Copyright © 2006 Jason Underdown

Some rights reserved.

Probability

Theorem
binomial theorem

Probability

Axioms
axioms of probability

Probability
Proposition
probability of the union of two events

Probability

Theorem

Definition
choose notation

Probability
Definition
n distinct items divided into
r distinct groups

Proposition
probability of the complement

Definition
conditional probability

Probability

Theorem
the multiplication rule
n choose k is a brief way of saying how many ways can you choose k objects from a set of n objects, when the order of selection is not relevant.

$$
\binom{n}{k}=\frac{n!}{(n-k)!k!}
$$

Obviously, this implies $0 \leq k \leq n$.

Suppose you want to divide n distinct items in to r distinct groups each with size $n_{1}, n_{2}, \ldots, n_{r}$, how do you count the possible outcomes?
If $n_{1}+n_{2}+\ldots+n_{r}=n$, then the number of possible divisions can be counted by the following formula:

$$
\binom{n}{n_{1}, n_{2}, \ldots, n_{r}}=\frac{n!}{n_{1}!n_{2}!\ldots n_{r}!}
$$

If E^{c} denotes the complement of event E, then

$$
P\left(E^{c}\right)=1-P(E)
$$

These flashcards and the accompanying $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ source code are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License. For more information, see creativecommons.org. You can contact the author at:

```
jasonu [remove-this] at physics dot utah dot edu
```

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

1. $0 \leq P(E) \leq 1$
2. $P(S)=1$
3. For any sequence of mutually exclusive events E_{1}, E_{2}, \ldots
(i.e. events where $E_{i} E_{j}=\emptyset$ when $i \neq j$)

$$
P\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\sum_{i=1}^{\infty} P\left(E_{i}\right)
$$

If $P(F)>0$, then

$$
P(E \mid F)=\frac{P(E F)}{P(F)}
$$

$$
\begin{aligned}
P(E) & =P(E F)+P\left(E F^{c}\right) \\
& =P(E \mid F) P(F)+P\left(E \mid F^{c}\right) P\left(F^{c}\right) \\
& =P(E \mid F) P(F)+P\left(E \mid F^{c}\right)[1-P(F)]
\end{aligned}
$$

$$
P(A \cup B)=P(A)+P(B)-P(A B)
$$

$$
\begin{gathered}
P\left(E_{1} E_{2} E_{3} \ldots E_{n}\right)= \\
P\left(E_{1}\right) P\left(E_{2} \mid E_{1}\right) P\left(E_{3} \mid E_{2} E_{1}\right) \ldots P\left(E_{n} \mid E_{1} \ldots E_{n-1}\right)
\end{gathered}
$$

independent events

Probability

cumulative distribution function F

Probability

Definition
expected value (discrete case)
probability mass function of a Bernoulli random variable

Definition

probability mass function of a discrete random variable

Theorem
properties of the cumulative distribution function
expected value of a function of X
(discrete case)

Definition/Theorem
variance

Definition

For a discrete random variable X, we define the probability mass function $p(a)$ of X by

$$
p(a)=P\{X=a\}
$$

Probability mass functions are often written as a table.

The cumulative distribution function satisfies the following properties:

1. F is a nondecreasing function
2. $\lim _{a \rightarrow \infty} F(a)=1$
3. $\lim _{a \rightarrow-\infty} F(a)=0$

If X is a discrete random variable that takes on the values denoted by $x_{i}(i=1 \ldots n)$ with respective probabilities $p\left(x_{i}\right)$, then for any real-valued function f

$$
E[f(X)]=\sum_{i=1}^{n} f\left(x_{i}\right) p(x)
$$

If X is a random variable with mean μ, then we define the variance of X to be

$$
\begin{aligned}
\operatorname{var}(X) & =E\left[(X-\mu)^{2}\right] \\
& =E\left[X^{2}\right]-(E[X])^{2} \\
& =E\left[X^{2}\right]-\mu^{2}
\end{aligned}
$$

The first line is the actual definition, but the second and third equations are often more useful and can be shown to be equivalent by some algebraic manipulation.

