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Abstract

Many diverse biological systems are described by randomly moving particles that can be

captured by traps in their environment. Examples include neurotransmitters diffusing in the

synaptic cleft before binding to receptors and prey roaming an environment before capture

by predators. In most cases, the traps cannot capture particles continuously. Rather, each

trap must wait a transitory “recharge” time after capturing a particle before additional cap-

tures. This recharge time is often overlooked. In the case of instant recharge, the average

number of particles captured before they escape grows linearly in the total number of parti-

cles. In stark contrast, we prove that for any nonzero recharge time, the average number of

captured particles grows at most logarithmically in the total particle number. This is a funda-

mental effect of recharge, as it holds under very general assumptions on particle motion

and spatial domain. Furthermore, we characterize the parameter regime in which a given

recharge time will dramatically affect a system, allowing researchers to easily verify if they

need to account for recharge in their specific system. Finally, we consider a few examples,

including a neural system in which recharge reduces neurotransmitter bindings by several

orders of magnitude.

Author summary

Consider particles that are released into an environment (think diffusing molecules or
plankton), and suppose that there are traps in the environment. How many particles will
be captured by the traps before they escape? In a standard model, the number of captured
particles is proportional to the initial number released. In this paper, we show that for a
more realistic model of a trap (one in which traps must recharge after every capture), the
number of captures is proportional to the logarithm of the initial number released. That
means that if 106 particles are released, only about 6 will be captured. We prove this result
mathematically, and then consider a number of applications, including neuronal synapses
and ambush predators.
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Introduction

Particles moving and interacting with traps is a broad description of many biological pro-
cesses. In individual applications, “particles” might represent, for example, molecules or prey,
while “traps” could represent receptors or predators. Nevertheless, the mathematical descrip-
tion can be very similar.

In this work we consider a finite number of particles randomly moving in a bounded
domain. Eventually, each particle will leave the domain through either an escape region in the
boundary or a capture region in the boundary (Fig 1). After a capture region captures a parti-
cle, that region cannot capture additional particles until after a transitory recharge time. We
find that this recharge time can dramatically reduce the number of particles that are captured
before they escape.

One motivation for this study is the interaction of neurotransmitter with receptors in the
synaptic cleft. The synaptic cleft is a small region in extracellular space between neuronal pro-
cesses [1]. Once a neuron activates, it releases a packet of neurotransmitter molecules (“parti-
cles”) into the cleft, where they diffuse until they either leave the cleft (escape) or bind to the
synaptic receptors on the membrane of the other neuron (are captured). The receptor that cap-
tures a molecule changes conformation, and during this time it cannot capture additional mol-
ecules. After a transitory recharge time, the receptor returns to its original state in which it can
capture molecules. A similar scenario occurs, for example, in experiments where the molecules
are released into extracellular space and bind to receptors on astrocytes, another type of brain
cell [2].

In an application to ecology, the capture regions could represent ambush predators [3].
These are organisms that stay stationary, while the prey (“particles”) wander about. Once prey
is within a striking range, the predator attacks and captures the prey. The recharge in this case
represents the so-called handling time [4, 5], which is the time spent processing food by the
predator, until it is ready to hunt again. Examples of such predators can be found in different
taxa, including carnivorous plants, chameleons, some fish, and spiders.

Here we consider n non-interacting particles randomly moving in a bounded domain

O ⇢ Rd in any spatial dimension, d� 1. For simplicity, we assume the particles are purely dif-
fusing, but our results hold under much more general assumptions (see the Discussion). The
boundary @O is partitioned into reflecting regions @OR which reflect particles, escape regions

@OE which absorb particles, and m-many capture regions @OC à [m
kà1@O

j
C, see Fig 1A. Each

capture region @Oj
C absorbs particles, except during a transitory time after it absorbs a particle

Fig 1. Schematics of domain and recharging capture regions. A: Particles diffusing in domainO with boundary
@O = @OR [ @OC [ @OE. B: After capturing a particle, capture regions are reflecting for a transitory recharge time,
which we take to be exponentially distributed with mean τr > 0.

https://doi.org/10.1371/journal.pcbi.1006015.g001
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in which the region is reflecting, see Fig 1B. We take this transitory time to be exponentially
distributed with mean τr > 0 and envision it as the time required for a capture region to
“recharge” before it can capture another particle.

Eventually, each particle will either be absorbed at an escape region (in which case we say
the particle has escaped), or absorbed at a capture region (in which case we say the particle was
captured). Let N� 0 be the number of particles that are eventually captured. In the case of
instant recharge (τr = 0) and independently moving particles, the expected value of N is simply

EâNä à hn; Ö1Ü

where h 2 [0, 1] is the probability that a given particle reaches a capture region before an
escape region (the so-called hitting probability).

