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Assuming N is even, then we define the spin excess by

N↑ −N↓ = 2s
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N ! ≈ (2πN)1/2NN exp(−N + (1/12)N + · · · ) g(N, s) =
N !(

1
2N + s

)
!
(

1
2N − s

)
!

=
N !

N↑! N↓!

The fundamental assumption of statistical mechanics
is that in a closed system, each of its accessible states
is equally likely.

G(N, s) ≈ (2/πN)1/22N exp(−2s2/N)

Suppose that a system has some physical property
X = X(s) when the system is in state s. The expected
or average value of X is defined by:

〈X〉 =
∑

s

X(s)P (s)

If s is a state of a system, then the probability of that
state is given by:

P (s) =
{

1/g if s is an accessible state
0 otherwise

The sum of the probabilities over all states is unity.∑
s

P (s) = 1

If two systems are in thermal contact, the condition
for them to be in thermal equilibrium is the following:(

∂σ1

∂U1

)
N1

=
(

∂σ2

∂U1

)
N2

σ(N,U) ≡ ln g(N,U)
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1
T

=
(

∂S

∂U

)
N

S = kBσ

1
τ
≡

(
∂σ

∂U

)
N

τ = kBT

kB = 1.381× 10−23 J/K

The multiplicity function for a simple harmonic oscil-
lator with three degrees of freedom with energy En is
given by

g(n) =
1
2
(n + 1)(n + 2)

where n = nx + ny + nz.

The multiplicity function for a Hydrogen atom with
energy En, is given by

g(n) =
n−1∑
l=0

(2l + 1) = n2

where n is the principal quantum number, and l is the
orbital quantum number.


