| Copyright & License | DEFINITION | |---|------------------------------| | | | | Copyright © 2007 Jason Underdown
Some rights reserved. | $metric\ space$ | | Торогоду | Topology | | Definition | DEFINITION | | | | | subspace | isometry | | Торогоду | Topology | | Definition | Proposition | | | | | open set | open balls are open | | | | | Topology | Topology | | Theorem | DEFINITION | | | | | unions and intersections of open sets | closed set | | | | | Topology | Topology | | DEFINITION | Proposition | | | | | closed ball | closed balls are closed sets | | Topology | Topology | | A metric space (X,d) is a set X and a function $d: X \times X \to \mathbb{R}$ satisfying $\forall x, y, z \in X$ 1. $d(x,y) \geq 0$ 2. $d(x,y) = 0 \Leftrightarrow x = y$ 3. $d(x,y) = d(y,x)$ 4. $d(x,z) \leq d(x,y) + d(y,z)$ | These flashcards and the accompanying LATEX source code are licensed under a Creative Commons Attribution—NonCommercial—ShareAlike 2.5 License. For more information, see creativecommons.org. You can contact the author at: jasonu at physics utah edu | |--|--| | Suppose (X_1,d_1) and (X_2,d_2) are metric spaces. A function $f:X_1\to X_2$ is called an isometry if f is one—to—one, onto and $d_2(f(x),f(y))=d_1(x,y)\forall\;x,y\in X_1$ | If (X, d) is a metric space, and $A \subset X$ then $(A, d _{A \times A})$ is a metric space and is called a subspace of (X, d) . | | If (X,d) is a metric space, then for each $x \in X$ and for each $r > 0, B(x,r)$ is open in X. | Supposing (X,d) is a metric space, then a subset $U\subset X$ is open iff $\forall \ x\in U, \exists \ r>0 \text{ such that } B(x,r)\subset U$ | | Let (X,d) be a metric space, $F\subset X$ is closed iff $X-F$ is open. | Let (X, d) be a metric space and let {U_α}_{α∈A} be any collection of open sets in (X, d), then 1. X, Ø are open. 2. ∪_{α∈A} U_α is open. 3. Let {U₁,, U_n} be a finite collection of open sets, then ⋂_{i=1}ⁿ U_i is open. | | A closed ball $\overline{B}(x,r)$, is a closed set. | A closed ball centered at x of radius r is denoted $\overline{B}(x,r),$ and defined to be: $\overline{B}(x,r)=\{y\in X\mid d(x,y)\leq r\}$ | | Theorem | DEFINITION | |---|-----------------------------------| | unions and intersections of closed sets | interior | | Topology | Topology | | DEFINITION | DEFINITION | | closure | exterior & frontier | | Topology | Topology | | DEFINITION | DEFINITION | | distance from a point to a set | limit of a sequence | | Topology | Topology | | DEFINITION | DEFINITION | | Cauchy Sequence | convergent sequence | | Topology | Topology | | Theorem convergence implies Cauchy | Definition complete metric space | | Topology | Topology | | Let (X,d) be a metric space with $A\subset X$. The interior of A denoted A° is defined to be: $A^\circ=\{x\in A\mid \exists\ r>0\ \text{such that}\ B(x,r)\subset A\}$ | Let (X, d) be a metric space and let {F_α}_{α∈A} be any collection of closed sets in (X, d), then 1. X, Ø are closed. 2. ⋂_{α∈A} F_α is closed. 3. Let {F₁,,F_n} be a finite collection of closed sets, then ⋃_{i=1}ⁿ F_i is closed. | |---|---| | Let (X, d) be a metric space with $A \subset X$.
The exterior of a set A is defined to be $(X - A)^{\circ}$.