In this paper, we investigate the effect of a nonzero recharge time τr > 0 on the expected
number of captured particles, EâNä. Notice that particles still move independently, but they
now interact through their effect on the state of the boundary. In contrast to the linear growth
of EâNä as a function of n in Eq 1 in the case τr = 0, we prove that if τr > 0, then EâNä cannot
grow faster than logarithmically for large n. We then demonstrate through numerical simula-
tions that EâNä does indeed grow logarithmically (rather than sublogarithmically). Further-
more, we characterize this growth in terms of only three biological parameters. Namely, if n is
the number of particles released into the domain, m is the number of capture regions, and T =
τr/τe is the ratio of the expected recharge time τr to the expected escape time τe if all the capture
regions are always reflecting, then the upper bound for EâNä is approximately equal to

mám
T

log n
T
m

✓ ◆
á 1

✓ ◆
: Ö2Ü

We make Eq 2 precise in Theorems 1 and 2 below. In addition, we provide in Eq 16 a simple
condition to check if a particular parameter regime is such that EâNä is dramatically reduced
by the recharge time.

Materials and methods

We compare the upper bound presented in Theorem 2 to simulations conducted in the three
domains illustrated in Fig 2. In these domains, the PDE in Eq 11 can be solved using separation

Fig 2. Three example domains. A: O1D, B:O2D, C: O3D, with escape regions denoted by black, dashed lines, capture regions by red, solid
lines, and reflecting regions by black, solid lines. Unless otherwise specified, all particles are initially located at the gray triangles in each
domain.

https://doi.org/10.1371/journal.pcbi.1006015.g002

Receptor recharge time drastically reduces the number of captured particles

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006015 March 1, 2018 3 / 16

https://doi.org/10.1371/journal.pcbi.1006015.g002
https://doi.org/10.1371/journal.pcbi.1006015


of variables. With this solution, it is straightforward to estimate the constant C using Eq 12.
The results of this calculation, assuming the initial distribution of particles is given by a delta-
distribution, can be found in Table 1. Unless specified otherwise, all simulations used these val-
ues for λ1 and C. Parameter values for n, τ, D, L1D

x , L2D
x , L2D

y , L3D
z , and R3D can be found in the

figure captions, along with the locations of the capture regions forO2D and O3D.
The PDE for the probability of hitting a capture region forO2D andO3D was solved numeri-

cally using the NDSolveValue function in Mathematica [6].
For the three-dimensional synaptic cleft, the parameter values L3D

z , R3D, D as well as the

number of capture regions (m) for NMDA and AMPA clefts were found in [7], n was found in
[8], and the size of the individual capture regions were estimated from [9]. The recharge times
(τr) for AMPA and NMDA receptors were estimated from kinetic schemes from [10] and [11].
Specifically, the recharge times were taken to be the inverse of the unbinding rate of glutamate
in the open state of these kinetic schemes. For the predator-prey example, L3D

z , R3D, n, m, and

the handling time (τr) were estimated from [12]. The ambush predator Chaoborus Americanus
are typically 1.1 � 104 μm in length [13], and we considered a reasonable capture region with a
radius twice that length. While the prey Daphnia are capable of swimming, their motion has
been modeled with brownian motion, and we used the effective diffusion coefficient reported
in [14]. All of these values are in Table 2.

All simulations were completed in C, with a time step of 0.001μs. The simulations ended
when no particles remained in the domain. 100 trials were completed for each parameter set.

Results

Mathematical results

We now make Eq 2 precise. The following upper bound follows immediately from Eq 1,

EâNä  hn; if tr � 0: Ö3Ü

Table 1. Eigenvalues (for k = 1, 2, . . .), and coefficients for Eq 12 for the domains found in Fig 2, where the initial
distributions of particles are:O1D: pÖxÜ à δÖx � 0:5L1D

x Ü,O2D: δÖx; yÜ à δÖx � 0:5L2D
x ÜδÖy � ÖL2D

y ÜÜ, andO3D:

δÖx; y; zÜ à δÖxÜδÖyÜδÖz � ÖL3D
z ÜÜ. J0(r) and J1(r) denote the zeroth and first order Bessel function of the first kind,

respectively, and αk denotes the kth zero J0(r).

λk Ak C

O1D
pá2pÖk�1Ü

2L1D
x

⇣ ⌘2 4
pá2pk sin pá2pÖk�1Ü

4

� �
1.0377

O2D
pk

L2D
x

⇣ ⌘2 2Ö1�Ö�1ÜkÜ
pÖká1Ü sin pk

2

� � 1.2732

O3D ak
R3D

� �2 2
J1ÖakÜak

1.6020

https://doi.org/10.1371/journal.pcbi.1006015.t001

Table 2. Parameter values used in applications (Fig 2C). The domain is cylindrical (Fig 2). The initial distribution of
particles/prey is dÖx; y; zÜ à dÖxÜdÖyÜdÖz � ÖL3D

z ÜÜ. Columns 2, 3: Neuronal synapse. The receptors are taken to be uni-
formly distributed in {(x, y, 0)|x2 + y2 < (R3D)2}, and each corresponding capture region has a radius of 0.00625 μm.
Columns 4: Ambush predator. The predator is at (0, 0, 0) and has a capture radius of 2.2 � 104 μm.

