1.3.5; Suppose A is a symmetric matrix with eigenvalues $\lambda_{1} \geq \lambda_{2}>\lambda_{3} \geq \ldots$. Show that

$$
\max _{\langle u, v\rangle=0}\langle A u, u\rangle+\langle A v, v\rangle=\lambda_{1}+\lambda_{2}
$$

where $\|u\|=\|v\|=1$.
Use Lagrange multipliers and look for extremals of

$$
P(u, v)=\langle A u, u\rangle+\langle A v, v\rangle+\mu_{1}(\langle u, u\rangle-1)+\mu_{2}(\langle v, v\rangle-1)+\mu_{3}|\langle u, v\rangle|^{2}
$$

Differentiate $P(u, v)$ with respect to parameters μ_{1}, μ_{2}, and μ_{3} and set the derivatives to zero to learn (as expected) that $\|u\|^{2}=\|v\|^{2}=1$, and $\langle u, v\rangle=0$. Now set $u=u_{0}+h, v=v_{0}+g$, expand $P(u, v)$ and require that the linear terms vanish. That is, require

$$
\operatorname{Re}\left(\left\langle A u+\mu_{1} u, h\right\rangle+\left\langle A v+\mu_{2} v, g\right\rangle\right)=0
$$

for all g, h. It follows that we must have

$$
A u+\mu_{1} u=0, \quad A v+\mu_{2} v=0
$$

In other words, u and v must be eigenvectors for A.
Now suppose that the normalized eigenvectors of A are $\left\{\phi_{i}\right\}$ with corresponding eigenvalues λ_{i}. Since we know that u and v must be eigenvectors, we have that

$$
\begin{aligned}
\max _{\langle u, v\rangle=0}\langle A u, u\rangle+\langle A v, v\rangle & =\max _{i \neq j}\left\langle A \phi_{i}, \phi_{i}\right\rangle+\left\langle A \phi_{j}, \phi_{j}\right\rangle \\
& =\max _{i \neq j} \lambda_{i}+\lambda_{j} \\
& =\lambda_{1}+\lambda_{2}
\end{aligned}
$$

2.2.21; Verify that the wavelet generated by the sinc function is

$$
W(x)=\operatorname{sinc}\left(x-\frac{1}{2}\right)-2 \operatorname{sinc}(2 x-1) .
$$

Recall that

$$
\begin{aligned}
\operatorname{sinc}(x) & =\sum_{k} \operatorname{sinc}\left(\frac{k}{2}\right) \operatorname{sinc}(2 x-k) \\
& =\operatorname{sinc}(2 x)+\sum_{k \text { odd }} \operatorname{sinc}\left(\frac{k}{2}\right) \operatorname{sinc}(2 x-k)
\end{aligned}
$$

so that

$$
\sum_{k o d d} \operatorname{sinc}\left(\frac{k}{2}\right) \operatorname{sinc}(2 x-k)=\operatorname{sinc}(x)-\operatorname{sinc}(2 x)
$$

It follows that

$$
\begin{aligned}
W(x) & =\sum_{k}(-1)^{k} \operatorname{sinc}\left(\frac{k-1}{2}\right) \operatorname{sinc}(2 x-k) \\
& =\sum_{k}(-1)^{k+1} \operatorname{sinc}\left(\frac{k}{2}\right) \operatorname{sinc}(2 x-1-k) \\
& =-\operatorname{sinc}(2 x-1)+\sum_{k \text { odd }} \operatorname{sinc}\left(\frac{k}{2}\right) \operatorname{sinc}(2 x-1-k) \\
& =-2 \operatorname{sinc}(2 x-1)+\operatorname{sinc}\left(x-\frac{1}{2}\right) .
\end{aligned}
$$

8.3.15 (A new problem) Under what conditions is the interchange $\frac{d}{d t} \int_{a}^{b} u(x, t) d x=\int_{a}^{b} \frac{\partial u}{\partial t} d x$ valid?

Answer: Use Fubini's theorem to show that the interchange is valid if $\frac{\partial u}{\partial t}$ is absolutely integrable.

