m⇢

�

n�mX

k=1

1

k + m⇢
�

,

) E[Ctotal] = m+
m⇢

�

h
 (0) (n�m+ 1 +m⇢/�)

� (0) (1 +m⇢/�)
i
, (13)

where  (j) is the polygamma function of order j [8],
which is defined by

 (j)(x) =
dj+1

dxj+1
ln(�(x)).

Similar manipulations allow us to calculate the variance
of Ctotal, with the final result being the following expres-
sion

var[Ctotal] =
m⇢

�

h
 (0) (n�m+ 1 +m⇢/�)

� (0) (1 +m⇢/�)
i

+

✓
m⇢

�

◆2 h
 (1) (n�m+ 1 +m⇢/�)

� (1) (1 +m⇢/�)
i
. (14)

Although Eqs. (13) and (14) appear unwieldy, they pro-
vide valuable insight as n ! 1 when coupled with the
following asymptotic expansions for  (0)(n) and  (1)(n)

 (0)(n) = log n+O

✓
1

n

◆
and  (1)(n) = O

✓
1

n

◆
.

It follows that as n ! 1,

E[Ctotal] = m+
m⇢

�
log n

�
m⇢

�
 (0)(1 +m⇢/�) +O

✓
1

n

◆
,

var[Ctotal] =
m⇢

�
log n�

m⇢

�
 (0)(1 +m⇢/�)

�

✓
m⇢

�

◆2

 (1)(1 +m⇢/�) +O

✓
1

n

◆
.
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