Parameter NMDA AMPA Predator

R3D 0.15 μm 0.15 μm 3.5 � 104 μm

L3D
z 0.02 μm 0.02 μm 5.2 � 104 μm

D 0.3(μm)2/ms 0.3(μm)2/ms 3.255 � 106(μm)2/s

m 20 200 1

n 3000 3000 30

τr 10.917 ms 0.25 ms 8.64 � 103 s

https://doi.org/10.1371/journal.pcbi.1006015.t002
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To get a tighter upper bound, let S(t) 2 [0, 1] be the probability that a given particle has not
escaped by time t� 0 in the case that all the capture regions are always reflecting. The follow-
ing lemma bounds EâNä in terms of this survival probability, S(t).

Lemma 1. For each t� 0, we have that

EâNä  mÖ1á t=trÜ á nSÖtÜ:

Proof. Let Ns,t be the number of particles captured between time s� 0 and time t� s. With
probability one we have that

N à N0;t á Nt;1; if t � 0: Ö4Ü

We can bound N0,t by noting that all captures, except the first one, are preceded by a recharge
time. Since the recharge time is exponentially distributed with mean τr > 0, and since there are
m capture regions, the expected number of recharges before time t is mt/τr. Since the m capture
regions are initially absorbing, we have

EâN0;tä  mÖ1á t=trÜ; if t � 0: Ö5Ü

In words, the righthand side of Eq 5 is achieved if each of the m capture regions captures a par-
ticle at time zero and then immediately after each recharge time (1 particle each per average
recharge time τr) up to time t.

Next, observe that Nt,1 cannot be greater than the number of particles still in the domain at
time t� 0. Furthermore, assuming all the capture regions are always reflecting can only
increase the number of particles still in the domain at time t� 0. If the capture regions are
always reflecting, then the expected number of particles remaining in the domain at time t� 0
is nS(t). Therefore,

EâNt;1ä  nSÖtÜ; if t � 0: Ö6Ü

In words, the right side of Eq 6 is achieved if all the particles that are still in the domain at time
t are eventually captured (rather than escape). Taking the expectation of Eq 4 and using Eqs 5
and 6 completes the proof.

If S(t) decays exponentially, then the following theorem follows quickly from Lemma 1 and
Eq 3.

Theorem 1. If λ> 0 and C> 0 are such that

SÖtÜ  Ce�lt; for all t � 0; Ö7Ü

then

EâNä  min má m
ltr

logáÖCn
ltr

m
Ü á minfnC;

m
trl
g; hn

⇢ �
; Ö8Ü

where log+(y) ≔max{log(y), 0}.
Proof. Combining Lemma 1 with Eq 7, we have that

EâNä  mÖ1á t=trÜ á nCe�lt; t � 0: Ö9Ü

A simple calculus exercise shows that the value of t� 0 that minimizes the upper bound in
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Eq 9 is

t à 1

l
logá Cn

ltr

m

✓ ◆
� 0:

Plugging this value of t into Eq 9 and using Eq 3 completes the proof.
In order to apply Theorem 1 to the situation described in the Introduction, we need to find

λ> 0 and C> 0 that satisfy Eq 7. The first step is to use separation of variables to find the sur-
vival probability S(t).

Lemma 2 Assume @O is the union of a finite number of disjoint closed Lipschitz surfaces, each
surface having finite surface area (a smooth boundary with finite surface area satisfies this
assumption). Suppose the initial distribution of each particle is p(x) and define the shorthand
notation,

Öf ; gÜ≔
Z
O

f ÖxÜgÖxÜ dx:

If each particle has diffusivity D> 0, then the survival probability is given by

SÖtÜ à
X1
kà1

Ake�Dlkt; t > 0; Ö10Ü

where Ak ≔ (ϕk, 1)(ϕk, p) and

0 < l1 < l2  . . . ;

is the increasing sequence of eigenvalues satisfying λk!1 as k!1 and

�lk�k à D�k;

�k à 0;

@
@s�k à 0;

x 2 O;

x 2 @OE;

x 2 @On@OE;

Ö11Ü

for corresponding eigenfunctions f�kÖxÜg
1
kà1 which form an orthonormal basis for L2(O).

We relegate the proof of Lemma 2 to S1 Text. Using Lemma 2, we can find λ> 0 and C> 0
that satisfy Eq 7 and apply Theorem 1 to the situation described in the Introduction. In the fol-
lowing, let τe ≔ (Dλ1)−1, which we refer to as the escape time because it is the average time for a
particle to reach an escape region if the capture regions are always reflecting and the particle is
initially distributed according to its so-called quasi-stationary distribution, ϕ1(x)/(ϕ1, 1)� 0
(see S1 Text). Further, let T≔ τr/τe be the relative recharge time.

