Copyright & License	Definition
Copyright © 2007 Jason Underdown Some rights reserved.	spin excess
QUANTUM STATISTICAL MECHANICS	QUANTUM STATISTICAL MECHANICS
Formula	Formula
multiplicity function	Stirling's approximation
QUANTUM STATISTICAL MECHANICS	QUANTUM STATISTICAL MECHANICS
Formula	Assumption
approximate multiplicity function	fundamental assumption
QUANTUM STATISTICAL MECHANICS	QUANTUM STATISTICAL MECHANICS
Definition	Definition
probability of states	expectation average value
QUANTUM STATISTICAL MECHANICS	QUANTUM STATISTICAL MECHANICS
Definition	Equation
entropy	condition for thermal equilibrium
QUANTUM STATISTICAL MECHANICS	QUANTUM STATISTICAL MECHANICS

Assuming N is even, then we define the $spin\ excess$ by $N_{\uparrow}-N_{\downarrow}=2s$	These flashcards and the accompanying LATEX source code are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License. For more information, see creativecommons.org. You can contact the author at: jasonu [remove-this] at physics dot utah dot edu
$N! \approx (2\pi N)^{1/2} N^N \exp(-N + (1/12)N + \cdots)$	$g(N,s) = \frac{N!}{\left(\frac{1}{2}N+s\right)! \left(\frac{1}{2}N-s\right)!} = \frac{N!}{N_{\uparrow}! N_{\downarrow}!}$
The fundamental assumption of statistical mechanics is that in a closed system, each of its <i>accessible</i> states is <i>equally likely</i> .	$G(N,s) \approx (2/\pi N)^{1/2} 2^N \exp(-2s^2/N)$
Suppose that a system has some physical property $X = X(s)$ when the system is in state s . The <i>expected</i> or <i>average value</i> of X is defined by: $\langle X \rangle = \sum_{s} X(s) P(s)$	If s is a state of a system, then the probability of that state is given by: $P(s) = \begin{cases} 1/g & \text{if } s \text{ is an accessible state} \\ 0 & \text{otherwise} \end{cases}$ The sum of the probabilities over all states is unity. $\sum_{s} P(s) = 1$
If two systems are in thermal contact, the condition for them to be in <i>thermal equilibrium</i> is the following: $\left(\frac{\partial \sigma_1}{\partial U_1}\right)_{N_1} = \left(\frac{\partial \sigma_2}{\partial U_1}\right)_{N_2}$	$\sigma(N,U) \equiv \ln g(N,U)$

Definition	Definition
fundamental temperature Kelvin temperature Boltzmann constant	relationship between entropy and classical thermodynamic entropy
Quantum Statistical Mechanics	Quantum Statistical Mechanics
Equation	Equation
multiplicity function for the Hydrogen atom	multiplicity function for 3D harmonic oscillator
Quantum Statistical Mechanics	QUANTUM STATISTICAL MECHANICS
QUANTUM STATISTICAL MECHANICS	QUANTUM STATISTICAL MECHANICS
QUANTUM STATISTICAL MECHANICS	Quantum Statistical Mechanics
QUANTUM STATISTICAL MECHANICS	Quantum Statistical Mechanics

$$\frac{1}{\tau} = \left(\frac{\partial S}{\partial U}\right)_{k}$$

$$S = k_{B}\sigma$$

$$\frac{1}{\tau} = \left(\frac{\partial T}{\partial U}\right)_{k}$$

$$\tau = k_{R}T$$

$$k_{B} = 1.381 \times 10^{-25} \text{ J/K}$$
The multiplicity function for a simple barmonic oscillator with three degrees of freedom with energy E_{n} is given by
$$g(n) = \frac{1}{2}(n+1)(n+2)$$
where $n = n_{\pi} + n_{y} + n_{z}$.
The multiplicity function number, and l is the orbital quantum number.