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n choose k is a brief way of saying how many ways can
you choose k objects from a set of n objects, when the
order of selection is not relevant.(

n

k

)
=

n!
(n− k)! k!

Obviously, this implies 0 ≤ k ≤ n.
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Suppose you want to divide n distinct items in to r
distinct groups each with size n1, n2, . . . , nr, how do
you count the possible outcomes?
If n1 + n2 + . . . + nr = n, then the number of possible
divisions can be counted by the following formula:(

n

n1, n2, . . . , nr

)
=

n!
n1! n2! . . . nr!

(x + y)n =
n∑

k=0

(
n

k

)
xkyn−k

If Ec denotes the complement of event E, then

P (Ec) = 1− P (E)

1. 0 ≤ P (E) ≤ 1

2. P (S) = 1

3. For any sequence of mutually exclusive events
E1, E2, . . .
(i.e. events where EiEj = ∅ when i 6= j)

P

( ∞⋃
i=1

Ei

)
=
∞∑

i=1

P (Ei)

If P (F ) > 0, then

P (E | F ) =
P (EF )
P (F )

P (A ∪B) = P (A) + P (B)− P (AB)

P (E) = P (EF ) + P (EF c)
= P (E | F )P (F ) + P (E | F c)P (F c)
= P (E | F )P (F ) + P (E | F c)[1− P (F )]

P (E1E2E3 . . . En) =

P (E1)P (E2 | E1)P (E3 | E2E1) . . . P (En | E1 . . . En−1)
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For a discrete random variable X, we define the prob-
ability mass function p(a) of X by

p(a) = P{X = a}

Probability mass functions are often written as a table.

Two events E and F are said to be independent iff

P (EF ) = P (E)P (F )

Otherwise they are said to be dependent.

The cumulative distribution function satisfies the fol-
lowing properties:

1. F is a nondecreasing function

2. lima→∞ F (a) = 1

3. lima→−∞ F (a) = 0

The cumulative distribution function (F ) is defined to
be

F (a) =
∑

all x≤a

p(x)

The cumulative distribution function F (a) denotes the
probability that the random variable X has a value less
than or equal to a.

If X is a discrete random variable that takes on the
values denoted by xi (i = 1 . . . n) with respective prob-
abilities p(xi), then for any real–valued function f

E[f(X)] =
n∑

i=1

f(xi)p(x)

E[X] =
∑

x:p(x)>0

xp(x)

If X is a random variable with mean µ, then we define
the variance of X to be

var(X) = E[(X − µ)2]
= E[X2]− (E[X])2

= E[X2]− µ2

The first line is the actual definition, but the second
and third equations are often more useful and can be
shown to be equivalent by some algebraic manipula-
tion.

If α and β are constants, then

E[αX + β] = αE[X] + β

Suppose n independent Bernoulli trials are performed.
If the probability of success is p and the probability of
failure is 1−p, then X is said to be a binomial random
variable with parameters (n, p).
The probability mass function is given by:

p(i) =
(

n

i

)
pi(1− p)n−i

where i = 0, 1, . . . , n

If an experiment can be classified as either success or
failure, and if we denote success by X = 1 and failure
by X = 0 then, X is a Bernoulli random variable with
probability mass function:

p(0) = P{X = 0} = 1− p
p(1) = P{X = 1} = p

where p is the probability of success and 0 ≤ p ≤ 1.
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A random variable X that takes on one of the values
0,1,. . ., is said to be a Poisson random variable with
parameter λ if for some λ > 0

p(i) = P{X = i} =
λi

i!
e−λ

where i = 0, 1, 2, . . .

If X is a binomial random variable with parameters n
and p, then

E[X] = np

var(X) = np(1− p)

Suppose independent Bernoulli trials, are repeated un-
til success occurs. If we let X equal the number of tri-
als required to achieve success, then X is a geometric
random variable with probability mass function:

p(n) = P{X = n} = (1− p)n−1p

where n = 1, 2, . . .

If X is a Poisson random variable with parameter λ,
then

E[X] = λ

var(X) = λ

Suppose that independent Bernoulli trials (with prob-
ability of succes p) are performed until r successes oc-
cur. If we let X equal the number of trials required,
then X is a negative binomial random variable with
probability mass function:

p(n) = P{X = n} =
(

n− 1
r − 1

)
pr(1− p)n−r

where n = r, r + 1, . . .

If X is a geometric random variable with parameter p,
then

E[X] =
1
p

var(X) =
1− p

p2

We define X to be a continuous random variable if
there exists a function f , such that for any set B of
real numbers

P{X ∈ B} =
∫

B

f(x)dx

The function f is called the probability density function
of the random variable X.

If X is a negative binomial random variable with pa-
rameters (p, r), then

E[X] =
r

p

var(X) =
r(1− p)

p2

If X is a uniform random variable with parameters
(α, β), then

E[X] =
α + β

2

var(X) =
(β − α)2

12

If X is a uniform random variable on the interval
(α, β), then its probability density function is given
by

f(x) =
{ 1

β−α if α < x < β

0 otherwise