Theorem 2. Under the assumptions of Lemma 2, we have

EâNä  min mám
T

logá C
nT
m

✓ ◆
á min nC;

m
T

n o
; hn

⇢ �
;

where C is given by

C à min
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
jOjÖp; pÜ

p
; sup

t>0

X1

kà1
Ake�DÖlk�l1Üt

⇢ �

� maxfA1; 1g:
Ö12Ü

Before giving the proof of Theorem 2, we make a few comments about the constant C. First,
C depends only on the initial distribution p, the domain O, and the escape region @OE. Note

Receptor recharge time drastically reduces the number of captured particles
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that as a result, C does not directly depend on the size of capture regions. Second, while C may
be difficult to compute in general, it simplifies in certain cases. Specifically, if the initial distri-

bution is uniform, p(x) = 1/|O|, then C à
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
jOjÖp; pÜ

p
à 1 by Eq 12. As another example, if the

initial distribution is the quasi-stationary distribution, p(x) = ϕ1(x)/(ϕ1, 1), then the coefficients
in Lemma 2 are A1 = 1 and Ai = 0 for i> 1, and it follows immediately from Eq 12 that C = 1.

Finally, if

n=m� 1 and nT=m� 1; Ö13Ü

then

EâNä  mám
T

log
n
m

T
⇣ ⌘

á 1á log ÖCÜ
⇣ ⌘

⇡ mám
T

log
n
m

T
⇣ ⌘

á 1
⇣ ⌘

:

Ö14Ü

Hence, in the parameter regime in Eq 13, computing C is somewhat superfluous since it is a
subdominant term in Eq 14. Further, note that the parameter regime in Eq 13 is precisely the
regime in which we expect the nonzero recharge time τr > 0 to have a nontrivial effect on
EâNä. Namely, the number of particles must be much larger than the number of capture
regions (n/m� 1) and the recharge time must not be much smaller than the escape time (nT/
m� 1). This parameter regime is characterized precisely in the next section (Eq 16).

Proof of Theorem 2. Using Lemma 2 and the Schwarz inequality, we have

SÖtÜ  e�Dl1t
X1
kà1

jAkj  e�Dl1t

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅX1
kà1

Ö�k; 1Ü
2

s ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅX1
kà1

Ö�k; pÜ
2

s
:

Since f�kÖxÜg
1
kà1 are an orthonormal basis for L2(O), this becomes

SÖtÜ 
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
jOjÖp; pÜ

p
e�Dl1t:

Further, Lemma 2 gives that

SÖtÜ à e�Dl1t
X1

kà1
Ake�DÖlk�l1Üt

 e�Dl1tsupt>0

X1

kà1
Ake�DÖlk�l1Üt:

Applying Theorem 1 completes the proof.
Transition between linear and logarithmic bounds. We have proven the

EâNä à OÖ log nÜ as n!1 for any T = τr/τe > 0. However, if T⌧ 1, then EâNä still grows lin-
earlty in n for small n. It therefore remains to identify when EâNä transitions from linear to
logarithmic growth in n for a given T> 0. In other words, when does recharge time dramati-
cally affect EâNä?

We answer this question by determining when the logarithmic bound in Theorem 2 is bet-
ter than the linear bound. Specifically, we determine the critical nc such that

mám
T

logá C
ncT
m

✓ ◆
á min Cnc;

m
T

n o
à hnc:

Observe that if Cncm/T, then the linear bound is tighter than the log bound. Hence, we seek

Receptor recharge time drastically reduces the number of captured particles
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the unique nc > m/(TC) such that

mám
T

log C
ncT
m

✓ ◆
ám

T
à hnc: Ö15Ü

The solutions to this transcendental equation can be expressed in terms of the so-called
Lambert W function [15]. Specifically, it is straightforward to check that the solution to Eq 15
satisfying nc > m/(TC) is

nc à �
m
Th

W�1 �
h
C

e�T�1

✓ ◆
; Ö16Ü

where W−1(z) is the lower branch of the Lambert W function defined by z = W−1(z)eW−1(z) and
W−1(z) −1 for z 2 [−e−1, 0). W−1(z) is a fairly standard function that is included in most
modern computational software (additional details on this function can be found in S1 Text).
Given some number n of initial particles, it is therefore straightforward to use Eq 16 to check if
n> nc. If so, then the logarithmic bound in Theorem 2 is tighter than the linear bound and the
recharge time significantly affects EâNä.

Analysis and applications of the upper bound

We now examine the upper bound and compare it to simulations in three domains: O1D,O2D,
and O3D (see Fig 2). The one-dimensional domain is the interval,

O1D à â0; L1D
x ä;

with an escape region at x = 0 and a capture region at x à L1D
x . The two-dimensional domain

is the rectangle,

O2D à â0; L2D
x ä ⇥ â0; L2D

y ä;

with escape regions along x = 0 and x à L2D
x , capture regions along y = 0, and reflecting bound-

aries for the remainder of the boundary. Lastly, the three-dimensional domain is the cylinder,

O3D à fÖx; y; zÜ j x2 á y2 < ÖR3DÜ2; 0 < z < L3D
z g;

with escape regions at x2 + y2 = (R3D)2, capture regions located on z = 0, and reflecting bound-
aries for the remainder of the boundary. Unless otherwise specified, all particles are initially
located at the gray triangles in each domain in Fig 2.