The frontier of a set A is defined to be $\overline{A} - A^{\circ}$. | Let (X,d) be a metric space with $A\subset X$. The closure of A denoted \overline{A} is defined to be: $\overline{A}=\{x\in X\mid \forall\ r>0, B(x,r)\cap A\neq\varnothing\}$ | | Suppose (X,d) is a metric space. A sequence $\{x_n\} \subset X$ has limit x , denoted $\lim_{n\to\infty} \{x_n\} = x$ iff $\forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ such that}$ $n \geq N \Rightarrow x_n \in B(x,\varepsilon)$ | Suppose (X,d) is a metric space with $A\subset X$ and $x\in X.$ We define the distance from x to A by $d(x,A)=\inf\{d(x,y)\mid y\in A\}$ | | A sequence $\{x_n\}$ converges iff $\lim \{x_n\}$ exits. | Suppose (X,d) is a metric space. A sequence $\{x_n\} \subset X$ is called a Cauchy sequence iff $\forall \ \varepsilon > 0, \ \exists \ N \in \mathbb{N} \text{ such that }$ $m,n \geq N \Rightarrow d(x_m,x_n) < \varepsilon$ | | A metric space (X, d) is complete iff every Cauchy sequence in X is convergent. | If a sequence $\{x_n\}$ is convergent then it is Cauchy. | | Тнеогем | THEOREM | |------------------------------------|---| | limits are unique | distinct points have a radius of separation | | Topology | Topology | | DEFINITION | DEFINITION | | $continuous\ function$ | continuous function (alternate definition) | | Topology | Topology | | DEFINITION | THEOREM | | Lipschitz function | Lipschitz functions are uniformly continuous | | Topology | Topology | | DEFINITION | Theorem | | bi-Lipschitz | f continuous iff the preimage of every open set is open | | Topology | Topology | | Theorem | DEFINITION | | continuous functions and sequences | homeomorphism | | Topology | Topology | | Suppose (X,d) is a metric space, and $x,y\in X$ with $x\neq y,$ then $\exists \ r>0$ such that $B(x,r)\cap B(y,r)=\varnothing$ | If the limit of $\{x_n\}$ exists, then that limit is unique. | |--|---| | Suppose $(X_1,d_1),(X_2,d_2)$ are metric spaces. A function $f:X_1\to X_2$ is continuous on X_1 iff $\forallx\in X_1,\forall\varepsilon>0,\exists\delta>0\text{ such that}$ $f(B(x,\delta))\subset B(f(x),\varepsilon)$ | Suppose $(X_1, d_1), (X_2, d_2)$ are metric spaces. A function $f: X_1 \to X_2$ is continuous at $x \in X_1$ iff $\forall \varepsilon > 0, \exists \delta(x, \varepsilon) > 0 \text{ such that}$ $d_1(x, y) < \delta \Rightarrow d_2(f(x), f(y)) < \varepsilon$ | | If $f: X_1 \to X_2$ is Lipschitz on X_1 , then f is uniformly continuous on X_1 . | Suppose $(X_1, d_1), (X_2, d_2)$ are metric spaces. A function $f: X_1 \to X_2$ is called Lipschitz iff $\forall x,y \in X_1 \exists c > 0 \text{ such that}$ $d_2(f(x), f(y)) \leq c d_1(x,y)$ A Lipschitz function can be thought of as a "bounded distortion." | | A function $f: X_1 \to X_2$ is continuous iff $\forall U \text{ open } \subset X_2 \Rightarrow f^{-1}(U) \text{ open } \subset X_1$ Or equivalently: $\forall U \text{ closed } \subset X_2 \Rightarrow f^{-1}(U) \text{ closed } \subset X_1$ | Suppose $(X_1, d_1), (X_2, d_2)$ are metric spaces. A function $f: X_1 \to X_2$ is called bi-Lipschitz iff $\forall x, y \in X_1 \exists c_1, c_2 > 0 \text{ such that}$ $c_1 d_1(x, y) \leq d_2(f(x), f(y)) \leq c_2 d_1(x, y)$ | | A function $f:(X_1,d_1)\to (X_2,d_2)$ is called a homeomorphism iff 1. f is continuous 2. f is 1-1 and onto 3. f^{-1} is continuous | A function $f:(X_1,d_1)\to (X_2,d_2)$ is continuous iff \forall convergent sequences $\{x_n\}\subset X_1,$ $\lim_{n\to\infty}f(x_n)=f(\lim_{n\to\infty}\{x_n\})$ | | DEFINITION | | Remark | | |--|----------|--|----------| | $equivalent\ metrics$ | | two metrics are equivalent iff the identity map is a homeomorphism | | | | Topology | | Topology | | THEOREM | | DEFINITION | | | composition of continuous fund
preserves continuity | etions | homeomorphic spaces | | | | Topology | | Topology | | Definition | | DEFINITION | | | topology | | topological space | | | | Topology | | Topology | | | | | | | | Topology | | Topology | | | Topology | | Topology | | Two metrics, $d_1,\ d_2$ are equivalent iff $id:(X,d_1)\to (X,d_2)$ is a homeomorphism. | Two metrics d_1 , d_2 are called equivalent iff they have the same open sets. | |--|---| | Two metric spaces are homeomorphic iff there exists a homeomorphism between them. | Suppose $f: X_1 \to X_2$ and $g: X_2 \to X_3$. If f and g are continuous then $g \circ f$ is continuous. | | A topological space (X, τ) is a set X and a topology τ on X . | Suppose X is a set. A collection τ of subsets of X is called a topology on X iff $1. \ X \in \tau \text{ and } \emptyset \in \tau$ $2. \ U_{\alpha} \in \tau \text{ for } \alpha \in A \Rightarrow \bigcup_{\alpha \in A} U_{\alpha} \in \tau$ $3. \ U_1, U_2, \dots, U_n \in \tau \Rightarrow \bigcap_{i=1}^{\infty} U_i \in \tau$ | | | | | | |