Suppose n independent Bernoulli trials are performed. If the probability of success is p and the probability of failure is $1-p$, then X is said to be a binomial random variable with parameters (n, p).
The probability mass function is given by:

$$
p(i)=\binom{n}{i} p^{i}(1-p)^{n-i}
$$

where $i=0,1, \ldots, n$

Two events E and F are said to be independent iff

$$
P(E F)=P(E) P(F)
$$

Otherwise they are said to be dependent.

The cumulative distribution function (F) is defined to be

$$
F(a)=\sum_{\text {all } x \leq a} p(x)
$$

The cumulative distribution function $F(a)$ denotes the probability that the random variable X has a value less than or equal to a.

$$
E[X]=\sum_{x: p(x)>0} x p(x)
$$

If α and β are constants, then

$$
E[\alpha X+\beta]=\alpha E[X]+\beta
$$

If an experiment can be classified as either success or failure, and if we denote success by $X=1$ and failure by $X=0$ then, X is a Bernoulli random variable with probability mass function:

$$
\begin{gathered}
p(0)=P\{X=0\}=1-p \\
p(1)=P\{X=1\}=p
\end{gathered}
$$

where p is the probability of success and $0 \leq p \leq 1$.
properties of binomial random variables

Probability

Theorem
properties of Poisson random variables

Probability

Theorem
properties of geometric random variables

Probability

Theorem
properties of negative binomial random variables

Probability

Definition
probability density function of a uniform random variable

Definition
probability mass function of a Poisson random variable

Definition
probability mass function of a geometric random variable

Definition
probability mass function of a negative binomial random variable

Definition
probability density function of a continuous random variable

Probability

Theorem
properties of uniform random variables

A random variable X that takes on one of the values $0,1, \ldots$, is said to be a Poisson random variable with parameter λ if for some $\lambda>0$

$$
p(i)=P\{X=i\}=\frac{\lambda^{i}}{i!} e^{-\lambda}
$$

where $i=0,1,2, \ldots$

Suppose independent Bernoulli trials, are repeated until success occurs. If we let X equal the number of trials required to achieve success, then X is a geometric random variable with probability mass function:

$$
p(n)=P\{X=n\}=(1-p)^{n-1} p
$$

where $n=1,2, \ldots$

Suppose that independent Bernoulli trials (with probability of succes p) are performed until r successes occur. If we let X equal the number of trials required, then X is a negative binomial random variable with probability mass function:

$$
p(n)=P\{X=n\}=\binom{n-1}{r-1} p^{r}(1-p)^{n-r}
$$

where $n=r, r+1, \ldots$

We define X to be a continuous random variable if there exists a function f, such that for any set B of real numbers

$$
P\{X \in B\}=\int_{B} f(x) d x
$$

The function f is called the probability density function of the random variable X.

If X is a uniform random variable with parameters (α, β), then

$$
\begin{aligned}
E[X] & =\frac{\alpha+\beta}{2} \\
\operatorname{var}(X) & =\frac{(\beta-\alpha)^{2}}{12}
\end{aligned}
$$

If X is a binomial random variable with parameters n and p, then

$$
\begin{aligned}
E[X] & =n p \\
\operatorname{var}(X) & =n p(1-p)
\end{aligned}
$$

If X is a Poisson random variable with parameter λ, then

$$
\begin{aligned}
E[X] & =\lambda \\
\operatorname{var}(X) & =\lambda
\end{aligned}
$$

If X is a geometric random variable with parameter p, then

$$
\begin{aligned}
E[X] & =\frac{1}{p} \\
\operatorname{var}(X) & =\frac{1-p}{p^{2}}
\end{aligned}
$$

If X is a negative binomial random variable with parameters (p, r), then

$$
\begin{aligned}
E[X] & =\frac{r}{p} \\
\operatorname{var}(X) & =\frac{r(1-p)}{p^{2}}
\end{aligned}
$$

If X is a uniform random variable on the interval (α, β), then its probability density function is given by

$$
f(x)= \begin{cases}\frac{1}{\beta-\alpha} & \text { if } \alpha<x<\beta \\ 0 & \text { otherwise }\end{cases}
$$