Linear vs. logarithmic growth. Recalling Eq 1, if the capture regions recharge instantly
(T = τr/τe = 0), then the expected number of captured particles grows linearly in the number
of initial particles. However, we found that for all T> 0, the linear growth can only hold for
n< nc, where nc is determined by Eq 16. This point is illustrated in Fig 3A, where the upper
bound of Theorem 2 forO1D is plotted for different values of T. This figure shows that as T
increases, the upper bound branches off of the linear instant recharge case (red line) at smaller
values of n.

In Fig 3B, we plot Monte Carlo estimates of EâNä and find that EâNä does indeed grow loga-
rithmically in n. That is, while the theorems in the previous section provide logarithmic upper
bounds for EâNä, the actual expected number of captured particles does not grow sub-logarith-
mically. Furthermore, this figure indicates that our upper bound gets sharper as T gets larger.
This is confirmed by calculating the percent error (figure not shown).

In Fig 3C, we plot the critical ratio, nc/m from Eq 16 as a function of T for different values
of h. If parameters lie above their corresponding nc/m curve, then EâNä grows logarithmically

Receptor recharge time drastically reduces the number of captured particles
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in n, and therefore recharge dramatically reduces EâNä. This result allows experimentalists and
modelers to determine if they need to account for recharge in their specific system.

To illustrate, we now consider two specific examples. First, we model the diffusion of neu-
rotransmitters in a neuronal synapse containing only N-methyl-D-aspartate (NMDA) recep-
tors with the cylindrical domain O3D in Fig 2C. Specifically, the reflecting boundaries make up
the pre- and post-synaptic terminals, the capture regions are NMDA receptors, and the escape
regions represent that neurotransmitters can diffuse out of the synaptic cleft. Second, using the
same cylindrical domain, we model the predator/prey experiment in [12]. This experiment
placed a single ambush predator (Chaoborus Americanus) in a water-filled beaker, and then
released prey (Daphnia) in order to estimate the feeding time of the predator. Here, we con-
sider a slightly modified setup where the prey have the opportunity to escape by reaching the
sides of the domain. In both examples, all particles/prey begin in the middle of the top reflect-
ing boundary. The parameter values for these examples are in Table 2, with additional infor-
mation in Materials and Methods.

Using Eq 16, we see that recharge dramatically affects both systems. In the inset of Fig 3C,
we plot the corresponding nc/m curves for these examples, as well as the specific points
(denoted by dots) where these examples lie, which indeed illustrates that both of these applica-
tions are well within the logarithmic growth regime. More specifically, in the case of the syn-
apse, the expected number of captures without recharge is 2550, while our upper bound and
simulation with recharge gave values of 20.3 and 20.1 respectively. We emphasize that the spa-
tial and temporal scales of these two applications differ by several orders of magnitude, but our
theory is readily applicable to both. We therefore expect that our theory will find application in
many other systems.

Varying the number of capture regions and initial distribution of particles. The previ-
ous section examined the effects parameters n and T have on the upper bound, and we now
turn to how the number of capture regions (m) and the initial distribution of particles come
into play. For this investigation, we consider the two dimensional domain O2D, with L2D

x à 1

and L2D
y à 0:1. The capture regions will be contained in @OC = {(x, 0)|0.25 x 0.75}, and we

will examine the cases where this space is evenly distributed between 1, 2 or 4 capture regions.

Fig 3. The number of captured particles depends logarithmically on the number of particles released. A: Upper bound comparisons for T = 0 and T> 0, where T =
τr/τe is the relative recharge time (non-dimensional). B: Comparison of the upper bound (solid) to simulations (dots connected with dashed lines) in O1D with for
different values of T. This figure suggests that the logarithmic growth found in the upper bound is observed in simulations. C: Plot of critical ratio nc/m in Eq 16 for
various values of h. These curves split the (T, nc)-plane into two parts: parameter values that lie above the line fall into the logarithmic growth, while those that lie below
it will fall into the linear growth (shaded regions). Inset: Plot of nc/m for O3D (C = 1.602) with h = 0.85 (neuronal synapse; blue) and h = 0.08 (predator-prey; red); see
text for more detail. The dots represent the points estimated from parameter values found in Table 2. All graphs use the parameters: D = 1(μm)2/ms and L1D

x à 1 mm.

https://doi.org/10.1371/journal.pcbi.1006015.g003
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By construction, the probability of hitting the union of the capture regions is fixed at h = 0.992
regardless of the value of m. As a result, with an instantaneous recharge time (T = 0), all of the
domains would capture the same average number of molecules, namely nh = 1984.

However, even when the relative recharge time T is small, we observe many fewer captures
than this value, in the simulations and in the upper bound (Fig 4A). We also observe signifi-
cant differences between the three different domains, with the m = 1 domain capturing fewer
particles than the domains with two and four regions. This result is observed even though a
single capture region is smaller in the m = 2 and m = 4 cases. Since |@OC| is kept constant in
each domain, this intuitively makes sense. However, this result is missed with an instant
recharge time. Further, we note that this figure illustrates that the upper bound continues to
serve as a good approximation for this two-dimensional domain, though accuracy does drop
as m increases and T decreases.

We now examine how the initial distribution of particles affects the upper bound. Instead
of placing all particles at a specific point in space, we assume they are uniformly distributed in
O2D at the start of the simulation. As noted previously, with this initial distribution of particles,

the upper bound is much simpler to calculate, requiring only the leading eigenvalue l2D
1 , since

C à
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
jOjÖp; pÜ

p
à 1 by Eq 12. Fig 4B shows that this has a minor, but noticeable effect on the

upper bound of EâNä and on simulation-based estimates of EâNä for smaller values of T. Fig
4B further shows that it has almost no effect as T gets larger. This can be understood by reason-
ing that if T is large, then by the time a capture region captures its first particle and recharges,
the initial distribution of particles has been entirely “forgotten” by the system. On the other
hand, as T approaches 0, we expect that the initial distribution of particles to play a bigger role
in determining EâNä.

Comparison of space dimensions. We now ask the question of how the number of cap-
tured particles changes with spatial dimension. To perform this analysis, we consider the

Fig 4. Varying number of receptors and initial conditions. Upper bound (solid) and simulations (dots connected with dashed lines). A: Comparison of expected
number of captures for different numbers of capture regions, while keeping |@OC|, and thus the hitting probability (h), constant. Even for small values of T, we
observe large variations between the different m cases. B: Comparison of expected number of captures with different initial distribution of particles. For the uniform
distribution, p(x, y) = 10 for 0 x 1 and 0 y 0.1, the constant C = 1 was used for the upper bound. The differences in EâNä are reduced as T increases. All
graphs use the following parameters: domain isO2D, n = 2000, D = 1(μm)2/ms, L2D

x à 1 mm, L2D
y à 0:1 mm, @O2D

C à fÖx; 0Üj0:25 < x < 0:75g.

https://doi.org/10.1371/journal.pcbi.1006015.g004
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dimensional parameter τr (in ms) as opposed to the dimensionless parameter T, and domains
O1D, O2D, and O3D with parameters chosen so that h = 0.5 in each domain. We first note that
with instant recharge (τr = 0), all of the domains capture the same number of molecules
(nh = 500). However, if τr > 0, then the three domains capture vastly different numbers of par-
ticles (Fig 5). Indeed, O1D captures significantly more particles than the other domains when
τr is small. This result follows from the fact that even though the probability of hitting the cap-
ture region (h) is the same in each domain, a particle may hit a capture region while it is
recharging if τr > 0. Such a particle may then diffuse away from this capture region and escape.
With this set of parameters, O1D has the largest escape time, and the result illustrated in Fig 5
follows. This result may be altered depending on the shapes and sizes of the domains, as illus-
trated in the next example.

To further examine the effects of escape time on EâNä, we now compare the number of cap-
tured particles in O2D and O3D, where the sizes of O2D and O3D are chosen so thatO2D has a
smaller escape time τe and larger probability h of hitting the capture region thanO3D. With
these constraints, it follows from Eq 1 that on average O2D will capture more particles than
O3D if τr = 0. Interestingly, the upper bound in Theorem 2 suggests thatO3D may actually cap-
ture more particles than O2D if τr is sufficiently large (see orange and green curves in Fig 6).
This prediction is verified in simulations (see dashed curves in Fig 6). As in Fig 5, this counter-
intuitive result can be understood in terms of the smaller escape time of O2D compared to O3D.

Fig 5. Dimension comparison. Upper bound (solid) and simulations (dots connected with dashed lines) forO1D, O2D,
andO3D with parameters chosen such that the probability of hitting a receptor in each domain is h = 0.5. For τr = 0, we
would expect all of the lines to coincide, while the figure clearly illustrates differences in EâNä between the three
domains, a characteristic predicted by our upper bound. The figure uses the following parameters: n = 2000, D = 1
(μm)2/ms, L1D

x à 1 mm, L2D
x à 1 mm, L2D

y à 0:5 mm, @O2D
E à fÖx; 0Üj0 < x < 1g, L3D

z à 0:375 mm, R3D = 0.5 μm,

@O3D = {(x, y, 0)|x2 + y2 < 0.52}.

https://doi.org/10.1371/journal.pcbi.1006015.g005
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Three- and two-dimensional synapses. The previous section illustrates the difficulty in
approximating a three-dimensional domain with a two-dimensional domain when the capture
regions have non-instant recharge times. This type of approximation is common in computa-
tional neuroscience [16, 17]. Fig 5 suggests that it is insufficient to simply account for the prob-
ability of hitting a capture region. Further, Figs 5 and 6 suggest that the escape time τe is largely
responsible for the differences in EâNä between the domains. Using this insight from our
upper bound, we conclude that an accurate two-dimensional approximation must at least have
the same τe and h as the three-dimensional domain.

To test this hypothesis, we consider a three-dimensional cylinder representative of a neuro-
nal synapse, and seek to approximate this by a two-dimensional rectangle. The goal is to
choose the parameters of the two-dimensional rectangle so that the expected number of cap-
tured molecules is the same in both domains. To choose the dimensions of our rectangle, we
follow the steps outlined in Algorithm 1.

Fig 6. The number of capture particles in neuronal synapse (2D vs. 3D). The upper bound (solid) and simulations

(dots connected with dashed lines) forO2D, O3D, and Ô2D. Parameters were chosen such thatO2D has a smaller escape
time τe and larger probability of hitting the capture region h thanO3D. The figure illustrates that for certain values of τr
it is possible for more particles to be captures inO3D. This figure used the following parameters: n = 1000, D = 1(μm)2/
ms, L2D

x à 1 mm, L2D
y à 0:25 mm, @O2D = {(x, 0)|0< x< 1}, L3D

z à 0:25 mm, R3D = 1 μm, @O3D = {(x, y, 0)|x2 + y2 <

0.252}. The following parameters were then adjusted for Ô2D so that it would capture approximately the same number
of particles asO3D: L2D

x à 1:3064 mm, L2D
y à 0:18 mm, and @O2D = {(x, 0)|0.612< x< 0.694}. Inset: Estimates of the

expected value (bar) and standard deviation (line) of the number of molecules captures from simulations in the
approximate synaptic cleft in two- and three-dimensions. The parameters ofO3D can be found in Table 2. Using these
values, the parameters for O2D were calculated using Algorithm 1, and were found to be L2D

x à 0:196 mm and
L2D

y à 0:0405. The receptors inO2D were uniformly distributed along {(x, 0)|0< x< 0.196} and had radius 0.00034

μm.

https://doi.org/10.1371/journal.pcbi.1006015.g006
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Algorithm 1
(1) Choose Lx such that l2D

1 à l
3D
1 .

(2) Choose the size of the receptors in the 2D such that they make up

the same proportion of boundary i:e: j@O
2D
c j

j@O2Dj à
j@O3D

c j
j@O3D j

⇣ ⌘
.

(3) Choose Ly such that h2D ⇡ h3D.

We first apply this algorithm to adjust parameters for O2D used in Fig 6 to match the results
from O3D. As Fig 6 (gray line) illustrates, the algorithm produces parameter values that result
in very similar upper bounds for both domains. Likewise, the simulations from the two
domains are almost indistinguishable.

We now extend this concept to approximating a three-dimensional neuronal synapse, with
the parameters found in Table 2. Specifically, we consider two synapses, one containing only
the slow recharging NMDA receptors (m = 20), and another with the fast recharging AMPA
receptors (m = 200). Using Algorithm 1, we chose parameters for O2D so that O2D and O3D

yielded similar values for EâNä (Fig 6 (Inset); compare bars in the left and right sides). This fig-
ure also illustrates, similar to our earlier results, that the logarithmic growth predicted by our
upper bound is relevant for realistic scenarios. Specifically, while a vesicle releases approxi-
mately 103 glutamate particles [8], the receptors see and bind significantly fewer, with a very
pronounced difference between AMPA and NMDA receptors (red and blue bars).

Discussion

In this paper, we considered a setup in which particles move randomly in an environment con-
taining so-called escape regions and capture regions (traps). We have shown that if the capture
regions cannot capture particles continuously but rather must recharge between captures, then
the expected number of captured particles is drastically lowered compared to the case of
instant recharge.

We showed this result for the case of diffusing particles, but it holds under more general
assumptions on particle motion. For example, suppose each particle moves in O according to a
Markov process with generator given by a differential operator L (this includes, for instance,
the case that each particle diffuses with some deterministic drift). Then, if we can solve the
PDE,

@
@t

g à Lg; x 2 O; t > 0;

by separation of variables (as we did in Lemma 2 for the case of pure diffusion, L à DD), then
we can proceed exactly as in Theorem 2. More generally, we see from Theorem 1 that the loga-
rithmic bound on EâNä holds as long as the survival probability of each particle decays expo-
nentially at large time.

As another generalization, we could suppose that each particles is removed from the system
at a constant, spatially homogeneous rate λdec > 0. That is, suppose that in addition to (or
instead of) escaping the domain, each particle has an exponentially distributed lifetime (so-
called mortal walkers [18]). For instance, this would apply to second messenger proteins such
as IP3 [19]. In this case, our results are unchanged once we replace our non-dimensional rela-
tive recharge time T = τr/τe by T = τr/τe + τr λdec.

In closing, we comment on how our results relate to previous work. The so-called narrow
escape problem is to calculate the mean first passage time of a diffusing particle to a small tar-
get on the reflecting boundary of a bounded domain. Though this problem dates back to
Helmholtz [20] and Lord Rayleigh [21], its relevance to biological cell function has recently
sparked a resurgence of interest (for example, see [22–25] and the review [26]).
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Mathematically, the problem amounts to a singular perturbation in a partial differential equa-
tion, and one seeks to characterize how the mean first passage time diverges as the size of the
small target vanishes, and how this depends on the geometry and dimension of the spatial
domain. In contrast to this previous work, our results do not require the capture or escape
regions to be small. In addition, the logarithmic scaling we found for the expected number of
captures is independent of the spatial dimension and geometry, and is therefore a fundamental
effect of recharging boundaries.

Our study bears some resemblance to other studies of diffusion with stochastically switch-
ing boundary conditions. Such processes arose in the chemistry literature over thirty years ago
[27–30] and have been studied more recently by mathematicians [31–36]. In some of these
previous studies, each diffusing particle switches conformational state independently and can
only be captured at the boundary in a certain conformational state. In other studies, the
boundary changes state, and particles can only be captured when the boundary is in a certain
state. These two scenarios are equivalent for a single particle. For multiple particles, the scenar-
ios differ because the particles are independent in the former case, whereas statistical correla-
tions arise in the latter case since all the particles diffuse in the same random environment.
However, in either case the state of the boundary is unaffected by the particles. In contrast, the
boundary conditions in the present work depend on the paths of particles. Mathematically,
this significantly complicates the analysis because the particles can affect each other through
the boundary conditions.

We also note that the effect of recharge time has been studied recently in the context of
phosphorylation reactions [37–43]. Similar in spirit to our work, the kinase and phosphatase
enzymes in these studies are inactive for a transitory time following each substrate modifica-
tion. However, these previous works study the dynamics of a biochemical reaction network,
which is very different from the escape problem considered here.

Supporting information

S1 Text. Additional mathematical details. This file contains the proof to Lemma 2, justifica-
tion for calling τe ≔ (Dλ1)−1 the escape time, and additional details about the Lambert W
Function.
(PDF)
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This file contains the proof to Lemma 2, justification for calling ⌧e := (D�1)
�1 the escape time, and additional

details about the Lambert W Function.

Proof of Lemma 2

Let X(t) 2 ⌦ denote the position at time t � 0 of a particle di↵using in ⌦ with reflecting boundary conditions
on @⌦ and di↵usivity D > 0. Let g(x, t) denote the probability that the particle has not reached @⌦E by
time t � 0 given that it starting at x 2 ⌦. Precisely, define the stopping time

te := inf{t > 0 : X(t) 2 @⌦E}, (17)

and let

g(x, t) := P(te > t |X(0) = x).

It is known that g(x, t) satisfies the Kolmogorov backward equation [1]

@
@tg = D�g, x 2 ⌦, t > 0, (18)

g = 0, x 2 @⌦E , t > 0, (19)
@
@� g = 0, x 2 @⌦\@⌦E , t > 0, (20)

g = 1, x 2 ⌦, t = 0. (21)

By [2], there exists a set of eigenvalues and eigenfunctions as in the statement of the lemma. It is then easy
to check that

g(x, t) =
1X

k=1

(�k, 1)e
�D�kt

�k(x)

satisfies Eqs. 18-21. If X(0) is distributed according to p(x), then

S(t) =

Z

⌦
g(x, t)p(x) dx,

and Eq 10 follows.

Escape time.

To see why we refer to ⌧e := (D�1)
�1 as the escape time, define te as in Eq 17. It is known that the expected

value of te (the so-called mean first passage time)

se(x) := E[te |X(0) = x],

satisfies the elliptic problem [1]

�1 = D�se, x 2 ⌦,

se = 0, x 2 @⌦E ,

1



@
@� se = 0, x 2 @⌦\@⌦E .

If the X(0) is distributed according to its quasi-stationary distribution, �1(x)/(�1, 1) � 0 [3], then the
mean of te is

Z

⌦
se(x)�1(x)/(�1, 1) dx.

Now, using the PDEs and boundary conditions that �1 and se satisfy and integrating by parts yields

Z

⌦
se(x)�1(x)/(�1, 1) dx = � 1

�1

Z

⌦
se(x)��1(x)/(�1, 1) dx

= � 1

�1

Z

⌦
�se(x)�1(x)/(�1, 1) dx

=
1

D�1

Z

⌦
�1(x)/(�1, 1) dx = ⌧e,

as desired. We note that the boundary terms that appear from integrating by parts vanish since either se

or the normal derivative of se is zero on the boundary.

Note on Lambert W Function

While W�1(z) is a fairly standard function that is included in most modern computational software, we
can use recent results to obtain a more tractable description of nc. It was recently proven [4] that W�1(z)
satisfies

�W�1(�e

�u�1) < 1 +
p
2u+ u,

if u > 0. Therefore, combining this bound with Eq 16 shows that if the ratio of particles to capture regions,
n/m, satisfies

n

m

� 1

Th

⇣
1 +

p
2(T + log(C/h)) + T + log(C/h)

⌘
, (22)

then n > nc and the logarithmic bound in Theorem 2 is tighter than the linear bound. Hence, if Eq 22 is
satisfied, then the recharge time significantly a↵ects E[N ].
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